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Abstract 

This paper proposes a theoretical foundation of what could be an 
information flow in logic programming. Several information 
flow definitions (based on success/failure, substitution answers, 
bisimulation between goals) are stated and compared. Decision 
procedures are given for each definition and complexity is 
studied for specific classes of logic programs. 
Keywords: Logic programming, Information flow, 
Computational complexity. 

1. Introduction 

Data security is the science and study of methods of 
protecting data in computer and communication systems 
from unauthorized disclosure and modification. One of the 
aspects of data security is the control of information flow 
in the system. In some sense, an information flow should 
describe controls that regulate the dissemination of 
information. These controls are needed to prevent 
programs from leaking confidential data, or from 
disseminating classified data to users with lower security 
clearances.  

The theory of information flow in security systems is 
well defined for imperative programming. Different 
models of information flow were proposed, namely, the 
Bell-LaPadula Model [2], nonlattice and nontransitive 
models [10, 4] of information flow, and nondeducibility 
and noninterference [11]. Each model has rules about the 
conditions under which information can move throughout 
the system. For example, in the Bell-LaPadula Model 
which describes a lattice-based information flow policy, 
information can flow from an object in security level A to 
a subject in security level B if and only if B dominates A. 
Both compile-time mechanisms [6] and runtime 
mechanisms [9] supporting the checking of information 
flows were also proposed.  

 
Intuitively, information flows from an object x to an 

object y if the application of a sequence of commands 
causes the information initially in x to affect the 
information in y. 

 
For example, the sequence tmp:=x; y:=tmp; has 

information flowing from x to y because the (unknown) 

value of x at the beginning of the sequence is revealed 
when the value of y is determined at the end of the 
sequence. 

Several studies [5] addressed information flow in 
security systems for imperative programming, but none 
were concerned to bring answers of what could be an 
information flow in security systems for logic 
programming. In fact, logic programming is a well-known 
declarative method of knowledge representation and 
programming based on the idea that the language of first-
order logic is well-suited for both representing data and 
describing desired outputs. Logic programming was 
developed in the early 1970s based on work in automated 
theorem proving, in particular, on Robinson's resolution 
principle. 

 
In this paper, we propose three definitions of 

information flows in logic programs. These definitions 
correspond to what can be observed by the user when a 
query G(x,y) is run on a logic program P. 

 
Firstly, we consider that the user only sees whether 

her queries succeed or fail. In this respect, we say 
information flows from x to y in G when there exists 
constants a, b such that G(a,y) succeeds whereas 
G(b,y) fails. Secondly, we assume that the user has also 
access to the sets of substitution answers computed by the 
interpreter with respect to her queries. As a result, in this 
case, there is a flow of information from x to y in G if there 
are constants a, b such that the substitution answers of 
G(a,y) and G(b,y) are different. Thirdly, we suppose 
that the user, in addition to the substitution answers, also 
observes the SLD-refutation trees produced by the 
interpreter. If the SLD-trees of the queries G(a,y) and 
G(b,y) can be distinguished in one way or another by the 
user, then we will say that information flows from x to y in 
G. Of course, it remains to properly define what 
"distinguished" means in our setting. Following a 
traditional view in program semantics, we will base 
distinguishability of SLD-refutation trees on the notion of 
bisimilarity. 
In section 2 of this paper, we will present some basic 
notions about logic programming, syntax and semantics. 
In section 3, several definitions of information flow in 
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logic programming are proposed relatively for a logic 
program P and a goal G(x,y) of arity 2, (which stipulates 
the existence of a flow from the variable x to the variable y 
in the goal G(x,y)). The implications between these 
definitions are then studied. Decision procedures are then 
given in section 4 for each of the previous definitions and 
computational issues studied for some types of logic 
programs. 

