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Abstract

This paper proposes a theoretical foundation of what could be an
information flow in logic programming. Several information
flow definitions (based on success/failure, substitution answers,
bisimulation between goals) are stated and compared. Decision
procedures are given for each definition and complexity is
studied for specific classes of logic programs.
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1. Introduction

Data security is the science and study of methods of
protecting data in computer and communication systems
from unauthorized disclosure and modification. One of the
aspects of data security is the control of information flow
in the system. In some sense, an information flow should
describe controls that regulate the dissemination of
information. These controls are needed to prevent
programs from leaking confidential data, or from
disseminating classified data to users with lower security
clearances.

The theory of information flow in security systems is
well defined for imperative programming. Different
models of information flow were proposed, namely, the
Bell-LaPadula Model [2], nonlattice and nontransitive
models [10, 4] of information flow, and nondeducibility
and noninterference [11]. Each model has rules about the
conditions under which information can move throughout
the system. For example, in the Bell-LaPadula Model
which describes a lattice-based information flow policy,
information can flow from an object in security level A to
a subject in security level B if and only if B dominates A.
Both compile-time mechanisms [6] and runtime
mechanisms [9] supporting the checking of information
flows were also proposed.

Intuitively, information flows from an object x to an
object y if the application of a sequence of commands
causes the information initially in x to affect the
information in y.

For example, the sequence tmp:=x; y:=tmp; has
information flowing from x to y because the (unknown)
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value of x at the beginning of the sequence is revealed
when the value of y is determined at the end of the
sequence.

Several studies [5] addressed information flow in
security systems for imperative programming, but none
were concerned to bring answers of what could be an
information flow in security systems for logic
programming. In fact, logic programming is a well-known
declarative method of knowledge representation and
programming based on the idea that the language of first-
order logic is well-suited for both representing data and
describing desired outputs. Logic programming was
developed in the early 1970s based on work in automated
theorem proving, in particular, on Robinson's resolution
principle.

In this paper, we propose three definitions of
information flows in logic programs. These definitions
correspond to what can be observed by the user when a
query «G(x,y) is run on a logic program P.

Firstly, we consider that the user only sees whether
her queries succeed or fail. In this respect, we say
information flows from x to y in G when there exists
constants a, b such that «G(a,y) succeeds whereas
<«G(b,y) fails. Secondly, we assume that the user has also
access to the sets of substitution answers computed by the
interpreter with respect to her queries. As a result, in this
case, there is a flow of information from x to y in G if there
are constants a, b such that the substitution answers of
«G(ay) and «G(b,y) are different. Thirdly, we suppose
that the user, in addition to the substitution answers, also
observes the SLD-refutation trees produced by the
interpreter. If the SLD-trees of the queries «G(a,y) and
«G(b,y) can be distinguished in one way or another by the
user, then we will say that information flows from x to y in
G. Of course, it remains to properly define what
"distinguished" means in our setting. Following a
traditional view in program semantics, we will base
distinguishability of SLD-refutation trees on the notion of
bisimilarity.

In section 2 of this paper, we will present some basic
notions about logic programming, syntax and semantics.
In section 3, several definitions of information flow in
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logic programming are proposed relatively for a logic
program P and a goal «G(x,y) of arity 2, (which stipulates
the existence of a flow from the variable x to the variable y
in the goal «G(x,y)). The implications between these
definitions are then studied. Decision procedures are then
given in section 4 for each of the previous definitions and
computational issues studied for some types of logic
programs.

