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Abstract 

Quantum and Evolutionary computation are new forms of computing 
by their unique paradigm for designing algorithms.The Shor’s 
algorithm is based on quantum concepts such as Qubits, 
superposition and interference which is used to solve factoring 
problem that has a great impact on cryptography once the quantum 
computers  becomes a reality. The Genetic algorithm is a 
computational paradigm based on natural evolution including 
survival of the fittest, reproduction, and mutation is used to solve 
NP_hard knapsack problem. These two algorithms are unique in 
achieving speedup in computation by their adaptation of parallelism 
in processing. 
Keywords: Quantum computing, Qubits, superposition, mutation, 
parallesim. 

 
1. Introduction 

 
In 1965, computer chip pioneer Gordon E.Moore noticed that 
transistor density in chips had doubled every year in the early 
1960s, and he predicted that this trend would continue. This 
prediction moderated to a doubling every 18 month’s and 
extended to computer speed is known as Moore’s law. It has 
held remarkably well for 40 years. Moore’s law will stop 
doubling the speed of our computers within a decade, when 
chips hit atomic scale. Then the progress depends on 
algorithmic ingenuity or on novel ideas such as quantum and 
evolutionary computing [3]. 
 
Quantum computing is the attracting one since its superiority 
was demonstrated by a few quantum algorithms such as 
Shor’s quantum factoring algorithm and Grover’s database 
search algorithm. Shor’s algorithm finds the prime factors of 
an n-digit number in polynomial time while best known 
classical algorithm require exponential time. Multiplying two 
prime numbers together is a very simple process. Factorizing 
the result back into its two primes, however, is currently still a 
very time consuming process on classical computers. This 
result is the basis of the well known cryptographic algorithm 
RSA. It has been suggested that quantum computers, if ever 
built, will have the power to reverse this result and to be able 
to factorize numbers in a shorter time than it would take to 
multiply them together in  the first place, hence making RSA 
obsolete. In a classical computer, a bit is simply the basic 
measure of information. It can hold either a 1 or a 0. Similarly 

the basic measure of information in a quantum computer is a 
qubit which have the two possible values 1 and 0, but also 
with the superposition of the two basis states [4].Equation  (1)  
represents  the  qubit  state  ψ   as  a  linear  combination  of  
the |0 > and  |1 > states. 

 
                         | ψ > = α |0 > + β |1 >              (1) 

 
Where α and β are the complex numbers that specify the 
probability amplitudes of the corresponding states.  Therefore 
the paper adopts MATLAB for simulation of the Shor’s 
quantum algorithm to solve factoring problem. 
 
Secondly, Genetic algorithm is a kind of computational model 
in evolutionary computing and new global optimization search 
algorithm that simulates the biology evolving process [5]. The 
Knapsack is a combinatorial optimization problem. Given a 
set of item Xi, each with a value Vi, and weight Wi, the 
objective is to maximize value of the backpack subject to a 
weight limit. The mathematical formulation of the problem is 
as follows 

 
                                      n              
                  Maximize   ∑Vi Xi   
                                     i=1                                  (2) 
                                     n     
                     S.T.         ∑ Wi Xi   
                                    i=1 
                   
                        Xi = 0 or 1, j=1,2,…, n. 
 

This paper adopts java language to program the Genetic 
algorithm to solve NP_Complete Knapsack problem. 
 
This paper is organized as follows. Section 2 describes 
complexity classes of factoring and Knapsack problem. 
Section 3 and 4 describes Shor’s and Genetic algorithm 
respectively. Section 5 and 6 simulates the experiment Shor’s 
algorithm for factoring and Genetic algorithm for Knapsack 
problem respectively. Concluding remarks follow in section 7. 

 

2. Complexity Classes 
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Computer Scientists categorize problem according to how 
many computational steps it would take to solve a large 
example of the problem using the best algorithm known. The 
problems are grouped into broad overlapping classes based on 
their difficulty. Three of the most important classes are as 
follows. 

            P PROBLEMS: Ones computers can solve 
efficiently in polynomial time. 

            NP PROBLEMS: Ones whose solution are easy to 
verify. 

            NP_COMPLETE PROBLEMS: An efficient 
solution to one would provide an efficient solution to all NP 
challenges. 
 