2. Syntax and semantics 

In this section, we introduce basic concepts of logic 
programming. See [14, 1] for more details. In the 
remainder of this article, we will use p, q, … for predicate 
symbols, x, y, z, … for variables, f, g, h, … for function 
symbols, and a, b, c, … for constants. The language L 
considered here is essentially that of first order predicate 
logic. It has countable sets of variables, function symbols 
and predicate symbols, these sets being mutually disjoint. 
Each function and predicate symbol is associated with a 
unique natural number called its arity, a (function or 
predicate) symbol whose arity is n is said to be an n-ary 
symbol. A 0-ary function symbol is referred to as a 
constant. A term is a variable, a constant, or a compound 
term f(t1,… ,tn) where f is an n-ary function symbol and the 
ti are terms, 1i n. A term is ground if no variable occurs 
in it. The Herbrand universe of L, denoted UL, is the set of 
all ground terms that can be formed with the functions and 
constants in L. An atom is of the form p(t1,… ,tn), where p 
is an n-ary predicate symbol and the ti are terms, 1  i  n. 
An atom is ground if all ti are ground. The Herbrand base 
of a language L, denoted BL, is the set of all ground atoms 
that can be formed with predicates from L and terms from 
UL. A clause is an expression of the form AB1,…,Bn 
where A, B1, …, Bn are atoms. A is called the head of the 
clause and B1,…,Bn is called its body. A goal is an 
expression of the form B1,…,Bn. A clause r of the form 
A  (i.e., whose body is empty) is called a fact, and if A is 
a ground atom, then r is called a ground fact. The empty 
goal is denoted �. A predicate definition is assumed to 
consist of a finite set (possibly ordered) of clauses defining 
the same predicate. A logic program consists of a finite set 
of predicate definitions. With each logic program P, we 
associate the language L(P) that consists of the predicates, 
functions, and constants occurring in P. If no constant 
occurs in P, we add some constant to L(P) to have a 
nonempty domain. A substitution is an idempotent 
mapping from a finite set of variables to terms. The 
identity substitution will be denoted . A substitution 1 is 
said to be more general than a substitution 2 if there is a 
substitution  such that 2 =1. Two terms t1 and t2 are 
said to be unifiable if there exists a substitution  such that 
 (t1) =  (t2), in this case  is said to be a unifier for the 
terms. If two terms t1 and t2 have a unifier, then they have 

a most general unifier mgu(t1,t2) that is unique up to 
variable renaming. 

The operational behavior of logic programs can be 
described by means of SLD-derivations. An SLD-
derivation for a goal G=A1,…,An with respect to a 
program P is a sequence of goals G0,…,Gi,Gi+1,… , such 
that G0=G, and if Gi = B1,…,Bm, then Gi+1 = B1,…,Bi-1 

,B’1,…,B’k,Bi+1,…,Bm such that 1im, BB’1,…,B’k 
is a variant of a clause in P that has no variable in common 
with any of the goals G0,…,Gi, and  = mgu(Bi,B). The 
goal Gi+1 is said to be obtained from Gi by means of 
resolution step, and Bi is said to be the resolved atom. Let 
G0,…,Gn be an SLD-derivation for a goal G with respect to 
a program P, and let i be the unifier obtained when 
resolving the goal Gi-1 to obtain Gi, 1 i n. If this 
derivation is finite and maximal, i.e., one in which it is not 
possible to resolve the goal Gn with any of the clauses in P, 
then it corresponds to a terminating computation for G: in 
this case, if Gn is the empty goal then we say that P?G 
succeeds and the computation is said to succeed with 
answer substitution , where  is the substitution obtained 
by restricting the substitution n…1 to the variables 
occurring in G. if Gn is not the empty goal, then the 
computation is said to fail. We say that P?G fails if all 
computations from G in P fail. If the derivation is infinite, 
the computation does not terminate. Given a program P 
and a goal G, let (P?G) be the set of all answer 
substitutions of G in P. 

In this paper, we will be interested in 
 Datalog programs, i.e. logic programs without 

function symbols and where each variable 
appearing in the head of the clause, must also 
appear in its body. 

 Binary programs, i.e. logic programs such that, 
the body of every program statement is composed 
of at most one atom. 

 Hierarchical programs, i.e. logic program having 
a level mapping such that, in every program 
statement A(t1,… ,tn)B, the level of every 
predicate symbol in B is less than the level of A. 

 Restricted programs, i.e. logic programs such that, 
in every program statement A0A1,…,Ak, only Ak 
can depend on A0. 

 Nonvariable introducing programs (in short nvi) 
i.e. logic programs such that, in every program 
statement AB1,…,Bn, if a variable appears in 
B1,…,Bn, it must also appears in A. 

 Single variable occurrence (in short svo) i.e. logic 
programs such that, in the body of every program 
statement, no variable occurs more than once. 
 

Note that the level mapping of a program is a 
mapping from its set of predicate symbols to the non-
negative integers. We refer to the value of the predicate 
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symbol under this mapping as the level of that predicate 
symbol. 