2. Syntax and semantics

In this section, we introduce basic concepts of logic
programming. See [14, 1] for more details. In the
remainder of this article, we will use p, q, ... for predicate
symbols, x, y, z, ... for variables, f, g, h, ... for function
symbols, and a, b, c, ... for constants. The language L
considered here is essentially that of first order predicate
logic. It has countable sets of variables, function symbols
and predicate symbols, these sets being mutually disjoint.
Each function and predicate symbol is associated with a
unique natural number called its arity, a (function or
predicate) symbol whose arity is n is said to be an n-ary
symbol. A 0O-ary function symbol is referred to as a
constant. A term is a variable, a constant, or a compound
term f(ty,... ,t,) where f is an n-ary function symbol and the
tjare terms, 1<i<n. A term is ground if no variable occurs
in it. The Herbrand universe of L, denoted U, is the set of
all ground terms that can be formed with the functions and
constants in L. An atom is of the form p(ty,... ,t,), where p
is an n-ary predicate symbol and the t; are terms, 1 <i <n.
An atom is ground if all t; are ground. The Herbrand base
of a language L, denoted B, is the set of all ground atoms
that can be formed with predicates from L and terms from
U,. A clause is an expression of the form A«By,...,B,
where A, By, ..., B, are atoms. A is called the head of the
clause and Bs,...,B, is called its body. A goal is an
expression of the form «By,...,B,. A clause r of the form
A « (i.e., whose body is empty) is called a fact, and if A is
a ground atom, then r is called a ground fact. The empty
goal is denoted [1. A predicate definition is assumed to
consist of a finite set (possibly ordered) of clauses defining
the same predicate. A logic program consists of a finite set
of predicate definitions. With each logic program P, we
associate the language L(P) that consists of the predicates,
functions, and constants occurring in P. If no constant
occurs in P, we add some constant to L(P) to have a
nonempty domain. A substitution is an idempotent
mapping from a finite set of variables to terms. The
identity substitution will be denoted & A substitution oy is
said to be more general than a substitution o if there is a
substitution @ such that o, =0oy. Two terms t; and t, are
said to be unifiable if there exists a substitution o such that
o (t1) = o (t2), in this case o is said to be a unifier for the
terms. If two terms t; and t, have a unifier, then they have
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a most general unifier mgu(ty,t,) that is unique up to
variable renaming.

The operational behavior of logic programs can be
described by means of SLD-derivations. An SLD-
derivation for a goal G=«A,,....,A, with respect to a
program P is a sequence of goals Gy,...,G;,Gjsy,... , Such
that G[J:G, and if G; = By,...,.Bn, then Giz1= By,...,0Bi1
,B’1,..., B, Bisq,...,By, such that 1<i<m, B«B’y,...,.B’
is a variant of a clause in P that has no variable in common
with any of the goals Gy,...,Gj, and @ = mgu(B;,B). The
goal Gj.; is said to be obtained from G; by means of
resolution step, and B; is said to be the resolved atom. Let
Go,...,Gy, be an SLD-derivation for a goal G with respect to
a program P, and let & be the unifier obtained when
resolving the goal G;; to obtain G;, 1< i< n. If this
derivation is finite and maximal, i.e., one in which it is not
possible to resolve the goal G, with any of the clauses in P,
then it corresponds to a terminating computation for G: in
this case, if G, is the empty goal then we say that P?G
succeeds and the computation is said to succeed with
answer substitution 6, where 4 is the substitution obtained
by restricting the substitution 6,...0, to the variables
occurring in G. if G, is not the empty goal, then the
computation is said to fail. We say that P?G fails if all
computations from G in P fail. If the derivation is infinite,
the computation does not terminate. Given a program P
and a goal G, let &P?G) be the set of all answer
substitutions of G in P.

In this paper, we will be interested in

e Datalog programs, i.e. logic programs without
function symbols and where each variable
appearing in the head of the clause, must also
appear in its body.

e Binary programs, i.e. logic programs such that,
the body of every program statement is composed
of at most one atom.

e Hierarchical programs, i.e. logic program having
a level mapping such that, in every program
statement A(t;,... ,t))«B, the level of every
predicate symbol in B is less than the level of A.

e Restricted programs, i.e. logic programs such that,
in every program statement Ag¢«Ay,...,Ay, only A
can depend on A,,.

e Nonvariable introducing programs (in short nvi)
i.e. logic programs such that, in every program
statement A¢«By,...,By, if a variable appears in
Bi,...,Bn, it must also appears in A.

e Single variable occurrence (in short svo) i.e. logic
programs such that, in the body of every program
statement, no variable occurs more than once.

Note that the level mapping of a program is a
mapping from its set of predicate symbols to the non-
negative integers. We refer to the value of the predicate
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symbol under this mapping as the level of that predicate
symbol.

