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Abstract 
In this paper we go about the segmentation and analysis of an 

electrocardiographic (ECG) signal. Firstly, it consists in working 

out the locations of different characteristic waves of this signal: 

the QRS complex and the waves P and T, successively and in the 

order of magnitude and their amplitude. Secondly, we go about 

the analysis of this signal by the linear principal component 

analysis (LPCA) based on the results found in the first part. The 

importance of this algorithm comes in the context of the ECG 

supervision and then the cardiovascular system. This algorithm 

integrates the multi-scale wavelet analysis and principal 

component analysis. This analysis allows us, first, to apply the 

continuous wavelet transform (CWT) on the totality of the signal. 

After that, based on the property of the CWT regularity, the 

waves will be detected after a thresholding operation. To 

evaluate the segmentation algorithm two parameters are 

introduced, the sensitivity Se and the predictive value P+. The 

results have given an average of Se=99.93% and P+=99.96%, 

which indicates that our segmentation algorithm is sufficiently 

reliable in comparison to the real database. In the supervision of 

the ECG, we use the detected parameters to construct the data-

matrix of the LPCA. The defects are detected and located by this 

tool in order to determine the existing failure in the used signal. 

Comparing our results with those of the expert, we find that the 

LPCA gives a concrete state of the cardiovascular system. 

 

Keywords: Multi-scale analysis, continuous wavelet transform, 

ECG, segmentation, detection, location, principal component 

analysis.  

1. Introduction 

The analysis of the electrocardiographic signal has been 

the target of many works since a dozen of years. Some 

researchers have been interested in the segmentation of the 

ECG, which consists in defining the different locations of 

the characteristic waves of this signal, the QRS complex 

and the waves P and T [1, 2, 3 and 4]. These works have 

introduced different tools of signal processing, mainly the 

wavelet analysis. Others have made use of the diagnosis of 

the cardiovascular system starting from the ECG wave 

characteristics [5, 6 and 7]. Our proposed approach comes 

in the context of segmenting and analyzing the waves of 

the electrocardiographic signal. In the segmentation part, 

we have introduced the multi-scale continuous wavelet 

transform [8, 9 and 10]. The principal of this method is 

based on the result of the wavelet coefficients in different 

levels of resolution. A thresholding operation is then 

applied in order to detect the different ECG waves. These 

waves are detected in the order of magnitude and their 

amplitude. In a second part, detecting and locating the 

defective parameters on an ECG is an asset to help 

diagnose the cardiovascular system. The principal 

component analysis (PCA) is applied at this level. The 

PCA is a method of reducing the classic linear dimension 

which consists in projecting the samples on the maximum 

variance axes of data. This method is frequently used in 

detecting and locating defects and afterward in supervising 

the industrial and biological processes [11, 12, 13 and 14]. 

The PCA rests on two parts. The first step is the detection 

of defects which uses the PCA to model the behavior of the 

process in a normal state. Comparing the observed 

behaviour with that given by the PCA, the defects are then 

detected. Many methods have been used for the detection 

of defects, and the most frequent ones are the square 

prediction error SPE and the Hotteling statistics T² 

[15, 16, 17 and 18], which will be also introduced in this 

approach. To locate the variables in defect, many methods 

are introduced [19, 20 and 21]. In this paper, the defects 

are located by the method of calculating contributions. 

2. Regularity analysis by wavelet transform  

The wavelet transform can be used as a tool for analyzing 

and measuring the uniform and local regularity of a signal. 

To characterize the singular structures, we should quantify 

precisely the local regularity of the signal ( )x t . The 

Lipschitz exponents provide measurements of a uniform 

consistency not only on intervals but also in any v  point. 

The Lipschitz exponents are also called the Hôlder 

exponents. The localized Lipschitz exponents can 

arbitrarily vary from one abscissa to the other. The uniform 
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Lipschitz exponents provide a more global measurement of 

the consistency, which is laid over a whole interval. 

2.1 Multi-scale differential operator 

To measure the local regularity of a signal, the number of 

nil moments has a great importance. 