3. Information flow 

As the theory of information flow is well studied for 
imperative programming, it is tempting to see what could 
be an information flow in logic programming, especially 
given the fact that there are no notions of assignment, or 
variable of a program. In fact, variables in logic programs 
behave differently from variables in conventional 
programming languages. They stand for an unspecified but 
single entity rather than for a store location in memory. 

The following three definitions for information flow 
in logic programming are based on the following principle. 
The information flow that occurs when the user asks a goal 
to logic programs depends mainly on what parts of the 
computation the user sees. In the first definition, the user 
only sees whether goals succeed or fail. In the second 
definition, the user has access to the set of substitution 
answers computed by the program. In the third definition, 
the user obtains the shape of the computation trees 
produced by the program. 

It is now time to present our three definitions of 
information flows in logic programs. 

3.1 Successes and failures 

Let P be a logic program, and G(x,y) be a two 
variables goal. We shall say that there is a flow from x to y 
in G(x,y) with respect to successes and failures in P (in 
symbols ݔ

		ௌி		
ሱۛሮ ܲ

ܩ
ݕ ) iff there exists a, b  UL(P) such that 

P?G(a,y) succeeds and P?G(b,y) fails.  
This intuitively means that when the user only sees 

the outputs of computations in terms of successes and 
failures, there exists two different a, b  UL(P) such that 
this user can distinguish (without seeing what concerns a, 
b) between the output for P?G(a,y) and the output for 
P?G(b,y). 
 
Example 1. Let P1 be the following program:  
p(a,b)  
and let G1(x,y) be the following goal:  
p(x,y) 
Since P1?G1(a,y) succeeds and P1?G1(b,y) fails, then 

ݔ
		ௌி		
ሱۛሮ ଵܲ

ଵܩ
 .ݕ

3.2 Substitution answers 

Let P be a logic program, and G(x,y) be a two 
variables goal. We shall say that there is a flow from x to y 
in G(x,y) with respect to substitution answers in P (in 

symbols ݔ
		ௌ஺		
ሱۛሮ ܲ

ܩ
 iff there exists a, b  UL(P) such that (ݕ

(P?G(a,y))  (P?G(b,y)).  
Roughly speaking, in this definition, the user only 

sees the outputs of computations in terms of substitution 
answers. As a result, there is a flow if this user can 
distinguish (without seeing what is about a, b) the output 
of P?G(a,y) and the output of P?G(b,y). 
 
Example 2. Let P2 be the following program:  
p(a,y)   
and let G2(x,y) be the following goal:  
p(x,y) 
Since (P2?G2(a,y)) = {} and (P2?G2(b,y)) = , then  

ݔ
		ௌ஺		
ሱۛሮ ଶܲ

ଶܩ
 .ݕ

3.3 Bisimulation 

Our third definition of flow is based on the notion of 
bisimulation between goals. Let P be a logic program and 
Z be a binary relation between goals. We shall say that Z is 
a P-bisimulation iff for all goals G, H, if GZH then: 

 for all goals G’ succP(G), there exists H’ 
succP(H), such that G’ZH’. 

 for all goals H’ succP(H), there exists G’ 
succP(G), such that G’ZH’. 

 G = � iff H =�. 
Above, succP(G) denotes the set of all goals obtained 

from a goal G by means of a resolution step in the program 
P. 
 
Lemma 1 The relation identity Id between goals is a P-
bisimulation. 
 
Lemma 2 If Z is a P-bisimulation, then Z-1 is also a P- 
bisimulation. 
 
Lemma 3 If Z1, Z2 are two P-bisimulations, then the 
composition Z1Z2 defined by Z1Z2 = {(G,H)/I, GZ1I and 
IZ2H} is also a P- bisimulation. 

 
Proof. Suppose that (G,H)  Z1Z2.  
Then there exists I such that GZ1I and IZ2H. Let G0 be a 
successor of G.  
Since GZ1I, then there exists I’ successor of I such that 
G’Z1I’.  
Since IZ2H, then, there exists H’ successor of H such that 
I’Z2H’. Thus, (G’,H’)  Z1Z2.  
With a similar reasoning, if H’ is a successor of H, we can 
find a G’ successor of G such that (G’,H’)  Z1Z2.� 
 
Lemma 4 Let (Zi)iI be a family of P-bisimulations, then     
⋃ ܼ௜௜∈ூ  is also a P-bisimulation . 
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By lemma 4, there exists a maximal P-bisimulation, 
denoted Zmax. 
 
