
Semantic Malware Detection by Deploying Graph Mining

Fatemeh Karbalaie1, Ashkan Sami2 and Mansour Ahmadi3

1CSE&IT Department, Shiraz University

Shiraz, Iran

2CSE&IT Department, Shiraz University
Shiraz, Iran

3Young Researchers Club, Shiraz Branch, Islamic Azad University
Shiraz, Iran

Abstract

Today malware is a serious threat to our society. Several
researchers are studying detection and mitigation of malware
threats. On the other hand malware authors try to use
obfuscation techniques for evading detection. Unfortunately
usual approach (e.g., antivirus software) use signature based
method which can easily be evaded. For addressing these
shortcomings dynamic methods have been introduced. The aim
of dynamic methods is to detect the semantic of malware
family. Obfuscation of semantic based method is too difficult
and results of these methods are promising. However deploying
semantic based methods for real time detection have several
complications. Current semantic methods are too time-
consuming and usually need a robust virtual machine to obtain
the behavior. In this paper we present an automatic detection
method based on graph mining techniques with near optimal
detection rate. That is 96.6% accuracy and only 3.4% false
positive. In our method, first the malware is analyzed in a
virtual machine environment to observe its semantic. A graph
representation of malware behavior is constructed. The
representation is based on relationships between system calls
and allows rearrangement of system calls. Graph is used for
representing the behavior of application because graph,
especially labeled graph, can be used to model lots of
complicated relation between data. At the next step we mine
information graph and extract the most discriminative graphs
that separate malware from benign. Finally, a classification
method is used and the mentioned accuracy was obtained.

Keywords: Semantic, Malware Detection, System call,
frequent sub graph, labeled graph, subgraph isomorphism.

1. Introduction

"Malware" is an abbreviation for 'malicious software' and
is typically used as a catch-all term to refer to any
software or program that damages computer systems or
destroys valuable information stored in computers.
Typical examples include viruses, worms, trojans, and
spyware. Malware may be propagated using spam, may
also be used to send spam, may take advantage of bugs,
and may be used to mount DoS attacks. Recently the
threat of malware has acquired an economic dimension
as attackers benefit financially from compromised
machines (e.g., by selling hosts as email relays to
spammers) [1]. These considerations illustrate that
addressing the problem of malware is necessary for
improving computer security. Computer security is
necessary to our society's critical infrastructure.
Historically, detection tools such as signature based
detection methods have performed poorly, particularly
when facing previously unknown malware programs,
novel variants of existing ones and polymorphic/
metamorphic malware. An important problem is that
many of detection techniques rely on ineffective models.
Ineffective models are models that do not capture natural
properties of a malicious program and its actions but
merely pick up artifacts of a specific malware instance.
As a result, they can be easily evaded. Most of these
models capture the sequence of system calls that a

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 1, No 3, January 2012
ISSN (Online): 1694-0814
www.IJCSI.org 373

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

specific malware program executes. The defect of these
methods is that, when these system calls are independent,
it is easy to change their order or add irrelevant calls,
thus evading the captured sequence.

 Today for above mentioned problems, researchers
propose ways to capture the malicious behavior that
characterizes a malware program. On one hand, some
detectors [2, 3, 4] use sophisticated static analysis to
identify the code that is semantically equivalent to a
malware template. These actual semantic of program is
unaffected by obfuscation, but at the other hand static
analysis suffer from some limitation such as difficulty of
static binary analysis, high cost of doing such analysis
and the low speed in scanning large number of files [5].
In this paper we propose a novel and near optimal
malware detection approach base on dynamic analysis.
Also dynamic analysis techniques suffer from some
limitation, such as necessity to run malware in virtual
machine environment, but this limitation is the trade off
for the good results dynamic analysis provides. Thus, we
first generate effective model that cannot easily evaded
by obfuscation. More accurately, we execute the malware
program in a controlled environment and observe its
interaction with the operating system.
In summary, our main contribution is to propose a
framework based on graph mining approach. System
calls are modeled as graphs, representing the program
semantic. System calls were monitored because they are
the primary interactions of malware with the operating
system. Our algorithm infers the system-call graphs from
execution traces, and then derives unique graphs that
discriminate malware from benign. In other words, our
method outperform all previous researches as we know
and reached 96.6% detection rate with only 3.4% false
positive. In contrast to use of graph mining techniques
that are very time-consuming, our method does not take
much time to perform. Unfortunately, it is observed that
some researches have presented a very high accuracy. A
close investigation of the paper reveals that the same data
that was used for training were used to evaluate the
accuracy. It is a very known error in evaluating the
accuracy of a model called overfitting. Results of data
mining models should be obtained based on cross
validation to ensure evation from overfitting [6].