A fourth class of problems that quantum computers would 
solve efficiently (BQP) is related to these fundamental classes 
of computational problems as shown in fig. 
 
The BQP (the letter stand for bounded _error, quantum 
polynomial time) includes all the P problems and also a few 
other NP problems. Finally PSPACE problems are those that a 
conventional computers can solve using only a polynomial 
amount of memory but possibly requiring an exponential 
number of steps[3].  After knowing about complexity classes, 
the Knapsack problem is mapped to NP_Complete and 
Factoring problem is mapped to BQP as shown in fig 1. 

 
 

 
Fig 1 Complexity Classes 

3. SHOR’S Algorithm 
 
Given a number N, constructed from the multiplication of two 
distinct but unknown prime numbers, the goal is to find what 
the two prime factors were. Shor showed how to turn 
factorization into the problem of order finding, using a 
quantum subroutine, the order of a function in polynomial 
time.             
 
Shor took advantage of a fundamental result from number 
theory. Given two numbers x and N which are co-prime to 

each other, the function F (k) = xk (MOD N) is periodic with 
some period r such that   
  
 F(k)=xk(MODN)=xk+r(MODN)                           (3)                 
 

Hence, this implies that 
 
                     xr ≡1 (MOD N)                                 (4) 
                                                                                    

 If r is an even integer, then the following algebraic 
manipulation produces 
 
       (xr/2)2  ≡ 1 (MOD N)                                    (5) 
       (xr/2)2 -1   ≡ 0 (MOD N)                                                 (6) 
       (xr/2 -1)  (xr/2  +1  ) ≡ 0 (MOD N)                      (7)       
                                                           
This means that (xr/2 -1) (xr/2  +1) is an integer multiple of N 
and so long as xr/2 ≠ ±1 then at least one of (xr/2 -1) and (xr/2  +1) 
must have a nontrivial factor in common with N. 
 
Hence, by computing the gcd (xr/2 -1, N) and gcd (xr/2 +1, N) 
the factor of N can be obtained. 
 
Shor’s  algorithm  can  thus  be  broken  up  into  three  
distinct  sections. 

A. Classical pre-processing: pick a number       x, 
co-prime to N 

B. Quantum computation: Find the order r, such 
that   xr ≡ 1(M OD N) 

C. Classical post-processing: If r is even,   calculate 
the two possible factors of N. 

 
The trick Shor used in order to achieve the parallelism offered 
by quantum mechanics was to notice that it is possible to 
perform both the modular exponentiation of a quantum 
register followed by finding the corresponding period of the 
function, in single quantumly parallel operations. 

A. Classical Pre-Processing 

Step 1 Check whether N is of the form N= (prime)α or N= 
2 (prime)α where α € {0,1,2, …}, if true then there 
are efficient classical algorithms which can be used, 
else go to step 2. 

 
 Step 2 Choose a random number x such that 1<X<N-1 and 

which is relatively prime to N. 
 
Step 3 Find an integer q which is a power of 2 and satisfies          

the condition n2 <=q<=2 n2 where n= 2[log N]. 
 
 
 
 
 
 

B. Quantum Computation 

 

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 2, No 1, March 2012 
ISSN (Online): 1694-0814 
www.IJCSI.org 247

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.



Step1 Initialization of the quantum registers 
 
Initialize two quantum registers |Reg1,    Reg2> such that 

Reg1 has n qubits and Reg2 has ⌈log N ⌉ qubits. Reg1 will 
hold the possible k’s and Reg2 will hold the respective F (k) 
values. Once  the  qubit  registers  space are assigned,  both 
are initialized to  the  0  state |0, 0> 
 
Step 2 Place Reg1 into a superposition of all possible states 
 
Once the two register quantum state is set up, the Reg1 is 
placed into an equally weighted superposition of all the 
integers from 0 to q − 1. This would then leave the quantum 
memory registers in the state 

 

                       (8)               
              
A calculation performed on a quantum register is actually a 
calculation performed on every possible value that register can 
represent all at the same time. This is what allows the 
improvements in speed compared to classical algorithms. 
 