Example 3. Let P be the following program: 
p(a,y)q(y)  
p(b,y) r(y)    
p(b,y) s(y) 
and let G, H be respectively the following goals p(a,y) 
and p(b,y) 
Let Z be the binary relation between goals such that: 
p(a,y) Z p(b,y)  
q(y) Z r(y)  
q(y) Z s(y) 
Obviously, Z is a P-bisimulation. Since G Z H, then G Zmax 
H. 
 
Lemma 5 Zmax is an equivalence relation. 
Proof. By lemmas 1, 2 and 3.� 
 

Let P be a logic program, and G(x,y) be a two 
variables goal. We shall say that there is a flow from x to y 
in G(x,y) with respect to the bisimulation in P (in symbols 
ݔ
		஻ூ		
ሱۛሮ ܲ

ܩ
ݕ ) iff there exists a, b  UL(P) such that 

not[G(a,y)ZmaxG(b,y)].  
In this definition, there is a flow if the user, by only 

seeing the outputs of computations in terms of 
bisimulation between goals, can distinguish (without 
looking at a, b) the output of P?G(a,y) and the output of 
P?G(b,y). 
 
Example 4. Let P3 be the following program:  
p(x,a) 
p(a,b) q(a)  
and let G3(x,y) be the goal: p(x,y). 
Let us prove not[p(a,y)Zmaxp(b,y)].  
Suppose that p(a,y)Zmaxp(b,y).  
Since q(a)succP3(p(a,y)), then there should be 
G3succP3(p(b,y)) such that q(a)ZmaxG3.  
The problem is that the only goal in succP3 (p(b,y)) is 
the empty goal, which cannot be bisimilar to q(a).  
Hence, not[p(a,y)Zmaxp(b,y)].  

Therefore ݔ
		஻ூ		
ሱۛሮ ଷܲ

ଷܩ
 .ݕ

3.4 Links between the definitions of information flow 

The existence of a flow with respect to substitution 
answers does not entail the existence of a flow with 
respect to successes and failures. To see this, it suffices to 
consider the following example. 
 
Example 5. Let P be the following program:  
p(a,b)  
p(Z,c)  

and let G(x,y) be the goal: p(x,y). Since 
(P?G(a,y))={y/b,y/c} and (P?G(b,y))={y/c}, then  
ݔ 

		ௌ஺		
ሱۛሮ ܲ

ܩ
  Since P?G(a,y) and P?G(b,y) both succeed, then .ݕ

ݔ  ↛
		ௌி		 ܲ

ܩ
 .However, one can establish the following result .ݕ

 
Lemma 6 Let P be a logic program and G(x,y) be a two 
variables goal. If ݔ

		ௌி		
ሱۛሮ ܲ

ܩ
ݔ then 	ݕ

		ௌ஺		
ሱۛሮ ܲ

ܩ
 .ݕ

Proof. Suppose that ݔ
		ௌி		
ሱۛሮ ܲ

ܩ
 then there exists a, b  UL(P) ,ݕ

such that P?G(a,y) succeeds and P?G(b,y) fails. Therefore, 
(P?G(a,y)), and (P?G(b,y))=. Consequently,  
ݔ
		ௌ஺		
ሱۛሮ ܲ

ܩ
 �.ݕ

 
The existence of a flow with respect to bisimulation does 
not entail the existence of a flow with respect to successes 
and failures. The next example explains why. 
 
Example 6. Let P3 and G3 be the program and goal 

considered in example 4. We know that ݔ
		஻ூ		
ሱۛሮ ଷܲ

ଷܩ
ݕ . 

Nevertheless, since all the goals of the form G3(a,y), with 

aUL(P) succeed, thus ݔ ↛
		ௌி		

ଷܲ
ଷܩ
 .ݕ

Nevertheless, it is worth noting at this point the following. 
 
Lemma 7 Let P be a logic program and G(x,y) be a two 
variables goal. If  ݔ

		ௌி		
ሱۛሮ ܲ

ܩ
ݔ then	ݕ

		஻ூ		
ሱۛሮ ܲ

ܩ
 .ݕ

Proof. Suppose that ݔ
		ௌி		
ሱۛሮ ܲ

ܩ
 Thus, there exists a, b  UL(P) .ݕ

such that P?G(a,y) succeeds and P?G(b,y) fails. Suppose 
that G(a,y)ZmaxG(b,y). Since P?G(a,y) succeeds, then there 
exists an SLD-refutation G0,…,Gn of G(a,y) in P. That is to 
say, G0=G(a,y), Gn=� and Gi is a successor of Gi-1 in P for 
i=1,…,n. Since G(a,y)ZmaxG(b,y) in P, thus P?G(b,y) 
succeeds: a contradiction. Thus, not[G(a,y)ZmaxG(b,y)] and 
ݔ
		஻ூ		
ሱۛሮ ܲ