( ) 0 0 (1)kt t dt pour k n





  

It has been shown that a wavelet at n nil moments can be 

written as the derivative in the n order of a  function. The 

corresponding wavelet transform is a multi-scale 

differential operator. When the wavelet is at a rapid 

decrease, we get a connection between the uniform 

regularity of the function and the decrease in its wavelet 

transform. A  wavelet at a rapid decrease has n nil 

moments only if a  function exists at a rapid decrease as:
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This theorem shows that a wavelet at n nil moments can be 

written as the derivative in the n order of a  function [9 

and 10].  can not have more n nil moments when 



  0)( Kdtt

 This shows that a connection between the uniform 

regularity of ( )x t  and the decrease in its fine-scale wavelet 

transform ),( suWx
. There exists a relationship between 

the uniform consistency of an f signal and the decrease in 

the coefficients of its fine-scale wavelet transform. 

2.2 Detection of singularities by wavelet transform 

The detection of singularities of a signal is a basic 

operation because these points often correspond to the 

important events of the signal. These moments can be 

determined by the wavelet transform thanks to local 

maxima (Maxima of the wavelet transform). The decrease 

in ),( suWx
 can in fact be controlled by values of its 

local maxima. The term ‘maximum module’ is used to 

describe the points such as ),( suWx
 being locally 

maximum. This implies that: 
 

( , )
0 (4)

W x u s

u
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The singularities are located on the abscissa where the 

maxima modules of the fine-scale wavelet coefficients 

converge. To understand the properties of these maxima, 

we write the wavelet transform as a multi-scale differential 

operator. If a wavelet has exactly n nil moments and a 

compact support,  is also at a compact support as            

 = (-1)
n
 n

 with 

  0)( dtt ; the wavelet transform is 

written as follows: 
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and for  n=2, 
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If the wavelet has only one nil moment, the maxima 

modules of the wavelets are the maxima of the first 

derivative of ( )x t  smoothed by s . If the wavelet has two 

nil moments, the maxima module correspond to the 

maxima of the second derivative. If the wavelet has no 

local maximum of the fine scales, then  ( )x t  is locally 

regular. The Lipschitzian regularity is calculated starting 

from the decrease in the amplitude of the maximum 

modules determined at the scale level. We can measure 

this regularity by calculating the parameter:  

 

2 1 1 2log ( , ) log ( , )k k k k kW x u s W x u s     

In the dyadic case and at the level of the resolution j, this 

parameter becomes:  

1 1
2 2log ( ,2 ) log ( ,2 )j j j j

j W x n W x n   
 

2.3 Coefficient products 

The coefficients of the wavelet decomposition include the 

lines of the maxima modules in proximity to the signal 

singularities. This allows spotting the singularities of a 

signal by detecting its maxima. For a multi-scale analysis, 

the coefficient product of the wavelet transform of an  

( )x n  signal of some dyadic scales is given in the following 

equation: 

1

0

2
( ) ( ). (6)j

j j

j j

p n w x n







The resulting signal  p n shows peaks in the present 

transitions of the signal and presents weak values 

elsewhere [10]. In this non linear operation on  x n , the 

producing singularities through the scales of peaks whose 

coefficients are of the wavelet transform are reinforced by 

the product  p n , while those caused by fluctuations will 

be detected. The peaks of the signal will line up through , 

and not for, all the scales because on increasing the 

smoothing effect, the response will spread and then the 
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singularities will interfere. Thus, choosing a quite high 

scale value makes the alignment of the peaks in the 

product  p n lost. The number of the   p n  terms allows 

preserving the singularity sign. After determining the 

coefficients for three successive resolution levels, we 

calculate their product in order to amplify data and 

attenuate the weak amplitudes. 

2.3 Thresholding 

The operation of thresholding is applied on the given 

product of the wavelet coefficients. The threshold value is 

determined in function of the maximum module of the 

coefficients product by:  

*max (7)S a P

 with a  as a coefficient that belong to the interval [0, 1]. 

After testing many threshold values by changing the value 

of a , we notice that for 0.2a   the obtained results are the 

best. We must cancel the signal part (product of the 

wavelet coefficients) which is less than the applied 

threshold and take into account the part that exceeds it; this 

is the principal of adapted thresholding in this algorithm. 