3. Information flow

As the theory of information flow is well studied for
imperative programming, it is tempting to see what could
be an information flow in logic programming, especially
given the fact that there are no notions of assignment, or
variable of a program. In fact, variables in logic programs
behave differently from variables in conventional
programming languages. They stand for an unspecified but
single entity rather than for a store location in memory.

The following three definitions for information flow
in logic programming are based on the following principle.
The information flow that occurs when the user asks a goal
to logic programs depends mainly on what parts of the
computation the user sees. In the first definition, the user
only sees whether goals succeed or fail. In the second
definition, the user has access to the set of substitution
answers computed by the program. In the third definition,
the user obtains the shape of the computation trees
produced by the program.

It is now time to present our three definitions of
information flows in logic programs.

3.1 Successes and failures

Let P be a logic program, and G(x,y) be a two
variables goal. We shall say that there is a flow from x to y
in G(x,y) with respect to successes and failures in P (in
symbols xigy) iff there exists a, b e Uyp) such that

P?G(a,y) succeeds and P?G(b,y) fails.

This intuitively means that when the user only sees
the outputs of computations in terms of successes and
failures, there exists two different a, b e U ) such that
this user can distinguish (without seeing what concerns a,
b) between the output for P?G(a,y) and the output for
P?G(b,y).

Example 1. Let P, be the following program:
p(ab)«
and let G,(x,y) be the following goal:

“pxy)
Since P;?G,(a,y) succeeds and P,?G;(b,y) fails, then

3.2 Substitution answers

Let P be a logic program, and G(x,y) be a two
variables goal. We shall say that there is a flow from x to y
in G(x,y) with respect to substitution answers in P (in
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symbols xﬁ»gy) iff there exists a, b e U such that

AP?G(ay)) = AP?G(b.y)).

Roughly speaking, in this definition, the user only
sees the outputs of computations in terms of substitution
answers. As a result, there is a flow if this user can
distinguish (without seeing what is about a, b) the output
of P?G(a,y) and the output of P?G(b,y).

Example 2. Let P, be the following program:

pay) «

and let G,(x,y) be the following goal:

“P(x.y)

Since O(P,?G,(a,y)) = {&} and O(P,?G,(b,y)) = &, then
SA P.

X — Gzy.

3.3 Bisimulation

Our third definition of flow is based on the notion of
bisimulation between goals. Let P be a logic program and
Z be a binary relation between goals. We shall say that Z is
a P-bisimulation iff for all goals G, H, if GZH then:
e for all goals G’e succp(G), there exists H' e
succp(H), such that G’ZH’.
e for all goals H’ e succp(H), there exists G’ e
succp(G), such that G’ZH’.
e G=/iffH=/]
Above, succp(G) denotes the set of all goals obtained
from a goal G by means of a resolution step in the program
P.

Lemma 1 The relation identity Id between goals is a P-
bisimulation.

Lemma 2 If Z is a P-bisimulation, then Z* is also a P-
bisimulation.

Lemma 3 If Z,, Z, are two P-bisimulations, then the
composition Z,Z, defined by 2,72, = {(G,H)/A, GZ;l and
1Z,H} is also a P- bisimulation.

Proof. Suppose that (G,H) e Z,Z,.

Then there exists | such that GZ;l and 1Z,H. Let G, be a
successor of G.

Since GZ;l, then there exists I’ successor of | such that
G’zZyl’.

Since 1Z,H, then, there exists H” successor of H such that
I’Z,H’. Thus, (G’ ,H’) € Z,Z,.

With a similar reasoning, if H’ is a successor of H, we can
find a G’ successor of G such that (G’,H’) € Z,Z,.0)

Lemma 4 Let (Z;); be a family of P-bisimulations, then
Uier Z; is also a P-bisimulation .
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By lemma 4, there exists a maximal P-bisimulation,
denoted Zpay.

Example 3. Let P be the following program:

p(ay)«a(y)
p(by) «(y)
p(by) «s(y)
and let G, H be respectively the following goals «p(a,y)

and «p(b.y)

Let Z be the binary relation between goals such that:
«pay) Z «p(b.y)

«q(y) Z «(y)

«q(y) Z «s(y)
Obviously, Z is a P-bisimulation. Since G Z H, then G Z5

H.

