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Abstract 
This paper addresses a mixed integer programming (MIP) 
formulation for the multi-item uncapacitated lot-sizing 
problem that is inspired from the trailer manufacturer. The 
proposed MIP model has been utilized to find out the 
optimum order quantity, optimum order time, and the 
minimum total cost of purchasing, ordering, and holding over 
the predefined planning horizon. This problem is known as 
NP-hard problem. The model was presented in an optimal 
software form using LINGO 13.0. 
Keywords: Lot-Sizing Problem, Mixed Integer 
Programming, Optimum Order Quantity, Purchasing Cost, 
Ordering Cost, Holding Cost.  

1. Introduction 

Lot-size is defined as the quantity that must be 
produced or ordered. A manufacturing firm that wants 
to compete in the market must make the right decisions 
in lot-sizing problems that have directly effect on the 
system performance and productivity. This is a critical 
decision for any manufacturer. The purpose of the lot-
sizing problem is to determine the amount of order 
quantity in each period to meet customer demand over 
a finite discrete time horizon with the minimum total 
ordering, purchasing, and holding costs. Smaller lot-
size decreases holding cost but raises ordering cost 
while a larger lot-size reduces ordering cost but leads 
to the higher inventory costs [1]. 
 
A mathematical model that balances holding costs, 
ordering costs, and purchasing costs must be used to 
compute optimal or near optimal lot-sizes to minimize 
cost. According to lean production concepts, small lot-
size is preferable, which avoids inventory accumulation, 
and inventory management and inventory holding costs. 
Specifically, it would be the lot-size recommended by a 
mathematical lot-sizing model, which accounts for 
tradeoff between the associated costs. It must also be 

taken into account that safety stock is necessary to 
eliminate the shortage probability in uncertain demand 
conditions [2]. 

2. Literature Review 

Cox and Blackstone [3] defined order management as 
the scheduling, managing, monitoring and controlling 
of the operations relevant to customer orders,  purchase 
orders, and production orders. Material requirement 
planning (MRP) has been utilized to solve the lot-
sizing problems with constant demand over a finite 
time horizon. The economic order quantity (EOQ) has 
been developed to find the optimum solution while 
demand remains constant over the time horizon. 
 
The EOQ model was extended by Dye and Hsieh [4] 
for the variable demand and purchasing cost. The 
objective was to obtain the optimum replenishment 
quantity, time planning and cyclic selling price. In 
order to find the optimal solution, an effective method 
was proposed using the swarm optimization algorithm. 
In more general condition, dynamic programming has 
been recommended. A dynamic programming 
technique has been developed for single product, multi-
period lot-sizing problem [5]. Wang et al. [6] studied 
the remanufacturing and outsourcing with the single-
item and uncapacitated lot-sizing problem. The 
objective was to determine the lot sizes for 
manufacturing, remanufacturing, and outsourcing with 
the minimum costs of holding, setup, and outsourcing. 
To obtain the optimal solution in the case of existing 
large amount of returned product, they suggested a 
dynamic programming technique. 
 
Li, Chena, and Cai [7] considered deterministic time-
varying demand, substitutions and return products in 
the capacitated dynamic lot-sizing problem with batch 
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manufacturing and remanufacturing. To specify the 
optimal amount of manufactured and remanufactured 
products in each period, a dynamic programming 
approach was developed. Hande [8] generalized the 
well-known previous uncapacitated term and 
developed polyhedral analysis for the two-item 
unlimited lot-sizing problem while one-way 
substitution has been assumed. Finding the minimum 
cost of production and substitution plan over planning 
horizon was set as an objective. Li, Chen and Cai [9] 
considered returned product remanufacturing and 
demand substitution in the multi-item uncapacitated 
problem, while disposal and backlog were not allowed. 
Dynamic programming approach was proposed to 
minimize the total cost, including manufacturing, 
remanufacturing, holding and substitution costs.  
 