 

3. Detection and location of defects (LPCA) 

Consider a process whose normal functioning is presented 

by a matrix of data X  with n  measurements and 

m variables. Determining the number of the principal 

components is based on the benchmark proposed by 

Qin.S[21] which integrates the principal of minimizing the 

variance of reconstruction error. The reconstruction error 

variance of the ith component of 1( ) [ ...... ]T m
mx k x x  is 

given by: var ( ( ) ( ) )T i
i i x k x k   . 

where i is the ith column of the identity matrix and 

( )x k represents the measurement vectors whose  ith component 

has been reconstructed in the following way: 

0
( ) ( )

1

T T
i i

i
ii

C C
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 
 
 




                                                 (8) 

where 1 2[ ...... ]T
mC C C C   , iC  is the ith column of the 

C matrix and the signs (+i) and (-i) represent the vector made 

up of the first ( 1)i  and the last ( )m i elements of the vector 

iC . The minimisation criterion used for determining the number 

of principal components is given by: 

1 1
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J
x

 

  
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                             (9) 

3.1 Detection  

In this approach two statistics are introduced, those of the 

Hotteling T² and the SPE, and are determined as follows: 
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with ( )je k being the jth residue given by: 

ˆ( ) ( ) ( )j j je k x k x k   

where ( )jx k is the j
th  

element of the measuring vector, 

( )x k  is the i
th

 principal component and it is the i
th

 proper 

value of the correlation matrix  , which represents the 

variance of 
i

t . m is the number of quality indictors and is 

the number of components, with m  which is the 

estimation of x  by the PCA model given by:  

x̂ Cx                                                                                    
where    is the matrix formed by the  first proper 

vectors of the matrix . The process will be considered 

functioning abnormally if one of these following 

inequalities at least is true: 
2SPE                                                                                                                                  

2 2 ( )T                                                                          

where 
2
  and 

2 ( ) are respectively the thresholds of     

2T and SPE.  

3.2 Location   

This step follows the detection step to highlight the 

variables in defect. The method used at this level is based 

on calculating the contribution of variables. This method 

introduces the principal of quantifying the contribution of 

each variable at the detection statistics. Particularly, we 

will take an interest in calculating the contribution of 

principal component variables; each principal component 

is expressed by: 

1

m
T

i i ij j
j

t x x 


                                                          (12) 

with i as the proper vector corresponding to the value i  . 

Qin.S.[21] propose a simultaneous use of the principal 

components and contribution of the initial variables. They 

propose, at the time of detecting a defect, to analyse the 

standardised principal components having an important variation. 

The total contribution of the variable jx on the q  highest 

components is given by:  
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with 

i
ij ij j

j

t
Cont x


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ij is  j
th  

component of the proper vector i . 

4. Application on an ECG signal 

4.1 ECG characteristic waves and intervals 

The usual waves in an ECG are P, QRS and T waves.P 

waves represent depolarization of the atria. QRS represents 

the depolarization on the ventricles. T wave is due to the 

ventricular repolarisation. The repolarisation wave of the 

atria is not usually visible. If present, it is known as the Ta 

wave. A segment in an electrocardiogram is the region 

between two waves. PR segment begins at the end of the P 

wave and ends at the onset of the QRS complex. ST 

segments starts from the end of the QRS and terminates at 

the onset of the T wave. TP is segments between the end of 

the T wave and the beginning of the next P wave. It is the 

true isoelectric interval in the electrocardiogram. An 

interval in an ECG includes one segments and one or more 

waves. PR interval starts at the beginning of the P wave 

and ends at the onset of the QRS. It denotes the conduction 

of the impulse from the upper part of the atrium to the 

ventricle. In this paper, we introduce the MIT/BIH 

database to apply our approach. 

 

4.2 Algorithm 

In this work we put forward a method for the segmentation 

of different characteristic waves of the 

electrocardiographic signal based on the multi-scale 

wavelet analysis. This segmentation makes it possible to 

prepare a data matrix for the application of the PCA at the 

level of supervising the ECG described as indicated in the 

following diagram: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1 Proposed algorithm. 

4.3 Segmentation 

4 .3.1 Detection of the ECG waves   

The proposed method for detecting the ECG waves is 

based on the principle of the multi-scale analysis of the 

CWT. Our detection algorithm consists of five basic steps 

which are: the windowing, the wavelet decomposition, the 

multi-scale product, the thresholding and the detection 

(fig1). 
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 Windowing: This operation enables segmenting the 

ECG signal into a window set due to its length which 

is hard to carry out and which takes a significant time 

for execution. Moreover, the used Hamming window 

makes it easy to highlight the high amplitude, which 

will help to better detect the ECG waves afterwards. 

 The wavelet decomposition at different resolution 

levels is then applied on the signal. The used parent 

wavelet is the first derivative of a Gaussian. The 

principal is based on the zero crossing of the maxima 

in the first derivative (Gaussian)(fig.2). 

 Once the wavelet coefficients are determined, the 

proposed algorithm effects its product in order to 

highlight the high amplitudes and to reduce the weak 

amplitudes. This product allows us to facilitate the 

detection thereafter by eliminating noise. 