Lemma 5 Z, is an equivalence relation.
Proof. By lemmas 1, 2 and 3.[]

Let P be a logic program, and G(x,y) be a two
variables goal. We shall say that there is a flow from x to y
in G(x,y) with respect to the bisimulation in P (in symbols
xi’;y ) iff there exists a, b e Ugp such that
not[G(a,y)ZmaxG(b.Y)]-

In this definition, there is a flow if the user, by only
seeing the outputs of computations in terms of
bisimulation between goals, can distinguish (without
looking at a, b) the output of P?G(a,y) and the output of
P?G(b,y).

Example 4. Let P; be the following program:

p(x,a) ¢

p(a,b) «q(a)

and let Gs(x,y) be the goal: «p(x,y).

Let us prove not[ «p(a,y)Zmax<P(b,Y)]-

Suppose that «p(a,y)Zmax<P(0.Y).

Since «q(a)esuccpz(«p(ay)), then there should be
Gs esuccps(«(b,y)) such that «q(a)ZmaxGs.

The problem is that the only goal in succes («p(b,y)) is
the empty goal, which cannot be bisimilar to «q(a).
Hence, not[ «p(a,y)Zmax«p(0.Y)]-

Therefore x - gzy.

3.4 Links between the definitions of information flow

The existence of a flow with respect to substitution
answers does not entail the existence of a flow with
respect to successes and failures. To see this, it suffices to
consider the following example.

Example 5. Let P be the following program:
p(a,b)«
p(Z,c)«
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and let G(xy) be the goal: <«p(x,y). Since
eP?G(ay))={y/b,ylc} and EP?G(b)y))={y/c}, then
xﬁ»gy. Since P?G(a,y) and P?G(b,y) both succeed, then

SF . -
x P gy. However, one can establish the following result.

Lemma 6 Let P be a logic program and G(x,y) be a two

. S SA
variables goal. If x - gy then x -5 gy.

Proof. Suppose that x igy, then there exists a, b € U

such that P?G(a,y) succeeds and P?G(b,y) fails. Therefore,
OP?G(a,y))=o, and (P?G(b,y))=<. Consequently,

SA
x—)Gyﬂ

The existence of a flow with respect to bisimulation does
not entail the existence of a flow with respect to successes
and failures. The next example explains why.

Example 6. Let P; and Gz be the program and goal

considered in example 4. We know that xﬂ»?y.
3

Nevertheless, since all the goals of the form Gs(a,y), with

SF
aeUp) succeed, thus x +» g3y.
3

Nevertheless, it is worth noting at this point the following.

Lemma 7 Let P be a logic program and G(x,y) be a two
variables goal. If x igy then x i’;y.

Proof. Suppose that x igy. Thus, there exists a, b € Uy

such that P?G(a,y) succeeds and P?G(b,y) fails. Suppose
that G(a,y)ZnaxG(b,y). Since P?G(a,y) succeeds, then there
exists an SLD-refutation Gq,...,G, of G(a,y) in P. That is to
say, Go=G(a,y), G,=0 and G; is a successor of G;.; in P for
i=1,...,n. Since G(a,y)ZmxG(b,y) in P, thus P?G(b,y)
succeeds: a contradiction. Thus, not[G(a,y)ZmnaxG(b,y)] and

BI
Xy

3.5 Information flow definitions over goals with arity
>2

We now generalize the previous definitions by considering
goals with arity higher than two. Firstly, we consider
information flows between two variables. Secondly, we
consider information flows between two sets of variables.
The generalization of the previous three definitions to
goals with arity higher than two and by only considering
information flows between two variables leads us to the
following three definitions:

Definition 1 For a logic program P and a goal
G(X1yeee X oo Xy 1 Xp) OF arity p

2 iff

x G (X1, oo Xpey v s Xy woe ,xp)yl

Fa,a’ eUyp), a=a’
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FC1yeer Ck1,Cht1s--+ ,Cm-1,.Cme - ,Cp € Uy py SUCh that
P?G(Cy,... ,Ck-1,8,Ck1,-++ ,Cm-1,Xm:Cms+1,-.. ,Cp) SUCCEES and
P?G(Cy,... ,Ck-1,8,Cks1s-++ ,Cm-1,Xm,Cm1,--- ,Cp) Tails.

