
Analytical Analysis of Generic Reusability: Weyuker’s Properties

Parul Gandhi1, Pradeep Kumar Bhatia2

 1 Department of Computer Science & Business Administration,
Manav Rachna International University

Faridabad, 121001, India

2 Department of Computer Science & Engineering
G. J. University of Science and Technology

Hisar, 125001, India

Abstract

Reusability is the key concept in today’s software development
environment. The concept of reusability can be achieved by
Generic programming approach. C++ templates help us to
develop generic code which results in reusable software modules
and also identify effectiveness of this reuse strategy. Many
researchers have already developed various reusability metrics
[9] [7]. In this paper we emphasis on evaluating reusability
metrics on weyuker’s set of properties. Weyuker’s list of
properties has always been a point of reference and suggested as
a guiding tool in identification of a good complexity measure by
several researchers. We have chosen some recently reported
reusability metrics Method Template Inheritance Factor (MTIF)
and Attribute Template Inheritance factor (ATIF) and evaluated
them against Weyuker’s set of principles. We divide our work in
a two-step framework. In the first step the metrics are analytically
evaluated against a formal list of Weyuker’s properties and in the
second step we calculate LOC metric value by using three
different programs designed using template and inheritance
features of object-oriented programming and observe that by
using template with inheritance property we can reduce number
of lines of a project to a great extent.
Keywords: Reusability, Weyuker’s Properties, Object-Oriented
metrics, Generic Construct.

1. Introduction

Code Reusability is the significant benefit of object-
oriented programming that plays an important role in
improving and enhancing the quality of software. C++
templates strengthen this concept of generic reusability by
developing software reusable module [10] such as
function template and class template.

In the last decade various appropriate ways has been
designed to measure the complexity of program [3, 2].
Weyuker developed a formal list of properties for software
metrics [3] and has evaluated a number of existing
software metrics using these properties Weyuker’s [11]

proposed these properties to evaluate complexity measure
when only traditional programming languages were in use.
These properties were also used by some researchers for
evaluation of popular object oriented metrics for example
Chidamber’s metrics [2] and Kapsu’s metric [5], although
the object-oriented features are entirely different in nature.
It is not mandatory that all types of metrics satisfy all the
weyuker’s properties. Our approach is to figure out, for a
given property, which type of the metrics will not satisfy
Weyuker’s property. In this paper, we have chosen two
recently reported generic reusability metrics [9] and then
analytically analyzed these metrics against Weyuker’s
proposed set of nine axioms. Further, we design three
sample programs by keeping in mind the features of
object-oriented programming language and then calculate
LOC metric value of these programs which shows that the
amount of lines of code (LOC) of the projects designed
using template feature can be reduced to a great extent as
compare to one designed without template.

We organize the paper in following sections: in the first
section reusability metrics are defined which we want to
evaluate against weyuker’s properties. Section 3 and 4
states weyuker’s properties and evaluate the defined
reusability metrics against these properties. The discussion
made is presented in section 5. The last section constitute
conclusion.

2. Reusability Metrics

We have chosen two recently reported reusability metrics
which we want to evaluate against weyuker’s properties.
These metrics are [9]:

Metric 1: Method Template Inheritance Factor (MTIF)
MTIF is defined as the ratio of the sum of the methods
inherited from template classes of the system under

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 2, No 1, March 2012
ISSN (Online): 1694-0814
www.IJCSI.org 424

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

consideration to the total number of available methods
(locally defined plus inherited) for all classes.

MTIF= 1

1

()

()

n

t i
i
n

a i
i

M C

M C








* NO (1)

n Total number of classes
NO Number of Objects of Template classes
MiCi Number of methods declared in class i
MtCi Number of the methods inherited from
 template class i
Ma (Ci) MiCi + MtCi Total no of methods invoked

Metric 2: Attribute Template Inheritance Factor (ATIF)
ATIF is defined as the ratio of the sum of attributes
inherited from template classes of the system under
consideration to the total number of available attributes
(locally defined plus inherited) for all classes.

ATIF= 1

1

()

()

n

t i
i
n

a i
i

A C

A C








* NO (2)

n Total number of classes
NO Number of Objects of Template class
AiCi Number of attributes declared in class i
AtCi Number of the attributes inherited from template

class i
Aa (Ci) AiCi + AtCi Total no of attributes accessed

3. Weyuker’s Properties

Weyuker’s properties [3] designed to evaluate software
complexity measures. Several researchers have
recommended various properties that software metrics
should posses to enhance their usability. Weyuker’s
properties are not without criticism as many authors have
criticized [8] [4] this approach but still it give an important
basis to classify a complexity measure. Weyuker’s
properties states that [1].
Let µ be metric of program A and B:

Property 1:
Given a class A another class B can always be found such
that, µ (A)  µ (B). This implies that not every class can
have the same value for a metric.