The rest of paper is organized as follows. Section II
describes an overview of the system. Section III
encompasses more detail about structure of our system.

Section IV provides experimental results while Section V
provides related work. Section VI concludes the paper.

2. System Overview

The goal of our system is to effectively and efficiently
detect previously unseen and unknown malware. For this
our detection method is based on the observation of the
execution and monitoring the semantic of malware
program in VM (Virtual Machine) environment. To
model the program semantics and observe its security
behavior, we used system call traces. System calls
capture the interaction of program with its environment.
Some malware use system calls for activating their
malicious payload, so based on this fact; we can
understand the malware author intent. In this paper we
construct a graph based on system calls trace and our aim
is to detect malware programs with high detection rate
which outperform lots of previous research. An overview
of system can be seen in figure 1.

Fig. 1 System Overview

2.1 Modeling program semantic

Most of previous research focused on modeling program
behavior by specifying permissible sequences of system
calls [7, 8]. Malware authors have large degree of
freedom in rearranging the code to achieve their goals.
For example, it is very easy to reorder independent
system calls or to add irrelevant calls. Thus, suspicious
activity could not represent as system call sequence that
we have observed. Instead a more flexible representation
is required. In this paper the representation is based on
relationship between system calls and allows
rearrangement of system calls. Program semantic is
represented as a semantic graph where nodes are
(interesting) system calls. An edge is introduced from
node x to node y when the return value of system call x is
used as an input argument of system call y. Moreover,
only a subset of system calls that are essential for

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 1, No 3, January 2012
ISSN (Online): 1694-0814
www.IJCSI.org 374

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

detecting malicious activity (detailed can be found in III)
were considered.

2.2 Making detection more accurate

While constructing graph we take some considerations
into account. That is, edges that its return value is 0x0 or
0x1 are not considered, because these return values
means function failure or success. Any other return value
is pointer value and is important for constructing the
graph. This work makes the graph smaller and it makes
any mining process quicker.

3. System Details
In this section, more detail about component of the
detection system is provided. First our method to
diagnose essential system calls for detecting malware is
introduced. At the second step we discuss how to
characterize program activity via semantic graphs. Then
the techniques for extracting graphs automatically from
observed traces are discussed. Finally we present our
approach to detect graph of previously unknown
malicious code.

3.1 Essential system call for detecting malicious
behavior

Considering all DLL’s of windows and all of system
calls make graphs very large with lots of unnecessary
edge for detection. To address this problem only 6 most
important dll (including kernel32.dll, user32.dll,
ws_s32.dll, advapi32.dll, wininet.dll and
CreateProcess.dll) were used for malware analysis [9]. In
addition, to find subset of system calls in these dll’s that
are used for malicious activities, data mining was used.
Thus, 400 malware and 397 benign applications with all
six considered dll's, monitoring all the API’s were run, to
diagnose which system call are more important for
malware detection. Each malware and benign program
ran for 3 second. All the system calls that each malware
and benign called were collected. Then 10 fold cross
validation with random forest classifier [10] were used to
measure the accuracy rate of selected system call and the
result get 89.5% detection rate. Next we used feature
selection techniques to select most discriminative system
call. On the other hand based on previous work [9]
Malware's operations can be categorized as follows
File access
System information
Networking

Registry access
Processes

System information
It is more important for a malware to gather as much as
possible of system information to insure that its software
exploit is working. A software exploit is normally related
to one specific operating system.