Step 3    Place xReg1 (MOD  N )  in  Reg2 
Next apply the function F (k) = xk (M OD N) to Reg1, storing 
the result in Reg2. Due to quantum parallelism this will only 
take one step. The state of the registers after this step will be   

 (9)                              
                              
Now measure the second register. The value stored there will 
collapse to give us only a single value, K. This measurement 
also has the effect of collapsing register 1 in such a way that if 
measuring register 1 next, one would observe all possible 
corresponding i’s with equal probability and any i such that xi 
(M OD N ) ≠ K would have zero probability of being seen. If 
A denotes the set of values from Reg1 which satisfy this new 
condition, and ||A|| is the number of states it contains, the state 
of our registers would then be 
             

          (10) 
                                                               
Where r is the period of F, j is the index over A and s < r is the 
initial random offset such that xs (M OD N) = K. As this 
collapse of the state takes place in one instantaneous step, it 
shows the power which quantum superposition is able to 
employ. 
 
Unfortunately, directly extracting r or a multiple of it from the 
above state due to the random offset s is not possible. Hence, 
to get around this problem the Discrete Fourier Transform 

(DFT) of Reg1 is taken. This is due to the fact that the 
probability spectrum of the transformed state is invariant to 
the offset [4]. 
 
Step 4     Calculation of the period r     
 
The  DFT  of  a  state  φ  results  in  the  following  register  
state 
 

                (11)    
         
This transform can actually be performed in a single step on a 
quantum computer using quantum parallelism. Therefore by 
taking the DFT of Reg1, results in the state of our system then 
being 

                    
                                                                              (12) 
 

Measuring the state of Reg1 will now collapse the register to a 
single value which is called m. It is not possible to extract any 
other information from the register, such as the number of 
states which have peak probability, as once it has been 
measured it collapses to a single value thereafter. The 
measured value has a very high probability of being an integer 
multiple, λ, of q/r where r is our desired period. 
         
The final step of calculating r is to convert our calculated 
value of m/q from a decimal floating point value to a rational 
number. We ensure that both the numerator and denominator 
are kept to values less than q. There is an efficient classical 
algorithm for solving this problem using continued fractions 
but this analysis has been omitted because MATLAB has an 
inbuilt function for performing the task when implementing 
the algorithm. 

        
A final note to make here is that our approximation 
numerator/denominator≈ λ/r is only valid when gcd(λ, r)  =  1,  
since  the  rational  form  is  not  unique. This  again  is  
incorporated  into  the  MATLAB  function,  which  finds  the  
rational  approximation  in  its  simplest  form. 

C. Classical  Post-Processing 

At this stage of the algorithm, the period r of random number 
x is found. If r is odd, then unfortunately this is of no help, so 
discard it and go back to the beginning and choose a new 
random number to use as our x. 
 
Assuming that eventually do find an r which in even, we 
calculate 

gcd (xr/2 – 1) and gcd (xr/2 +1)     
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Then use these values to test whether they are our chosen 
factors by multiplying them together. If they turn out to be 
nontrivial numbers which when multiplied together equals N, 
factoring is done. Otherwise, we need to re-run the algorithm 
choosing a new value of x to use. 
 
There is a very high probability that after only O (log N) runs 
of the algorithm, the two unique factors which produce our 
number N will be found.   

 
 
4. Description of Genetic Algorithm 

 
Genetic algorithms are a part of evolutionary computing, 
which inspired by Darwin’s theory about evolution. The 
solution to a problem a problem solved by Genetic algorithm 
is evolved from large search space. GA uses operators 
inspired by evolutionary biology such as mutation, selection 
and crossover. And have two basic parameters crossover 
probability and mutation probability beside the population 
size. The structure of simple GA is shown in Fig 2. 

 

 
Fig 2 Structure of Genetic Algorithm 

The design of GA that solves knapsack problem is as follows 
 
Step 1 Choose binary coding to represent items, a selection 

operator, a crossover operator, and a mutation operator. 
Choose population size n, crossover probability pc and 
mutation probability pm. Initialize a random population of 
string l. Choose a maximum allowable generation number t max. 
Set t=0. 

Step 2 Evaluate each string in the population. 
Step 3 If t>t max or 90% of evaluated strings have same 

fitness value, Terminate. 
Step 4 Perform reproduction on the population. 
Step 5 Perform crossover on random pairs of strings. 

Step 6 Perform mutation on every string. 
Step 7 Evaluate strings in the new population. Set t=t+1and 

go to step 3. 
 