Property 2:
Let c be a nonnegative number. Then there are finite
numbers of program with metric c such that µ (A) = c.

Property 3:
There are distinct programs A and B such that, µ (A) = µ
(B).

Property 4:
There exist programs A and B having same functionality
but their complexities could be different.
(A)(B)(A  B & (µ (A)  µ (B)).

Property 5:
Weyuker’s fifth property is the property of monotonic.
When two programs are concatenated, their metric value
should be greater than the metrics of each of the
individuals.
(A)(B) (µ (A) ≤ µ (A+B)) & µ (B) ≤ µ (A+B))

Property 6:
This property suggests non-equivalence of interaction. If
there are two program bodies of equal metric value which,
when separately concatenated to a same third program,
yield program of different metric value. For programs A,
B & C
(A)(B)(C)(µ (A) = µ (B) & µ (A+C)  µ (B+C)).

Property 7:
This property is not applicable for object oriented metrics
[2].

Property 8:
It specifies that “if A is a renaming of B, then µ (A) = µ
(B).

Property 9:
This property states that the sum of the metric values of a
program could be less than the metric value of the
program when considered as a whole
(A)(B) (µ (A) + µ (B) < µ (A+B)).

4. Evaluation of MTIF and ATIF on
Weyuker’s Properties

This section analyzes the applicability of weyuker’s
properties for two object-oriented reusability metrics
Method Template Inheritance Factor (MTIF) and Attribute
Template Inheritance factor (ATIF) [9]. Weyuker’s first
four properties are general in nature and assumed to be
satisfied by any sensible measure.

Property 1 to Property 4:

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 2, No 1, March 2012
ISSN (Online): 1694-0814
www.IJCSI.org 425

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

Let µ (A) and µ (B) represent the metric value of programs
A and B respectively. As two object-oriented programs
can always differ in template value thus the metrics
defined above satisfies the first property of weyuker’s list.
Metrics taken in this paper can have many different values,
it satisfies second property. If there are two different
unrelated programs implemented using the concept of
template, then the metric value of both the programs can
be same as it is nothing but the summation of methods or
attributes inherited from template class. The choice of
generic attributes or methods is a design decision which
does not depend upon the functionality of software, this
satisfies Property 4.

Property 5:
Let µ (A) = a and µ (B) = b Then µ (A+B) = a+b-α
Where α is the number of common functionality between
program A and B. Thus it is possible that
(A)(B) (µ (A) ≤ µ (A+B)) & µ (B) ≤ µ (A+B))
Therefore, Property 5 is not satisfied.

Property 6:
Now, let A and B be two programs such that u (A) = �u
(B) = �a and let C be another program such that u(C) = c.
Then, µ (A+C) = a+c-α and

µ (B+C) = a+c-β
It shows that for programs A, B & C µ (A+C)  µ (B+C)),
this satisfies Property 6.

Property 8:
The renaming of systems A and B does not affect the
metric values. Hence, Property 8 is satisfied.

Property 9:
 For any two programs A and B Let µ (A) = a and µ (B) =
b then µ (A+B) = a+b-α
Thus a+b ≥ a+b-α, therefore property 9 is not satisfied.

5. Discussion

We apply these metrics to three different programs written
using object-oriented language and conclude that by using
the concept of template with inheritance property of
object-oriented programming we can minimize the
redundant code in our project to a great extent shown in
table1 and hence increase the reusability of the software.

 Table 1 LOC for three Sample Programs

Programs LOCt LOCwt

Program 1 34 43

Program 2 52 72

Program 3 38 54

Where

LOCt is the Line Of Code value for the program written
using template
LOCwt is the Line Of Code value for the program written
without using template

We also observe that lines of code (LOC) metric value
were reduced when templates with inheritance property
were used. A line of code is any line of programming text
that is not a comment or blank line, regardless of the
number of statements or fragments of statements on the
lines. This specifically included all lines containing
program header, declarations, and executable and non-
executable statements [6]. This is the predominant
definition for LOC used by researchers. It also decreases
the efforts required for implementation of the programs
with an acceptable accuracy. The amount of reduction in
LOC with the use of templates with inheritance is shown
in Figure 1. The amount of LOC increased in projects,
which do not include templates is shown in Figure 2. The
increase in LOC varies from 26-42%.

0

10

20

30

40

50

60

70

80

1 2 3

Programs

L
O

C

LOC using template
with inheritance

LOC using
inheritance

 Figure 1: Comparison of LOC in Project 1 to Project 3

0

5

10

15

20

25

30

35

40

45

1 2 3

Programs

%
 i

n
cr

ea
se

 i
n

 L
O

C

 Figure 2: Percentage increase in LOC in projects not using templates

Our research work emphasis on the use of generic
programming approach and also advice managers to

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 2, No 1, March 2012
ISSN (Online): 1694-0814
www.IJCSI.org 426

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

proactively use generic programming opportunities in the
development of object-oriented modules. Some important
points/observations regarding the Weyuker’s properties,
and object oriented metrics are also suggested.