Registry access
In registry a lot of confidential information is stored, like
keys or parameters for programs. It furthermore provides
a mean to steer the processes that are launched during the
machine's boot process. A lot of malware aim to be
executed every time when the machine is started.

Processes
A running instance of an executable program is referred
to as a process. A process consists of one or more
threads, which is an atomic unit when it comes to
processor time allocation. All threads that run in the
context of a given process share the same address space,
security context and environment variables [11].

Networking
The file I/O functions (CreateFile, CloseHandle,
ReadFile, ReadFileEx, WriteFile and WriteFileEx)
provide the basic interface for opening and closing a
communication resource handle and for performing read
and write operations. This means that when a process
wishes to communicate through a communication device,
it can perform a call to CreateFile specifying COM1 or
LPT1 or another valid device name, and then write to the
returned handle. The process can use the
DeviceIoControl-call to send control codes to a device.
Several types of malware perform operations against the
local network and/or the Internet in order to infect other
computers, receive updated malware code or interact
with its creators.
We conclude that it is essential to consider all of system
calls that are related to above operation for analyzing
malware behavior [9]. We also added these system calls
to our monitoring file.

3.2 Behavior Graphs: specifying program behavior

In general our graph is undirected labeled simple graph.
Here is some preliminary concept that is essential for
understanding our method [12].

Definition 1(Labeled Graphs) A labeled graph can
be represented by a 4-tuple, G = (V, E, L, l), where

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 1, No 3, January 2012
ISSN (Online): 1694-0814
www.IJCSI.org 375

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

V is a set of vertices,

VVE  is a set of edges

L is a set of labels,

LEVl : , l is a function assigning labels to the
vertices and the edges.
This definition can be generalized to include partially
labeled graphs if the label set L includes an empty label.
An example of undirected labeled graph can be shown in
figure 2.

Fig. 2 An undirected labeled graph

Definition 2 (Subgraph, Induced subgraph)
A subgraph of a graph G, is a graph whose vertex set is a
subset of that of G, and whose adjacency relation is a
subset of that of G restricted to this subset.

Given a graph)))(()),((),(),((GELGVLGEGVG  , an
induced subgraph of G,

)))(()),((),(),((sssss GELGVLGEGVG  , is a graph
satisfying the following conditions.

),()(),()(GEGEGVGV ss 

).(),()(),(),(, GEvuGEvuGVvu ss 

Where sG
is an induced subgraph of G, it is denoted as

GGs  [13].

Definition 3 (Isomorphism, Automorphism,
subgraph Isomorphism) An isomorphism is a bijective

function)'()(: GVGVf  , such that

))(()(),(' uflulGVu GG 
, and

)'())(),((),(),(GEvfufGEvu  and

))(),((),(' vfuflvul GG 
.

An automorphism of G is an isomorphism from G to G.
A subgraph isomorphism from G to G' is an isomorphism
from G to a subgraph of G'. If f is only injective, then G
is monomorphic to G'.

Induced subgraph isomorphism can be considered as
constrained subgraph isomorphism.

Definition 4 (Frequent Subgraph Mining) Given a

graph dataset, GS = {
niGi 0| 

}, and a minimum
support, minSup, let






G ofsubgraph any toisomorphicnot is g if 0

G ofsubgraph a toisomorphic is g if 1
),(Gg

),(),(



GSG

i

i

GgGSg 
(1)

),(GSg denotes the occurrence frequency of g in GS,
i.e., the support of g in GS. Frequent Subgraph mining is

to find every graph, g, such that),(GSg is greater
than or equal to minSup. An example og graph mining
approach can be show in figure 3.