ܩ
 .ݕ

3.5 Information flow definitions over goals with arity 
> 2 

We now generalize the previous definitions by considering 
goals with arity higher than two. Firstly, we consider 
information flows between two variables. Secondly, we 
consider information flows between two sets of variables. 
The generalization of the previous three definitions to 
goals with arity higher than two and by only considering 
information flows between two variables leads us to the 
following three definitions: 
 
 
Definition 1 For a logic program P and a goal 
G(x1,…,xk,… ,xm,… ,xp) of arity p 

ݔ
		ௌி		
ሱۛሮ

ܲ
,ଵݔሺܩ … , ,௞ݔ …	 , ,	…,௠ݔ ௣ሻݔ

 iff ݕ

 a,a’  UL(P), a  a’ 
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 c1,… ,ck-1,ck+1,… ,cm-1,cm+1,… ,cp  UL(P) such that 
P?G(c1,… ,ck-1,a,ck+1,… ,cm-1,xm,cm+1,… ,cp) succeeds and 
P?G(c1,… ,ck-1,a’,ck+1,… ,cm-1,xm,cm+1,… ,cp) fails. 
 
Definition 2 For a logic program P and a goal 
G(x1,…,xk,… ,xm,… ,xp) of arity p 

ݔ
		ௌ஺		
ሱۛሮ

ܲ
,ଵݔሺܩ … , ,௞ݔ …	 , ,	…,௠ݔ ௣ሻݔ

 iff ݕ

 a,a’  UL(P), a  a’ 
 c1,… ,ck-1,ck+1,… ,cm-1,cm+1,… ,cp  UL(P) such that 
[P?G(c1,… ,ck-1,a,ck+1,… ,cm-1,xm,cm+1,… ,cp)] 
[P?G(c1,… ,ck-1,a’,ck+1,… ,cm-1,xm,cm+1,… ,cp)]. 
 
Definition 3 For a logic program P and a goal 
G(x1,…,xk,… ,xm,… ,xp) of arity p 

ݔ
		஻ூ		
ሱۛሮ

ܲ
,ଵݔሺܩ … , ,௞ݔ …	, ,	…,௠ݔ ௣ሻݔ

 iff ݕ

 a,a’  UL(P), a  a’ 
 c1,… ,ck-1,ck+1,… ,cm-1,cm+1,… ,cp  UL(P) such that 
not[P?G(c1,… ,ck-1,a,ck+1,… ,cm-1,xm,cm+1,… ,cp) Zmax 
P?G(c1,… ,ck-1,a’,ck+1,… ,cm-1,xm,cm+1,… ,cp)]. 
 

The idea behind the previous definitions is that in 
order to see if there is a flow from xk to xm, one can try to 
instantiate the p-2 other variables to some constants and to 
find two constants a, a’ for which the instantiations of the 
variable xk by a or a’ leads to a success and failure for the 
first definition, or different substitutions answers for the 
second definition or two different shapes of resolution 
trees for the third definition. 

By considering x1 = x, xm = y and p = 2, we find again 
the same information flow definitions for goals of arity 
two. In addition, with this generalization, the results of 
lemma 6 and 7 are also preserved. 

 
Now we will generalize the previous notions to cover 

information flows from a set of variables to a set of 
variables. For this, we will proceed in 2 steps (Due to 
space limitation, we will consider only in this subsection 
the information flow based on success and failure). 

 
1. Information flow from a set of variables to a single 
variable 
For a program P and a goal G(x1,… ,xk,xl,xm,… ,xn), we say 
that there is a flow from {x1,… ,xk} to xl iff one can 
instantiate the variables {xm,… ,xn} by some constants and 
instantiate the variables {x1,… ,xk} in two different 
manners and thus lead to a success and failure. 
ሼݔଵ, … , ௞ሽݔ

		ௌி		
ሱۛሮ

ܲ
,ଵݔሺܩ … , ,௞ݔ ,	௟ݔ ,	…,௠ݔ ௡ሻݔ

 iff ݕ

 cm,… ,cn  UL(P), a1,… ,ak,a’1,… ,a’k  UL(P) such that 
(a1,… ,ak)  (a’1,… ,a’k) and 
P?G(a1,…,ak,xl,cm,…,cn) succeeds  
and 
P?G(a’1,…,a’k,xl,cm,… ,cn) fails. 
 