Even though the above-mentioned techniques find the 
optimum amount of lot-sizing, high computational 
resources are required for solving the lot-sizing 
problem with them [10-13]. Taşgetiren and Liang [14] 
developed an algorithm based on particle swarm 
optimization for lot-sizing problem to find order 
quantities, which will minimize the total ordering and 
holding costs of ordering decisions. Neural network 
technique has been used for the single-level lot-sizing 
problem [15]. Two formulations have been suggested 
for a stochastic uncapacitated lot-sizing problem [16]. 
 
A mixed integer programming model extended the 
wagner–whitin model. Maximizing the total profit of 
production and sales over a finite planning horizon was 
considered as objective while a single-item has been 
assumed and backordered was not allowed [17]. Absi 
and Kedad-Sidhoum [18] presented a mixed integer 
mathematical formulation for solving the capacitated 
multi product lot-sizing problem when shortage costs 

and setup times were assumed. They suggested a 
branch-and-cut framework and fast combinatorial 
separation algorithms to solve the proposed problem.   
 
The objective of this paper is to develop a model in 
order to find the optimum order quantity that 
minimizes the total cost of purchasing, ordering and 
holding over the specific planning horizon. LINGO 
software is applied to formulate the proposed 
mathematical model. A case study is then used to test 
the model.  

3. Model Formulation 

A mathematical model for lot-sizing problem has been 
formulated in order to find optimum order quantity and 
minimize the total purchasing, ordering, and holding 
costs. A flowchart that represents the model is 
discussed in the following section.  

3.1 Flowchart of Optimization Model  

There are several factors that need to be taken into 
consideration in building the model. The factors are 
lead time to receive parts, the cost of ordering, and 
holding the parts, required parts in each period, the 
amount of safety stock for each part, and parts prices in 
each period. The objective of the model is to determine 
the cost-effective order quantity that minimizes the 
total costs of purchasing, ordering, and holding. Figure 
1 shows the flowchart for the model formulation. The 
next section will present the mathematical model 
formulation.  
 
 

 

Fig. 1  Model Flowchart 
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3.2 Mathematical Model 

There are a few assumptions made in formulating the 
proposed model. This is because the real situation is 
dynamic, without the assumption, the model will 
become too complicated. The assumptions are; 
1. Backlogging is not allowed. 
2. Number of periods in planning horizon problem is 

known. Each period is equal to one week and lead 
time required to receive parts after ordering them 
is an integer coefficient of a week.  

3. Demands for each type of part is estimated and 
known at the beginning of the planning horizon. 

4. Suppliers’ lead time is not dependent on volume 
of ordering size. 

5. The price of each part is not constant in entire 
planning horizon. 

6. Total amount of required parts can be ordered 
over several periods.  

7. The ordering cost for parts differ depending on 
suppliers.  

 
The indices used in the model formulation that indicate 
the number of particular elements are; 
i   =        index for parts (i = 1,. . . ,P)  
t   =        index for periods (t = 1,. . . ,T) 
tʹ =        index for ordering periods (tʹ = 1,. . . ,T)  
 
List of parameters used in the model formulation are; 
Li  =        Lead time of part type i  
Ai   =        Ordering cost for part type i 
hi =        Holding cost for part type i 
SSit =        Safety stock required for part type i in                
                   period t 
Dit  =        Forecasted demand for part type i in 
                   period t  
Citʹ  =        Price of part type i in ordering period tʹ 
T  =        The number of periods in the planning    
                   horizon 
 
Decision variables are as follow; 
Qittˊ =      Amount of required part type i for period    
                 t which is ordered in period t′  
   
                    1   If part type i required for period t, is                                                 
Yitt′   =              ordered in period t′, 
 
             
                    0   Otherwise, 
 
Using the above notations, the mathematical model for 
the lot-sizing problem is presented as follows. 

 

Minimize Total Cost = f (Purchasing Cost + Ordering 
Cost + Holding Cost) 

                                     
                                                                                  (1) 
Subject to:                                                        

                           
The objective function presented in Eq. (1) minimizes 
the total sum of the purchasing cost, the ordering cost, 
and the holding cost over the planning horizon. The 
first term shows the purchasing cost of parts over the 
planning horizon. This cost is obtained by the amount 
of part type i required for period t ordered in period t′ 
multiply by their associated purchasing costs. 
 