Fig. 3 An example of Graph mining

As a general data structure, graph, specially labeled
graph, can be used to model many complicated relation
among data. Labels of vertices and edges can represent
different attribute of entities and relationship among
them. In our setting, label of the nodes are system call

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 1, No 3, January 2012
ISSN (Online): 1694-0814
www.IJCSI.org 376

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

names and label of edges are number of unique values
passed between the system calls. Table 1 shows two
system calls that have an edge between each other.

Table 1. System calls and their parameters

Fig. 4 Making graph based on table 1

 If two system calls make an edge with only one memory
address then the label of this edge is 1. If two or more
unique addresses are used as an input of one API and
return value of another, then the numbers of unique
addresses are used as the edge label. Figure 4 shows the
edge between two system calls with the label of edge and
vertexes. Figure 4 is complete example for making edge
from CreateFileW to CloseHandle system call based on
execution traces. In this example 0x000025A8 is the
return value of CreateFileW that is used as an input
parameter of CloseHandle, so we draw an edge from
CreateFileW to CloseHandle.

3.3 Why gSpan was Used
gSpan (graph-based Substructure pattern mining) is used
for mining graphs that were generated based on
description of previous step. It discovers frequent
substructure without candidate generation. gSpan builds
a new lexicographic order among graphs, and maps each
graph to a unique minimum DFS code as its canonical
label. Based on this lexico-graphic order, gSpan adopts
the depth-first search strategy to mine frequent connected
subgraphs efficiently. This algorithm has very good
parallel and scale up properties and can incorporate
constraints nicely in graph mining. It can find frequent
subgraphs one by one, from small to long ones. Output of
this algorithm is as below:
t # id * support
vertex-edge list
 x graph_id list
where "id" is an integer, the serial number of the pattern ,
"support" is the absolute frequency of the graph pattern
and "graph_id list" is a list of graphs that contain the

pattern. We used this output for detecting subgraphs that
discriminate malicious code from benign one.

3.4 Extract Dataset
gSpan was ran with different supports from 0.04 to 0.09.
Each frequent subgraph in gSpan is used to be one
feature in the final dataset. If one benign or malicious
code includes the frequent subgraph, value of that feature
is set to 1 otherwise 0 is assigned to the feature.

4. Evaluation
404 malware samples and 349 benign samples were
collected from [11]. Our system has near optimal
detection rate with very low overhead. In this section,
system detection capability is presented.

Table 2. Detection Effectiveness of Our System

Name Number

Constructor 188

Backdoor 162

Exploit 54

4.1 System Detection capability
To demonstrate our system detection capability behavior
graphs for 3 popular malware families were generated.
Table 2 shows an overview of these families and their
counts. These malware families were selected because
they are very popular according to lists compiled by anti-
virus reports [14]. Some of the families use code
polymorphism or metamorphism. It makes the detection
harder for signature-based scanners. For each malware
family more than 50 samples were selected randomly
from our database. Specifically samples that did not
modify the file system were not used. A single-path
dynamic analysis of the samples for 120 second was
performed to collect the execution trace. This time is
selected because two minutes is generally enough time
for most malware to execute its immediate payload, if it
has one [15]. While some malware samples do not
perform any malicious behavior in this period, these
samples usually wait for some external trigger to execute
their payload (e.g. network or system environment), and
will not perform any behavior if left to execute without
further action [15]. Each benign sample also ran for 120
second. The samples were then used for extracting
behavior graph. All of the malware and benign graphs
used as an input of gSpan to obtain frequent graphs.
Because of strong preprocessing step for constructing
graph, resulted graphs were very suitable for using graph

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 1, No 3, January 2012
ISSN (Online): 1694-0814
www.IJCSI.org 377

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

mining technique (in terms of size of graph) on the other
hand these graphs include all of the information that may
be needed for improving detection accuracy. gSpan is
used with different support from 0.04 to 0.9 to evaluate
different result of this tool. Count of frequent subgraph
for each support is in table 3.