2. Generalization of the previous definition of 
information flow from a set of variables to a set of 
variables 
For a program P and a goal G(x1,… ,xk,xl,… xm-1,xm,… ,xn) 
we say that there is a flow from {x1,… ,xk} to {xl,… ,xm-1} 
iff there is a flow from {x1,… ,xk} to every variable in 
{xl,… ,xm-1}. 
ሼݔଵ, … , ௞ሽݔ

		ௌி		
ሱۛሮ

ܲ
,ଵݔሺܩ … , ௡ሻݔ

ሼݔ௟, … ,  ௠ିଵሽ iffݔ

∀݆ ൌ 1,… ,݉ െ 1, ሼݔଵ, … , ௞ሽݔ
		ௌி		
ሱۛሮ

ܲ
,ଵݔሺܩ … , ௡ሻݔ

 ௝ݔ

 
A similar remark applies here too, by considering k = 1, 
and l=m-1, we find again the same definitions of 
information flows between single variables. 

3.6 Non-transitivity of information flow in logic 
programs 

Most of the policies of information flow in imperative 
programming are represented by a lattice structure, which 
means that if information flows from a variable x to a 
variable y and from y to z, then there is a flow from x to z. 
In such contexts, the information flow relation between 
program variables is transitive. It is interesting to 
investigate this property on the information flow of logic 
programs according to our definitions. 

Several counter examples prove that the information 
flow relation according to our definitions is not transitive. 
 
Non transitivity of the information flow for the first 
definition based on success and failure 
For the following program P4:  
p(a,a,a) 
p(x,a,b)   
and the goal G(x,y,z) : p(x,y,z), we have: 

ݔ 
		ௌி		
ሱۛሮ ସܲ

,ݔሺܩ ,ݕ  ,(P4?G(a,y,a) succeeds, P4?G(b,y,a) fails)  ݕሻݖ

ݕ
		ௌி		
ሱۛሮ ସܲ

,ݔሺܩ ,ݕ  ,(P4?G(a,a,z) succeeds, P4?G(a,b,z) fails)  ݖሻݖ

but we have not ݔ
		ௌி		
ሱۛሮ ସܲ

,ݔሺܩ ,ݕ ݖሻݖ   (both P4?G(a,a,z) and 

P4?G(b,a,z) succeed). 
 
Non transitivity of the information flow for the second 
definition based on substitutions answers 
For the following program:  
p(x,y,z)q(x,y), r(y,z) 
q(x,y)  
q(a,c)  
r(y,c)  
r(c,d)   
and the goal G(x,y,z) : p(x,y,z), we have: 

ݔ
		ௌ஺		
ሱۛሮ

ܲ
,ݔሺܩ ,ݕ ݕሻݖ   ((P?G(a,y,c)) ={y=c,}, (P?G(b,y,c)) 

={}), 
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ݕ
		ௌ஺		
ሱۛሮ

ܲ
,ݔሺܩ ,ݕ ݖሻݖ ((P?G(a,c,z))= {z/c,z/d}, (P?G(a,b,z)) 

={z/c}), 

but we have not ݔ
		ௌ஺		
ሱۛሮ

ܲ
,ݔሺܩ ,ݕ  ,(P?G(a,c,z))={z/c,z/d})  ݖሻݖ

(P?G(b,c,z)) ={z/c,z/d}). 
 
Non transitivity of the information flow for the third 
definition based on bisimulation between goals 
For the same previous program P4 and the goal G(x,y,z) : 
p(x,y,z), we have: 

ݔ	
		஻ூ		
ሱۛሮ ସܲ

,ݔሺܩ ,ݕ ݕሻݖ   (not tree(P4?G(a,y,a)) Zmax 

tree(P4?G(b,y,a)), 

ݕ	
		஻ூ		
ሱۛሮ ସܲ

,ݔሺܩ ,ݕ ݖሻݖ   (not tree(P4?G(a,a,z)) Zmax 

tree(P4?G(a,b,z))), 

but we have not ݔ
		஻ூ		
ሱۛሮ ସܲ

,ݔሺܩ ,ݕ ݖሻݖ   (tree(P4?G(a,a,z)) Zmax 

tree(P4?G(b,a,z))). 
 
This non-transitivity of our information flow relation 

can be explained by the particular role of variables in logic 
programming. The truth is that in imperative programs, the 
basic instruction is the assignment operation, whereas in 
logic programs, the basic instructions are the resolution 
rule and the unification.  