Definition 2 For a logic program P and a goal
G(X1,.o o Xireoo Xmy-ee ,Xp) OF @rity p

SA P iff
x _)G(xl, ey Xk voe s Xy oo ,xp)yI
Fa,a’ e Uyp), a=a’
FC1yeee Ck1,Cht1s--+ ,Cm-1,.Cme - ,Cp € Uy py SUCh that
qP?G(Cla"' 10118, Ck+15 4+ 1015 Xmy Cm 1y -+ !Cp)]¢
qP?G(Cla"' 1Ck-l|a’yck+l|"' 1Cm-1:Xm Cm+1s -+ !Cp)]'

Definition 3 For a logic program P and a goal
G(X1,..  Xireo. Xmy-.. ,Xp) OF arity p
BI P

x _)G(xl, ey Xy wen s Xy e ,xp)y iff

Fa,a’ eUyp)y, a=za’

FC1yeee ,Ce1,Chtyve sCm-1,Cmrty -+ ,Cp € Upp) SUC that
not[P?G(Cy, ... ,Ck-1,8,Ck+1,-++ ,Cm-1.Xm:Cm+1s-- Cp) Zmax
P?G(Cy,... ,Ck-1,8",Ck+1s--+ ,Cm-1.Xm,Cm1, -+ ,Cp)]-

The idea behind the previous definitions is that in
order to see if there is a flow from x, to x,,, one can try to
instantiate the p-2 other variables to some constants and to
find two constants a, a’ for which the instantiations of the
variable x, by a or a’ leads to a success and failure for the
first definition, or different substitutions answers for the
second definition or two different shapes of resolution
trees for the third definition.

By considering x; = X, X, =y and p = 2, we find again
the same information flow definitions for goals of arity
two. In addition, with this generalization, the results of
lemma 6 and 7 are also preserved.

Now we will generalize the previous notions to cover
information flows from a set of variables to a set of
variables. For this, we will proceed in 2 steps (Due to
space limitation, we will consider only in this subsection
the information flow based on success and failure).

1. Information flow from a set of variables to a single
variable

For a program P and a goal G(X4,... ,Xk,X1,Xm,--- ,Xn), We Say
that there is a flow from {xi;,... ,xJ to x iff one can
instantiate the variables {Xu,... ,x,} by some constants and
instantiate the variables {xi... x} in two different

manners and thus lead to a success and failure.
SF P

) TGy e Xp XL Xy e X)) iff

FCmy... ,Cn € Upy T as,... ,a,7a’y,... @k € Uy such that
(ay,... ,a) #(@’y,... ,a’y) and

P?G(ay,...,akX),Cm,--.,Cn) SUCCEES

and

P?G(a’y,...,3"kX,Cm,..- ,Cn) fails.
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2. Generalization of the previous definition of
information flow from a set of variables to a set of
variables

For a program P and a goal G(Xy,... ,Xk:Xjs--- Xm-1,Xm,-++ +Xn)
we say that there is a flow from {xg,... X} to {x,... Xm.1}
iff there is a flow from {xi,... ,xJ} to every variable in

Xi... X}
SF P .
{xqg, o, 2} — G(xy, ...,xn){xl’ ey Xy} IFE

o SF P
vji=1,...m—1, {xlr ---:xk} — G(xy, ___,xn)xj

A similar remark applies here too, by considering k = 1,
and I=m-1, we find again the same definitions of
information flows between single variables.

3.6 Non-transitivity of information flow in logic
programs

Most of the policies of information flow in imperative
programming are represented by a lattice structure, which
means that if information flows from a variable x to a
variable y and from y to z, then there is a flow from x to z.
In such contexts, the information flow relation between
program variables is transitive. It is interesting to
investigate this property on the information flow of logic
programs according to our definitions.

Several counter examples prove that the information
flow relation according to our definitions is not transitive.