Table 3. Detection Effectiveness of Our System

Support # of frequent subgraph

0.04 4187

0.05 1188

0.06 784

0.07 579

0.08 501

0.09 471

Support 0.9 considered as maximum support because for
supports of more than 9 the output includes only graphs
with one vertex that is not suitable for our purpose. Each
frequent subgraph used as a feature for making final
dataset. At the final step, 10-fold cross validation with
random forest classifier was used to evaluate the
detection rate of the system. Results are shown in Table
4.

 Table 4. Detection Effectiveness of Our System

As shown in table 4, 96.6 percent detection rate with
3.4% false positive was obtained based on 0.09 support.
Overall, an average 92.6% detection rate with 7.36%
false positive was obtained. Figure 5 illustrates the
relationship between detection rate and support, while
figure 6 illustrates the relationship between support and
false positive.

Fig. 5 Support and detection rate relationship

Fig. 6 Support and false positive relationship

5. Related Works
Even though behavioral detection seems a recent trend,
in antivirus products as well as in virology
research, its principles are not really new. In 1986, Cohen
[13, 16] already established a basis for behavioral
detection within his first formal works. At the other hand,
there is a large number of previous works that studies the
behavior [17, 18, 19] of different types of malware. Reik
et al. proposed classification technique that uses support
vector machines to produce class label for unknown
malware [20]. Kolbitsch et al. proposed an effective and
efficient method for detecting malware behavior at the
end host. Their behavior graph was almost like our graph
but their graph is more complicated than ours and also
they do graph matching as detection method [21]. Egel et
al. describe a behavioral specification of browser-based
spyware based on taint-tracking [12], and panorama uses
whole-system taint analysis in a similar vein to detect
more general classes of spyware. Fredrikson and Jha et
al. were automated clustering efforts to create initial
sample partition for behavior extraction [15]. They
demonstrated a technique for producing behavior graphs
with 86% detection rate on new, unknown malware, with
0 false positive but they used 912 malware samples and
only 49 benign programs for analyzing and these result
cannot generalized to other setting. They used input and
output parameter for construct graph, this makes graph

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 1, No 3, January 2012
ISSN (Online): 1694-0814
www.IJCSI.org 378

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

larger. We just consider the return value of system cal
and input value to construct graph. Consequently our
graph is simpler. We analyzed 404 malware and 349
benign program and we used random forest classification
method to evaluate the detection rate of new, unknown
malware. Our result shows 96.6% detection rate with
only 3.4% false positive for new, unknown malware.

6. Conclusion
Malware detection is a tedious and complicated chore.
We propose a method for detecting malicious code from
benign based on graph mining techniques that resulted
96.6% detection rate with only 3.4 false positives. Graph
is used for representing the behavior of application
because graph, especially labeled graph, can be used to
model lots of complicated relation between data. At the
next step we mined information graph and extracted the
most discriminative graphs that separate malware from
benign.

Refrences
 [1] M. Christodorescu, S. Jha, and C. Kruegel. "Mining

specification of malicious behavior". In ESEC/FSE. 2007.
[2] M. Christodore Su, AND S. Jha. "Static Analysis of

Executables to Detect Malicious Patterns". In Usenix
Security Symposium. 2003.

[3] M. Christodorescu, S. Jha, S. Seshia, D. Song, AND R.
Bryant. "Semantics-Aware Malware Detection". In IEEE
Symposium on Security and Privacy. 2005.

[4] C. Kruegel, W. Robertson, and G. Vigna. "Detecting
Kernel-Level Rootkits Through Binary Analysis". In
Annual Computer Security Applications Conference
(ACSAC). 2004.

[5] A. Moser, C. Kruegel, and E. Kirda. "Limits of Static
Analysis for Malware Detection". In 23rd Annual
Computer Security Applications Conference (ACSAC).
2007.

[6] Y. Ye, D. Wang, T. Li, and D. Ye. An intelligent pe-
malware detection system based on association mining. In
Journal in Computer Virology, 2008.

[7] S. Forrest, S. Hofmeyr, A. Somayaji, AND T. Longstaff. "A
Sense of Self for Unix Processes". In IEEE Symposium on
Security and Privacy. 1996.