4. Decidability / Complexity 

We now study the computational complexity of the 
following decision problems: 

ௌிߨ ቊ
Input:	A	logic	program	ܲ, a	two	variables	goal	ܩሺݔ, ሻݕ

Output:	Determine	whether	ݔ
		ܨܵ		
ሱሮ

ܲ

ܩ
ݕ

 

ௌ஺ߨ ൝
Input:	A	logic	program	ܲ, a	two	variables	goal	ܩሺݔ, ሻݕ

Output:	Determine	whether	ݔ
		ܣܵ		
ሱሮ

ܲ

ܩ
ݕ

 

஻ூߨ ቊ
Input:	A	logic	program	ܲ, a	two	variables	goal	ܩሺݔ, ሻݕ

Output:	Determine	whether	ݔ
		ܫܤ		
ሱሮ

ܲ

ܩ
ݕ

 

4.1 Undecidability 

In the general setting, our decision problems are 
undecidable. 
Proposition 1. The three decision problems above are 
undecidable. 
Proof. (SF) We will reduce the following undecidable 
decision problem 1 [7] to SF : 

ଵߨ ൜
Input:	A	logic	program	ܲ, a	ground	goal	ݍሺܽሻ

Output:	ܲ? succeeds	ሺܽሻݍ  

Let (P,q(a)) be an instance of 1 and let (P’,G(x,y)) be the 
instance of SF defined by: P’ = P{G(a,y)q(a)}, where 
G is a new predicate symbol of arity 2 and a is a new 
constant. We need to show that, P?q(a) succeeds iff 
ݔ
		ௌி		
ሱۛሮܲᇱ

ܩ
 .ݕ

() Suppose that P?q(a) succeeds. Thus P’?G(a,y) 
succeeds and P’?G(b,y) fails, consequently ݔ

		ௌி		
ሱۛሮܲᇱ

ܩ
 .ݕ

() Suppose that ݔ
		ௌி		
ሱۛሮܲᇱ

ܩ
 then there exists a’, b’  UL(P) ,ݕ

such that P’?G(a’,y) succeeds and P’?G(b’,y) fails. Thus, 
a’ = a and b’a. Thus, P?q(a) succeeds. 
 
(SA) A similar proof applies here. 
 
(BI) We will reduce the following undecidable decision 
problem [8] to BI: 

ଶߨ ൜
Input:	A	binary	logic	program	ܲ, a	ground	goal	ݍሺܽሻ

Output:	The	SLD െ tree	of	ܲ?  branch	failure	a	contains	ሺܽሻݍ

Let (P,q(a)) be an instance of 2 and let (P’,G(x,y)) be the 
instance of BI defined by: 
P’ = P{  
G(a,y) q(a);  
G(b,y)G(b,y) for all b in L(P) such that a  b,  
G(f(x1,… ,xn),y)  G(f(x1,… ,xn),y) for all f in L(P)} 
Remark that for all a’  UL(P), the computation tree of 
P’?G(a’,y) consists of a unique infinite branch. We need to 
show that the SLD-tree of P?q(a) contains a failure branch 
iff  ݔ

		஻ூ		
ሱۛሮ ܲᇱ

ܩ
 .ݕ

() Suppose that the SLD-tree of P?q(a) contains a 
failure branch. Thus the SLD-tree of P’?G(a,y) will 
eventually contains this failure branch while the SLD-tree 
of P’?G(b,y) will have infinite branche(s). Consequently  
ݔ
		஻ூ		
ሱۛሮܲᇱ

ܩ
 .ݕ

() Suppose that ݔ
		஻ூ		
ሱۛሮ ܲᇱ

ܩ
 then there exists a’,b’  UL(P) ,ݕ

such that not[P’?G(a’,y)ZmaxP’?G(b’,y)]. Hence, either a’ 
or b’ is equal to a. Thus (in the case of a’ = a) the SLD-
tree of P?q(a) contains a failure branch.� 

4.2 Decidability 

If one restricts the language to Datalog programs and goals 
then determining existence of information flows becomes 
decidable. 
Proposition 2. SF is EXPTIME-complete for Datalog 
programs. 
Proof. (Membership) The following algorithm decides the 
existence of the information flow in Datalog programs. 
Require: A Datalog program P, a goal G(x,y), finite 
Herbrand Universe UL(P) ={a1,… ,an} 

Ensure: ݔ
		ௌி		
ሱۛሮ

ܲ
,ݔሺܩ  for the Datalog program P and the		ݕሻݕ

goal g 
1: answer = false 
2: i = 0 
3: while i < n and not answer do 
4:  i = i + 1; j = i 
5:  while j < n and not answer do 
6:   j = j + 1 

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 2, No 1, March 2012 
ISSN (Online): 1694-0814 
www.IJCSI.org 57

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.