Non transitivity of the information flow for the first
definition based on success and failure

For the following program P,:

p(a,a,a)«

p(x,a,b) «

and the goal G(x,y,z) : «p(x,y,z), we have:

x - G (xP “y 2 (P4?G(a,y,a) succeeds, P4?G(b,y,a) fails),

¥, B, (P2G(aaz) succeeds, P,2G(a,b,z) fails),

Y6 (xy,2)
SF P,
but we have not x — G (x"*y'z)z (both P,?G(a,a,z) and

P,?G(b,a,z) succeed).

Non transitivity of the information flow for the second
definition based on substitutions answers

For the following program:

p(x,y.z)«=a(x.y), r(y,z)

q(x.y) «

g(a,c) «

r(y,c) «

r(c,d) «

and the goal G(x,y,z) : «p(x,y,z), we have:

x B gy (OPG@Y.) =fy=c.d, OP?G(by.c)

={&}),
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SA

y—>G(:y’Z)z (&(P?G(a,c,2))= {z/lc,z/d}, OA(P?G(a,b,2))
={zlc}),

but we have notxia( P
X,,2)
P?G(b,c,2)) ={z/c,z/d}).

2 (OP?G(a,c,2)={z/c,z/d},

Non transitivity of the information flow for the third
definition based on bisimulation between goals
For the same previous program P, and the goal G(x,y,z) :
«Pp(x,y,2), we have:
31 P,
TGy 2)
tree(PﬂG(b y,a)),
BI P,

(not tree(P4?G(a,y,a)) Zmax

Y =6, ‘; 27 (not  tree(P,2G(a,a,2))  Zmax

tree(P,?G(a,bh,2))),
but we have not x— . (:‘;'Z)z (tree(P,?G(a,2,2)) Zmax
tree(P4?G(b,a,2))).

This non-transitivity of our information flow relation
can be explained by the particular role of variables in logic
programming. The truth is that in imperative programs, the
basic instruction is the assignment operation, whereas in
logic programs, the basic instructions are the resolution
rule and the unification.

4. Decidability / Complexity

We now study the computational complexity of the

following decision problems:
Input: A logic program P, a two variables goal G(x, y)
sk {

SF p
Output: Determine whether x — &

Input: A logic program P, a two variables goal G(x, y)

T SA p
4 Output: Determine whether x — &

Input: A logic program P, a two variables goal G(x, y)
Ty {

BI p
Output: Determine whether x — &

4.1 Undecidability

In the general setting, our decision problems are
undecidable.

Proposition 1. The three decision problems above are
undecidable.

Proof. (msz) We will reduce the following undecidable
decision problem 7, [7] to 75k :

Input: A logic program P, a ground goal g(a)
™ { Output: P? q(a) succeeds

Let (P,q(a)) be an instance of 7 and let (P’,G(x,y)) be the
instance of zr defined by: P’ = P({G(a,y) «q(a)}, where
G is a new predicate symbol of arity 2 and a is a new
constant. We need to show that, P?q(a) succeeds iff

SF p!
.
x ¢
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(<) Suppose that P?q(a) succeeds. Thus P’?G(a,y)
succeeds and P’?G(b,y) fails, consequently x ﬁ»‘:y.

(=) Suppose thatxi’;'y, then there exists a’, b’ € U

such that P’?G(a’,y) succeeds and P’?G(b’,y) fails. Thus,
a’ =aand b’=a. Thus, P?q(a) succeeds.

(75sa) A similar proof applies here.

(7s1) We will reduce the following undecidable decision
problem [8] to 7

Input: A binary logic program P, a ground goal q(a)
2 {Output: The SLD — tree of P? q(a) contains a failure branch
Let (P,q(a)) be an instance of =, and let (P*,G(x,y)) be the
instance of 7, defined by:
PP=P{
G(ay) «q(a);
G(b,y)«G(b,y) for all b in L(P) such that a =b,
G(f(X1,-.. Xn)Y) « G(f(Xy,... ,Xn),y) for all fin L(P)}
Remark that for all 8’ e U, the computation tree of
P’?G(a’,y) consists of a unique infinite branch. We need to
show that the SLD-tree of P?q(a) contains a failure branch
iff x =Py,
(=) Suppose that the SLD-tree of P?q(a) contains a
failure branch. Thus the SLD-tree of P’?G(ay) will
eventually contains this failure branch while the SLD-tree
of P’?G(b,y) will have infinite branche(s). Consequently