[8] D. Wagner, and D. Dean. "Intrusion Detection via Static
Analysis". In IEEE Symposium on Security and Privacy.
2001.

[9] http://msdn.microsoft.com/
[10] L. Breiman. " Random Forests ". Kluwer Academic

Publishers. Manufactured in The Netherlands. 2001.
[11] A. Sami, B. Yadegari and H. Rahimi, N. Peiravian, S.

Hashemi, A. Hamze. "Malware Detection Based on Mining
API Calls". SAC’10 March 22-26, 2010, Sierre,
Switzerland.

[12] X. Yan and J. Han. "gSpan: Graph-Based Substructure
Pattern Mining". IEEE International Conference. 2002.

[13] A. Inokuchi, T. Washio, and H. Motoda. "Frequent
Substructure from Graph Data". PKDD2000, Sept. 13-16,
2000, Lyon, France.

[14] F. Cohen. "Computer viruses". Ph.D. thesis, University of
South California (1986)

[15] M. Fredrikson and S. Jha, M. Christodorescu and R. Sailer,
And X. Yan. "Synthesizing Near-Optimal Malware
Specification from Suspicious Behaviors". IEE Symposium
on Security and Privacy. 2010, pp. 45-60.

[16] F.B. Cohen. "Computer viruses: Theory and experiments".
Comput. Secur. 6(1), 22–35 (1987)

[17] M. Polychronakis, P. Mavrommatis, and N. Provos. "Ghost
turns Zombie: Exploring the Life Cycle of Web-based
Malware." InUsenixWorkshoponLarge Scale Exploits and
Emergent Threats (LEET). 2008.

[18] M. , Rajab, J. Zarfoss, F. Monrose, and A. Terzis. "A Multi
faceted Approach to Understanding the Botnet
Phenomenon". In Internet Measurement Conference(IMC).
2006.

[19] S. Small, J. mason, F. Monrose, N. Provos, and A.
Stubblefield. "To Catch A Predator: A Natural Language
Approach for Eliciting Malicious Payloads". In 17th Usenix
Security Symposium, 2008.

[20] K. Rieck, T. Holz, C. Willems, P. Dussel, and P.
Laskov,“Learning and classification of malware
behavior,” in Proceedings of the 5th Conference on
Detection of Intrusions and Malware and Vulnerability
Assessment (DIMVA’08). Springer, 2008, pp. 108–125.

[21] C. Kolbitsch, P. Milani Comparetti, C. Kruegel, E. Kirda,
X. Zhou, and X. Wang. "Effective and Efficient Malware
Detection at the End Host". Secure Systems Lab [TU
Vienna, Institute Eurecom Sophia Antipolis, UC Santa
Barbara]Indiana University at Bloomington. 2009.

Fatemeh Karbalaie has obtained her B.S degree in Computer

Science in 2007 at Isfahan Payamenoor University. Since
2009, she is a master student of Computer Engineering at
Shiraz University. Her research interests include security and
data mining.

Dr. Ashkan Sami has obtained his B.S. from Virginia Tech;
Blacksburg, VA; U.S.A., M.S. from Shiraz University; Iran
and Ph.D. from Tohoku University; Japan. He is interested in
Data Mining, Software Quality and Security. Ashkan has
been a member of technical committee of several
international conferences like PAKDD, ADMA, HumanCon,
and Future Tech and has more than 40 conference paper
and nearly 10 journal papers. He is an associate member of
IEEE and was among the founding members of Shiraz
University CERT.

Mansour Ahmadi has obtained his B.S. in Applied Mathematics
from Sistan Baloochestan University; Iran and his M.S in
software engineering from Islamic Azad university, Arak. He
Worked on malware detection as his M.S. thesis under
supervision of Dr. Sami and is currently a researcher in
Shiraz University CERT.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 1, No 3, January 2012
ISSN (Online): 1694-0814
www.IJCSI.org 379

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