The second term is the ordering cost of parts over the 
planning horizon. It is the number of times that 
ordering of part type i have occurred multiply by their 
associated ordering costs. 
 
The third term calculates the holding cost. It is the 
amount of part type i required for period t ordered in 
period t′ multiply by the associated cost of inventory 
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holding multiply by (t-t′) that calculates the number of 
periods in which this ordered amounts were holding. 
 
The first constraint in Eq. (2) ensures that the amount 
of ordering of each part in previous periods satisfy 
demand. Furthermore safety stock must be considered 
in this equation to avoid stock-outs and decrease 
uncertainty in demand.  
 
The second constraint in Eq. (3) implies that the 
decision (Yitt′) depends on the amount of (Qittˊ). It 
means that when there is ordering in period tˊ, Yitt′ is 
certainly equal to 1 and to satisfy the relation between 
Yitt′ and Qittˊ, a very large positive number, M is needed.  
 
The third constraint in Eq. (4) suggests one of the 
feasible values for M. This value must be set 
sufficiently large to ensure that it is greater than each 
Qittˊ. In the absence of backlogging, this amount can be 
set as the maximum summation of demand for each 
part over the planning horizon. 
 
The fourth constraint in Eq. (5) indicates that Yittˊ is 0 
or 1, that is binary decision variable. The last constraint 
in Eq. (6) is used to define the non-negativity of the 
decision variable Qittˊ. 
 
So far, however, there has been little discussion about 
the multi-item multi-period uncapacitated lot-sizing 
problem. In addition, the proposed model leads to find 
the optimum order quantity for each part over several 
periods by keeping the inventory and ordering costs in 
a minimum level. 
 
A case study is selected to test the ability of the model, 
developed to optimize order quantity and minimize 
total inventory cost.  

4.  Case Study 

In order to demonstrate the usability of the suggested 
model in a dynamic manufacturing environment for 
multi-period planning horizon, a case study was 
selected; a trailer manufacturing industry which 
produces ten different trailers. One of them with 
twenty-two parts of the trailer has been selected. Table 
1 shows the notation given to each part. The planning 
horizon is established for three months, each month 
being divided into four periods; therefore, the planning 
horizon is made of 12 periods. 
 
 
 
 
 

Table 1: Product Parts 

 

 
Referring to Figure 1, one of the first inputs to the 
model is the ordering lead time of parts. For the case 
study product, the lead time for ordering each part is 
shown in Table 2. This is actually the time required 
from beginning of the purchase request to receive from 
the outsourcing suppliers.   
 

Table 2: Parts Lead Time (week) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The second input is the ordering and holding cost of 
parts. The ordering and holding costs for the case study 
product are shown in Tables 3 and 4, respectively. 
 
 
 
 
 
 
 

 

i = 1 represents part 1 i = 12 represents part 12

i = 2 represents part 2 i = 13 represents part 13

i = 3 represents part 3 i = 14 represents part 14

i = 4 represents part 4 i = 15 represents part 15

i = 5 represents part 5 i = 16 represents part 16

i = 6 represents part 6 i = 17 represents part 17

i = 7 represents part 7 i = 18 represents part 18

i = 8 represents part 8 i = 19 represents part 19

i = 9 represents part 9 i = 20 represents part 20

i = 10 represents part 10 i = 21 represents part 21

i = 11 represents part 11 i = 22 represents part 22

i = Index for Parts

Part Lead Time Part Lead Time

i = 1 1 i = 12 2

i = 2 1 i = 13 1

i = 3 2 i = 14 1

i = 4 1 i = 15 1

i = 5 2 i = 16 1

i = 6 2 i = 17 1

i = 7 2 i = 18 1

i = 8 1 i = 19 1

i = 9 1 i = 20 1

i = 10 1 i = 21 1

i = 11 2 i = 22 1
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Table 3: Ordering Cost ($/order)  

 

 
Table 4: Weekly Holding Cost ($/unit) 

 
 

 
 
 
 
 
 
 
 
 
 

 
 
 
 

 
The third input to the model is the safety stock. Safety 
stock for each part is computed using equation (7) that 
was developed by Walter [19].  
 