(<) Suppose thatxﬂ’;'y, then there exists a’,b’ e Uy

such that not[P’?G(a’,y)ZmaxP’?G(b’,y)]. Hence, either a’
or b’ is equal to a. Thus (in the case of a’ = a) the SLD-
tree of P?q(a) contains a failure branch.[]

4.2 Decidability

If one restricts the language to Datalog programs and goals
then determining existence of information flows becomes
decidable.

Proposition 2. e is EXPTIME-complete for Datalog
programs.

Proof. (Membership) The following algorithm decides the
existence of the information flow in Datalog programs.
Require: A Datalog program P, a goal G(xy), finite
Herbrand Universe U p) ={ay,... ,an}

Ensure: xia()’: » for the Datalog program P and the

goal g
: answer = false
i=0
: while 1 < n and not answer do
i ;3 =i
and not answer do

=i +
while j n
j+1

J

U WNE
AP
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7: if (P?G(ai,y) succeeds and
P?G(aj ,y) fails)
or (P?G(ai,y) fTails and
P?G(aj ,Yy) succeeds) then

8: answer = true

9: end if

10: end while

11: end while

12: return answer

This algorithm is deterministic and using the fact that
Datalog is program complete for EXPTIME [16, 12], it
follows that it can be executed in EXPTIME.

(Hardness) In order to prove EXPTIME-hardness, we
consider the following decision problem known to be

EXPTIME-hard [16]:
Input: A Datalog program P, a ground atom A

3 {Output: P?A (Ais alogical consequence of P)
Let (P,A) an instance of z3 and let (P’,g(x,y)) be the
instance of 7z defined by P’ = Pc{g(a,y) <A}, where g
is a new predicate symbol. Thus P?A iff
P
(=) Suppose that A is a logical consequence of P, thus
P’?g(a,y) succeeds and P’?g(b,y) fails. Consequently

SF p’
—' .

g
(<) Suppose thatxi};y. Then there exists a, b € U

such that P’?g(a’,y) succeeds and P’?g(b’,y) fails. Hence,
it follows that a’ = a and b’ #a. Thus, P?A.L]

Proposition 3. s, is is EXPTIME-complete for Datalog
programs.
Proof. A proof similar to the previous one applies here.[]

Concerning e, determining existence of flows is even in
A,P if one considers binary hierarchical Datalog programs.

Proposition 4. mr is in 4,P for binary hierarchical
Datalog programs.
Proof. Let us consider the following deterministic
algorithm with oracle:
Procedure SF(P,G(x,y))
Require: A binary hierarchical Datalog program P, a goal
Gixy).
Ensure:x_>g y
1: For all a in U ey do
2z For all b in U ey do
: if (P?G(a,y) e SUCCESSES and
P?G(b,y) € FAILURES) then

4: Accept
. else

: Reject
7: end if

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

The oracle SUCCESSES consists in the set of all pairs
(P,G) such that G succeeds in P. Restricting P to binary
hierarchical programs, one can show that SUCCESSES
belongs to NP. The oracle FAILURES consists in the set
of all pairs (P,G) such that G fails in P. Restricting P to
binary hierarchical programs, one can show that
FAILURES belongs to co-NP. Hence 7g is in A,P.[]

At the time of writing, we do not know if 7z, is in AP too
for binary hierarchical programs.

Now, let us address the complexity of deciding the
existence of flows with respect to our third definition.

Proposition 5. 7 is in EXPTIME for hierarchical binary
Datalog programs.

Proof. Since EXPTIME = APSPACE, then it suffices to
demonstrate that g is in APSPACE for binary
hierarchical Datalog programs. In this respect, we consider
the following alternating algorithm:

Procedure bisim(P,G,G,)

Require: A hierarchical Datalog program P, two goals G;
and G..