 An object oriented metric should satisfy
Weyuker’s properties 1, 2, 3, 4, 6 and 8.

 The observations say that proof of properties 5, 7
and 9 varies from metric to metric.

 In OOP, a class is an abstraction of the problem
space, and the order of statements within the class
definition has no impact on eventual execution or
use .This is the reason that most of the OO
metrics should not satisfy property 7.

 Weyuker's Property 9 has received a mixed
response regarding its applicability to object
oriented software metrics

6. Conclusions

Although Weyuker’s properties are not without criticism
but still gaining popularity as an evaluation criterion for
OO measures. Weyuker’s proposed these properties to
evaluate complexity measure for procedural languages but
now a days it also plays an important role to evaluate
complexity measure for object-oriented languages. In this
paper we have taken two recently reported reusability
metrics Method Template Inheritance Factor (MTIF) and
Attribute Template Inheritance factor (ATIF) and analyze
them on the basis of weyuker’s set of properties. One more
objective of our research is to reduce the line of code by
making use of generic construct. The above metrics helps
in improving the reusability of software by avoiding
redundant code and hence results in reduction in LOC.
Work presented in this paper emphasis to proactively use
template mechanism which aid to analyze how much
reusability is incorporated in the coding process and hence
increases the use of generic programming.

References

 [1] B.Henderson-sellers, Object-Oriented Metrics, Measures of

Complexity, Prentice Hall, 1996.
[2] Chidamber, S.R and Kemerer, C.F.:A Metric Suite for Object

Oriented Design,IEEE Transactions on Software Engineering,
Vol. 20, No. 6, 1994, pp. 476-493.

[3] E. J. Weyuker. Evaluating software complexity measures.
IEEE Trans. Software Engineering, Vol. 14, no. 9, 1988, pp.
1357–1365.

[4] H.Zuse, Software Complexity: Measures and Methods,
Walter de Gruyter, Berlin, 1990.

[5] Kapsu K., Shin, Y.,Chisu W.: Complexity Measures for

Object-Oriented Program Based on the Entropy, Software
Engineering Conference, 1995. Proceedings, 1995 Asia
Pacific. 1995, pp.127 – 136.

[6] K.K Aggarwal, Yogesh Singh, Software Engineering, New
Age International Publishers, 2001.

[7] K.K.Aggarwal, Yogesh Singh, Arvinder Kaur, Ruchika
Malhotra “Software Reuse Metrics for Object-Oriented
Systems”, In Proceedings of ACIS Third International
conference on Software Engineering Research, Management
and Applications, 2005.

[8] N.E.Fenton, Software Metrics, A rigorous approach.
Chapman and Hall, New York, 1991.

[9] Parul Gandhi & Pradeep Kumar Bhatia Estimation of Generic
Reusability for Object Oriented Software An Empirical
Approach”, ACM SIGSOFT Software Engineering Notes Vol.
30, no 3, 2011, pp. 1-4.

[10]Parul Gandhi & Pradeep Kumar Bhatia,” Reusability Metrics
for Object-Oriented System: An Alternative Approach”
International Journal of Software Engineering (IJSE), Vol. 1,
No 4, 2010, pp. 63-72.

[11]Stockhome, S.G., Todd, A.R., Robinson, G.A.,: A
Framework for Software Quality Measurement, IEEE Journal
on Selected Areas in Communications,Vol.8, No.2, 1990,
pp.224-233.

Acknowledgments

I express my sincere gratitude and acknowledgement
towards Dr. Pradeep Kumar Bhatia, Associate Professor,
who guided me. It was his constant support and inspiration
without which my efforts would not have taken this shape.
I sincerely thank him for this, and seek his support for all
my future endeavors.

Parul Gandhi is pursuing PhD (computer science).She received
her MPhil (computer science) degree in 2008. She holds an MCA
from MDU, Rohtak. She is currently working as Lecturer with
Manav Rachna International University, Faridabad, FBC
Department. Her area of specialization includes Software
Engineering, Software quality improvement.

Dr Pradeep Kumar Bhatia Ph.D. (Computer Science &
Engineering), May 2005 from Guru Jambheshwar University of Sci
& Tech, HISAR Presently working as Associate Professor with
Guru Jambheshwar University Hisar. His current areas of
specialization include Software Engineering and Software Quality
Improvement. He holds to his credit around 19 Years of
experience of teaching and research. He has more than 50
research papers in various reputed journals and also written
various books in various fields.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 2, No 1, March 2012
ISSN (Online): 1694-0814
www.IJCSI.org 427

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