Safety Stock = Z × σ × √LT                                       (7) 
 
It is utilized because previous demand of the trailer is 
normally distributed. For the case study company, the 
policy is to set service level at 95 percent, therefore 
shortage probability is 0.05. According to Normal 
distribution tables, a probability of 0.05 corresponds to 
Z = 1.65. σ is the standard deviation of the past 
demands of the part. The amount of standard deviation 
of demand over the last 12 months for each part is 
shown in Table 5. The lead time (LT) for each part is 
shown in Table 2.  
 

Table 5: Standard Deviation of Part Demands  

 
 

 

 

 
 
 
 
 
 
 
 
 
The results of safety stock calculations are presented in 
Tables 6 and 7. These parts must be held for each 
period to protect the company against demand 
fluctuations. 

 
Table 6: Safety Stock (unit) 

 
  
 
 
 
 
 
 
 
 
 
 
 
 

Table 6 shows the safety stock in terms of unit in each 
period for parts 1 to 10 and parts 14 to 22. 
 

Table7: Safety Stock (Kg) 

 
 
 
 
 
 

Table 7 shows the safety stock in terms of Kg in each 
period for parts 11 to 13. 

 

Part Ordering Cost Part Ordering Cost

i = 1 0.5 i = 12 0.5

i = 2 1 i = 13 0.5

i = 3 0.5 i = 14 0.5

i = 4 0.5 i = 15 0.5

i = 5 1 i = 16 1

i = 6 1 i = 17 0.5

i = 7 0.5 i = 18 1

i = 8 1 i = 19 1

i = 9 1 i = 20 1

i = 10 0.4 i = 21 1

i = 11 0.5 i = 22 1

Part Holding Cost Part Holding Cost

i = 1 0.5 i = 12 0.75

i = 2 1 i = 13 0.75

i = 3 0.5 i = 14 0.5

i = 4 0.5 i = 15 0.5

i = 5 1 i = 16 1

i = 6 1 i = 17 0.75

i = 7 0.5 i = 18 1

i = 8 1 i = 19 1

i = 9 1 i = 20 1

i = 10 0.4 i = 21 1

i = 11 0.75 i = 22 1

Part σ Part σ

i = 1 2.56 i = 12 86.58

i = 2 7.28 i = 13 20.96

i = 3 7.28 i = 14 2.56

i = 4 2.56 i = 15 2.56

i = 5 2.56 i = 16 2.56

i = 6 2.56 i = 17 2.56

i = 7 2.56 i = 18 4.81

i = 8 9.67 i = 19 4.81

i = 9 2.56 i = 20 14.48

i = 10 2.56 i = 21 14.48

i = 11 54.42 i = 22 2.56

Part Safety Stock

i = 11 126.58

i = 12 201.41

i = 13 34.03

Part Safety Stock Part Safety Stock

i = 1 4.0 i = 14 4.0

i = 2 12.0 i = 15 4.0

i = 3 17.0 i = 16 4.0

i = 4 4.0 i = 17 4.0

i = 5 6.0 i = 18 8.0

i = 6 6.0 i = 19 8.0

i = 7 6.0 i = 20 24.0

i = 8 17.0 i = 21 24.0

i = 9 4.0

i = 10 4.0
i = 22 4.0
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For the fourth input, material requirements planning 
(MRP) has been used to calculate demand of each part 
over 12 periods. Results are presented in Tables 8 and 
9.  

 
Table 8: Parts Demand (unit/period) 

 

 
 
Table 8 shows the demand in terms of unit per period 
for parts 1 to 10 and parts 14 to 22. Negative values 
indicate that there is no need to order the parts due to 
adequate availability of stock. As shown in Eq. (2), 
safety stock must be added to the amount of required 
part in each period to obtain the final demand per 
period.    
 