5. Simulate Factorization Problem  
 

Factoring of N=15, provides evidence that implementation 
works and is able to find the required two prime factors of N = 
15. Calculating n and q for this particular N gives us 8 and 
256, respectively. Next choose x = 13 randomly, populate 
Reg1 with 0...q-1, calculate Reg2 = xReg1 (MOD N) and finally 
determine the probability of seeing each value of Reg1 when 
the quantum register Reg2 is measured. The state of A is 
given below, together with the probability of seeing Reg1 
once Reg2 has been measured and found to be K = 13. 

 
Table 1 the values held in Reg1 and Reg2 when trying to factorize the 

Number N =15 using the random number x = 13 [2] 

 

Reg1 Reg2 
Prob  

before 
Prob 
after 

DFT 

0 1 0.0625 0 8 

1 13 0.0625 0.125 0 

2 4 0.0625 0 0 

3 7 0.0625 0 0 

4 1 0.0625 0 0 

5 13 0.0625 0.125 0 

6 4 0.0625 0 0 

7 7 0.0625 0 0 

8 1 0.0625 0 0 

9 13 0.0625 0.125 0 

. . . . . 

. . . .  

. . . . .

. . . . . 

. . . . . 

. . . . . 

. . . . . 

253 13 0.0625 0.125 0 

254 4 0.0625 0 0 

255 7 0.0625 0 0 

 
The most likely observable states of Reg1 performing the 
DFT are found to be m = 64, 128 and 192. From this, calculate 
the possible values of C which correspond to the approximate 
numerical values of λ/r, where λ is some integer. 
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Calculating C by dividing the m values by q gives us 0.25, 0.5 
and 0.75 as possible values. 

 
Next the rat MATLAB function is used to turn these values of 
C into rational approximations. The denominator and hence 
possible values of r are found to be 4, 2 and 4 with 
corresponding numerators 1, 1 and 3. Finding the greatest 
common divisors of these xr/2 ± 1 with respect to N ends up 
producing the correct two factors 5 and 3 which when 
multiplied together form N = 15. 

 
Fig 3 is a plot showing the DFT values of Reg1 for this 
particular example.  
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Figure 3 Plot of DFT graph for N =15 and X = 13 

 
6. Simulate Knapsack Problem 
 
Assumed n of the goods number is 50 the weight of the goods 
is {wi} the value of the goods is {vi} and capacity of the 
Knapsack is c=1000. 

 
{wi}={80,82,85,70,72,70,66,50,55,25,50,55,40,48,50,32,22,6
0,30,32,40,38,35,32,25,28,30,22,25,30,45,30,60,50,20,65,20,2
5,30,10,20,25,15,10,10,10,4,4,2,1}; 

 
{vi}={220,208,198,192,180,180,165,162,160,158,155,130,12
5,122,120,118,115,110,105,101,10,100,98,96,95,90,88,82,80,
77,75,73,72,70,69,66,65,63,60,58,56,50,30,20,15,10,8,5,3,1}; 
 
Population size is 10 and maximal evolution generation is 500 
in the experiment. Fig 4 shows the evolution process graph of 
the total value of the selected goods. The x-axis shows the 
evolution generation and y axis shows the total value of the 
selected goods. The optimal result of the genetic algorithm 
corresponds to the value of the Knapsack that is 3063. 

 

 
Fig 4 Evolution Process Graph 

Table 2 Export experiment result, when the evolution process of the 

Genetic algorithm is over 

 
 

7. Conclusion 
 

This paper provides a mathematical description of Shor’s 
quantum algorithm for factorizing numbers that have been 
constructed from two primes into their two composite primes. 
Then Shor’s fast algorithm for factoring based on Fourier 
transform is simulated on classical computer running 
MATLAB. The example provided proves that the simulated 
algorithm indeed is able to factorize numbers. This paper also 
provides a description of genetic algorithm for solving 
NP_hard Knapsack problem a kind of combinatorial 
optimization problem. Then the algorithm is simulated for the 
example provided running Java language proves that 
simulated algorithm is able to find global optimization 
solution. Therefore algorithms based on unique computational 
paradigms such as quantum and evolutionary computing is 
stressed for speedup in computation to enable technological 
development, even when Moore’s law stop’s working in a 
decade when chips hit atomic scale. 
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