 A thresholding operation is afterward effected on the 

wavelet coefficient product. The used threshold is 

calculated in function of the maximum module of the 

continuous wavelet transform ( as indicated in 2.4). 

 After detecting the R wave, the two Q and S waves are 

determined by the onset and the offset of the 

maximum module of the R wave. To be able to decet 

the T wave, it is essential to delete the high amplitude 

QRS complex. The P wave is detected by eliminating 

the T wave and the QRS complex (fig.4). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2 Wavelet decomposition on three scales 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3 Detection of the QRS complex 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4 Wave suppression 

4.3.2 Assessment 

 

To assess the obtained results of the detection method, two 

parameters are used: the sensitivity Se and the positive 

predictivity P+ which are determined as follows: 

 

 

where TP is the number of beats correctly detected, FN 

represents the number of wrong detections and FP is the 

number of undetected beats. The following table presents 

the detailed results for each wave: 

/ ( ) (15)Se TP FN TP 

/ ( ) (16)P TP FP TP  
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Table 1: Detection results of the ECG waves 

 

4.4 ECG signal analysis by LPCA 

4.4.1 Data matrix 

 

Once the ECG waves are detected (previous part), the 

matrix of data or measurements is determined. This matrix 

is composed of 500 measurements of the following 

variables: the amplitudes of the waves P, Q, R, S and T, 

and the intervals PQ, QS, ST and RR which are calculated 

starting from the locations of the detected waves. The 

choice of these variables is due to the bringing-in of 

information which is about the state of the ECG and the 

cardiovascular system afterwards. The variables introduced 

in this algorithm are presented as indicated on figure 5: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5 Progress of ECG parameters 

 

It is vital to centre and reduce these variables before 

applying the PCA for detecting and locating the defects 

(fig.6). 

 

 

 

 

 

Fig. 6 Variables of reduced and centred data 

 

4.4.2 Defect detection 

 

Figure 7 and 8 describe the detection of the defects by the 

PCA by introducing respectively the statistics T² an SPE. 

According to these figures, we notice that there is a big 

contradiction at the level results. In fact, the T² Hotteling 

method detects many defects on the totality of the signal 

while the SPE statistic does not show any defects. 

Comparing these results at the real state of data (normal 

ECG) shows us that the SPE method is the most reliable 

method that is why we are going to use only this method 

for the location to get good results. 

 

 

 

 

 

 

 

 

 

Fig. 7 Detecting defects by T² 
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Fig. 8 Detecting defects by SPE 

After that, we generate defects on one of the variables by 

increasing a dozen of measurements using the same 

amplitude. The SPE statistic allows us to detect the excited 

defect as shown in the following figure. 

 
 

 

Fig. 9 Detecting a defect generated on a variable by SPE 

4.4.3 Defect location 

 

This step of the PCA enables us to locate the defect 

detected previously by calculating the contribution. This 

defect is generated in view of the fact that there exists no 

defect on the original signal according to the SPE statistic. 

Figure 10 shows that the defect is at the level of the second 

variable, which is real because the defect generation is on 

the same variable. Otherwise, according to figure 10, we 

notice that  the contributions has given a real location of 

defect; but the contributions of other variables are too 

close to the contribution of the variable in defect, which 

proves that this location method is  limited. 

 

 

 

 

 

 

Fig. 10 Locating the defect generated by SPE 

5. Conclusion 

In this paper, an analysis of the ECG signal is proposed. 

This analysis consists of two principal steps: the 

segmentation and the supervision of the ECG signal. In the 

segmentation algorithm, we have used the multi-scale 

analysis of the continuous wavelet transform. This analysis 

is set up at three resolution levels. To detect the weak 

amplitude waves P and T, we need to delete the QRS 

complex and then the P wave. This method is evaluated by 

two parameters, Se and P+, which are in our case in the 

order of 99.9%. In fact, the segmentation of the ECG 

allows us to prepare the data matrix for applying the PCA 

to supervise this signal. Knowing that the used ECG is that 

of a normal subject, the defect detection by the PCA has 

shown that the SPE statistic is the most reliable at this level. 

To assess our method in a better way, we have stimulated a 

defect at the level of the RA variable, which is well-located 

by calculating the SPE contribution. In other words, this 

method is due to the fact that the variables are very close 

and that other methods are considered to better locate the 

defect as the reconstruction principle. 
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