Table 9: Parts Demand (Kg/period) 

 

 
 

 

 

 

 

 

 
 
 
Table 9 shows the demand in terms of Kg per period 
for parts 11 to 13. 
 
The fifth input to the model is the purchasing price of 
parts. The purchasing prices of each part over 12 

periods are shown in Tables 10 and 11. These are 
obtained by regression forecasting analyses conducted 
on historical price of parts. 
 

Table 10: Parts Prices ($/unit)  

1 2 3 4 5 6 7 8 9 10 14 15 16 17 18 19 20 21 22

1 -4 -12 -17 -4 -6 -6 -6 -17 -4 -4 -4 -4 -4 -4 -8 -8 -24 -24 -4

2 9 35 -17 5 -6 -6 -6 13 3 -4 3 -1 -4 -4 -2 10 -24 -6 -4

3 14 60 50 20 14 14 13 56 14 11 14 20 5 5 28 28 30 84 5

4 16 60 72 20 16 16 20 64 16 16 16 20 16 16 32 32 96 96 16

5 16 60 72 20 16 16 20 64 16 16 16 20 16 16 32 32 96 96 16

6 16 60 66 20 16 16 20 64 16 16 16 20 16 16 32 32 96 96 16

7 16 54 66 18 16 16 18 64 16 16 16 18 16 16 32 32 96 96 16

8 14 54 66 18 14 14 18 56 14 14 14 18 14 14 28 28 84 84 14

9 14 54 66 18 14 14 18 56 14 14 14 18 14 14 28 28 84 84 14

10 14 54 12 18 14 14 18 56 14 14 14 18 14 14 28 28 84 84 14

11 14 0 0 0 14 14 0 56 14 14 14 0 14 14 28 28 84 84 14

12 -4 -12 -17 -4 -6 -6 -6 -17 -4 -4 -4 -4 -4 -4 -8 -8 -24 -24 -4

Period 
(t)

Part (i)

11 12 13

1 -126.58 -201.41 -34.03

2 -126.58 -201.41 -34.03

3 200.66 324.22 106.66

4 360 572.8 172

5 360 572.8 172

6 360 572.8 172

7 360 572.8 154.8

8 315 501.2 154.8

9 315 501.2 154.8

10 315 501.2 154.8

11 315 501.2 0

12 -126.58 -201.41 -34.03

Part (i)Period 
(t)

1 2 3 4 5 6 7

1

2

3

4

5

6

7

8

9

10

11

12

8 9 10 14 15

1

2

3

4

5

6

7

8

9

10

11

12

17 18 19 20 21

1

2

3

4

5

6

7

8

9

10

11

12

138.01

22

91.71

92.68

93.65

Period 
(t)

Period 
(t)

Part (i)

Part (i)

56.68261.27

Part (i)

25.52 135.74 148.60

14.29

17.87

382.21 4774.51 60.02 1150.06 3328.64 184.16 93.60

39.12 68.96

175.30 17.25 24.81 133.00 145.90

178.23

60.02263.28

92.62

38.09 67.63 13.40 262.28 58.35

16

136.18

137.09

381.53 4773.39 58.35 1149.25 3326.59 183.47

172.37 16.62 24.10 130.26 143.20

37.06 66.30 12.51

Period 
(t)

380.85 4772.27 56.68 1148.44 3324.55 182.79 91.64
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Table 11: Parts Prices ($/Kg) 
  

 

 

 

 

 
 

 

 

 
 
 

5.  Results and Discussion  

The proposed model has been solved using LINGO 
version 13.0 in personal laptop with 2.76 GHz CPU 
and 4 GB RAM. Table 12 shows the optimum answer 
that includes the amount of ordering in 12 periods for 
part 3, as an example, that have led to the minimum 
purchasing, ordering, and holding costs while satisfy 
specified demand completely. In fact, the model gives 
a plan to the company in order to show how order the 
parts by satisfying demand and keep the total cost in 
minimum level.  
 