Ensure: Deciding whether G;ZxG:

1: case (succ(P,G;),succ(P,Gy))

2: - (true,true):

3: (V) choose 1,je{1,2}
such that i#j

4: (V) choose a successor G7;
of G; in P

5: (3) choose a successor G7;
of Gj in P

6: (.) call bisim(P,G*,,G”;)

7: - (true,false): reject

8: - (false,true): reject

9: - (false,false):

10: if (G, = [0 iff G, = [) then

11: accept

12: else

13: reject

14: end if

15: endcase

The subprocedure succ(.,.) produces, given an hierarchical
Datalog program P and a goal G a Boolean value. More
precisely, succ(P,G) is true iff there exists a goal G’ such
that G’ is derived from G and P. Obviously, succ(.,.) can
be implemented in deterministic linear time. Concerning
the procedure bisim, seeing that P is hierarchical, it accepts
its inputs P, Gy, G, iff G1Z,G2. Moreover, seeing that P
is binary, bisim can be implemented in polynomial space.
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We mention that the different algorithms previously C8:r'(y) «
presented for goals of arity two can be generalized easily C9:s’(y) «

to goals with arity higher than two. and let G be the goal «p(x.y).

It is easy to verify that x i‘z?y. To see this, we sketch, by
5. Conclusion omitting the different substitutions, the SLD-refutation

trees corresponding to the two goals «p(a,y) and «p(a’,y).
In this paper, we have proposed three definitions of

information flow in logic programs. As proved in section — pla,y)

4.1, determining whether there exists an information flow |

is undecidable in the general setting. Hence, a natural \ ,

question was to restrict the language of logic programming +—qly) —pla’,y)

as done in section 4.2. Table 1 contains the results we have / N\ /N

obtained so far. Much remains to be done. —r(y) <+ s(y) —7r'(y) < s'(y)
Firstly, in the setting of Datalog programs, the main | | | |
difficulty concerning s comes from loops or infinite O O O O
branches in SLD-refutation trees. Therefore, in order to

determine, given a Datalog program P and two Datalog SLD-tree(Fy? « pla,y))|SLD-tree(F? « p(a’,y))
goals G; and G,, whether G;Z,,5G,, one can think about

using loop checking techniques and considering either Fig. 1 SLD refutation trees to the goals Po?«p(a,y) and Py?«p(a’.y).

restricted programs, or nvi programs or svo programs. See
Bol et al [3] for details.

Obviously, as not ay)Z a’ y)l, x— 5oy,
Table 1: Margin Complexity results y [P@y)Znacep(@y)] g

By unfolding C1, the program P, is obtained from P, by
General Datalog Binary hierarchical replacing C1 with the following clauses:
setting programs Datalog programs C10: p(ay) «r(y)
i Cll:p(ay) «s(y)
nse | Undecidable E(?éFr;rplll\equ In A,P
- EXPTIME- - In the new transformed program P;, the two SLD-
msa | Undecidable complete in EXPTIME refutation trees of the goals «p(a,y) and «p(a’y) are
o | Undecidable ) i EXPTIME bisimilar as shown in the next figure.
« pla,y) —pla’,y)
Secondly, considering the unfold/fold transformations 7/ \ / AN
introduced by Tamaki and Sato [15] within the context of —r(y) <+ s(y) —r'(y) «s'(y)
logic programs optimization, one can ask whether these | | |
transformations introduce or eliminate information flows. O 0 0 0
Obviously, since folding or unfolding clauses in logic SLD-tree(P,? < p(a,y))|SLD-tree(P1? < p(a’, y))
programs change neither its successes, nor its failures [15],
nor its substitution answers [13], the information flows Fig. 2 SLD refutation trees to the goals P,? «p(a,y) and P1?«p(a’.y).
based either on successes and failures or on substitution
answers are preserved after applying the transformations Thus x % ’ZJy,

of Tamaki and Sato. The same cannot be said for
information flows based on bisimulation. For example, let
Py be the logic program containing the following clauses:

Cl:p(ay)«a(y)
C2:q(y) «(y)

A general question concerns the definition of
transformations of logic programs that never introduce or
eliminate information flows.

C3:q(y) «s(y) Acknowledgments

Ca:r(y) «
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C6:p(@’y) «r’(y)
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