 
 
Table 12: Model Optimum Solution 

Required amount of each part per period is indicated as 
demand (Di,t) that has been obtained by MRP 
calculations. The amount of ordering and ordering 
period are gained from the model solutions by LINGO 
13.0 optimal software to show how many of each part 
must be ordered per period. This amount is obtained by 
summation of safety stock and required amount of each 
part in each period.   
   
The most important finding to appear from the data is 
that when the cost of purchasing is high, or the 
ordering is a large amount, the part may be ordered 
partially in periods that the purchasing cost is lower, 
although the holding cost has been considered, 
sometimes this cost has the lower impact on total cost 
in comparison to purchasing cost impact. Besides that 
all required amounts of part cannot be ordered in initial 
periods that have lower price of part, because this 
affects on the holding cost and total cost will increased 
considerably. Since LINGO is commanded to minimize 
the total cost, it makes decision regarding this order. 
Parts 2, 3, 8, 11, 12, 20, and 21 have been ordered in 
several periods. 
 
The order quantity (Q) in each period reveals the total 
amount of each part that must be ordered per period. Q 
for each period is obtained by summation of the 
amount of orderings in each order time. For instance, 
required amount of part 3 in period 3 is ordered in 
period 1, and some of the demand of it in periods 4, 5, 
6 and 7 are also ordered in period 1; therefore, the 
order quantity for period 1 will be sum of all ordering 
amounts in period 1. So, the company must order the 
total amount of 171 of part 3 in period 1. Accordingly, 
the order quantity for the other parts and periods are 
obtained by this manner.  Number of ordering shows 
how many times the ordering per period has been 
placed. Similar calculations have been done for the 
other parts.  

Part 
(i) 

Period 
(t) 

Demand
(Di,t) 

Amount of  
Ordering  

(Unit) 

Ordering 
Period 

(tʹ) 

Order 
Quantity 

(Q) 

Number of  
Ordering 

Total Cost 
(Z) 

3 

1 -17 0 - 171 5 

36523.68 

2 -17 0 - 100 3 

3 50 67 1 160 4 

4 72 89 1 80 2 

5 72 9,40,40 1,2,3 20 1 

6 66 3,40,40 1,2,3 23 1 

7 66 3,20,20,20,20 1,2,3,4,5 23 1 

8 66 60,23 3,6 46 2 

9 66 60,23 4,7 0 0 

10 12 29 8 0 0 

11 0 17 8 0 0 

12 -17 0 0 0 0 

11 12 13

1

2

3

4

5

6

7

8

9

10

11

12

0.97 0.46

1.66 0.98 0.47

Period 
(t)

Part (i)

1.57 0.95 0.46

1.61
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The minimum total cost incurred to purchase, order, 
and hold each part over 12 periods is shown in Table 
13. The total cost for all parts is $ 4,423,918.29. 
  
Table 13: Total Cost of Optimum Solution for each Part over 
Planning Horizon ($) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
One of the significant findings which emerges from 
this study is to attain optimum order quantity in each 
period and minimum total cost of purchasing, ordering, 
and holding the parts. 

6. Conclusions 

In this paper, a mixed integer programming (MIP) 
model formulation has been created. The case study 
company needs safety stock in order to prevent stock-
out, hence one method based on the variance in 
demand, lead time and the target service level is used 
to determine the amount of safety stock for each part. 
MRP is done to obtain required amount of each part 
per period. The parts prices are estimated for 12 
periods using regression forecasting method. 
 
The assumptions, parameters, and the decision 
variables have been defined. Then, the mixed integer 
model formulation included the objective function, and 
constraints have been demonstrated and discussed. The 
model is solved using LINGO 13.0. Results show that 
the model constraints are satisfied as all demands of 
parts are planned to be ordered in a correct amount 
when they are needed. The proposed MIP model is able 
to attain optimum order quantity in each period and 
minimum total cost of purchasing, ordering, and 
holding the parts. 
 

Metaheuristic algorithms such as genetic algorithm and 
tabu search can also be used to solve the proposed MIP 
model. Comparison can then be made to study the best 
method.  
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