7

8
9
1
1
1
 
T
D
f
 
(H
c
E

L
in
i
  
(
P
		ௌ
ሱ

(

s
it
 
P
p
P
 
C

 
P
D
P
a
P
R
G
E
1
2
3

4
5
6
7

7:  

8:   
9:   
10:  end w
11: end whi
12: return 

This algorithm
Datalog is pro
follows that it c

Hardness) In 
consider the f
EXPTIME-hard

ଷߨ ൜
Inpu
Outp

Let (P,A) an 
nstance of SF

s a new 
          . 
) Suppose t

P’?g(a,y) succ
ௌி		
ሱۛሮ

ܲᇱ

݃  . ݕ

) Suppose t

such that P’?g(
t follows that a

Proposition 3.
programs. 
Proof. A proof 

Concerning SF

2P if one cons

Proposition 4
Datalog program
Proof. Let u
algorithm with 
Procedure SF(
Require: A bin
G(x,y). 
Ensure: ݔ

		ௌி		
ሱۛሮ ܲ

ܩ
1: For all 
2: For all 
3: if (P?G(

P?G(b,y
4:  Accep
5: else 
6:  Rejec
7: end if 

if (P?G(
P?G(aj ,
or (P?G
P?G(aj ,
 an
end if 

while 
ile 
answer 

m is determini
gram complet

can be executed

order to pro
following deci
d [16]: 
ut:	A	Datalog	pro
put:	ܲ? 	a	is	ܣሺ	ܣ
instance of 

F defined by P
predicate 

that A is a log
ceeds and P

that ݔ
		ௌி		
ሱۛሮ

ܲᇱ

݃ T .ݕ

(a’,y) succeeds
a’ = a and b’ 

 SA is is EXP

similar to the p

F, determining 
siders binary hi

4. SF is in 
ms. 

us consider t
oracle: 

(P,G(x,y)) 
nary hierarchic

 ݕ
a in UL(P)
b in UL(P)
(a,y)  SU
y)  FAILUR
pt 

ct 

(ai,y) suc
y) fails) 
G(ai,y) f
y) succeed
nswer = tru

stic and using
te for EXPTIM
d in EXPTIME

ove EXPTIME
ision problem

ogram	ܲ, a	grou
logical	consequ

3 and let (P’
’ = P{g(a,y)
symbol. Thu

gical conseque
’?g(b,y) fails. 

Then there exis

s and P’?g(b’,y
 a. Thus, P?A.

PTIME-comple

previous one a

existence of f
ierarchical Dat

2P for bina

the following

cal Datalog pro

do 
do 

UCCESSES a
RES) then 

cceeds and
 

fails and
ds) then 
ue 

g the fact tha
ME [16, 12], i
E. 

E-hardness, w
m known to b

und	atom	ܣ
uence	of	ܲሻ 

’,g(x,y)) be th
 A}, where g
us P?A if

ence of P, thu
Consequently

sts a, b  UL(P

y) fails. Hence
.� 

ete for Datalo

applies here.� 

flows is even in
talog programs

ry hierarchica

g deterministi

ogram P, a goa

nd  

d 

d 

at 
it 

we 
be 

he 
g 
ff 

us 
y 

P) 

e, 

g 

n 
s. 

al 

ic 

al 

 
The ora
(P,G) s
hierarch
belongs
of all p
binary 
FAILU
 
At the t
for bina
Now, l
existenc
 
Propos
Datalog
Proof.
demons
hierarch
the follo
Proced
Requir
and G2.
Ensure
1: ca
2: 
3: 

4: 

5: 

6: 
7: 
8: 
9: 
10: 
11: 
12: 
13: 
14: 
15: e
 
The sub
Datalog
precisel
that G’
be imp
the proc
its inpu
is binar
 

acle SUCCES
such that G su
hical program
s to NP. The o
pairs (P,G) suc

hierarchical 
URES belongs t

time of writing
ary hierarchica
let us addres
ce of flows wit

sition 5. BI is 
g programs. 
Since EXPTIM
strate that 
hical Datalog p
owing alternati

dure bisim(P,G
re: A hierarchi
 

e: Deciding wh
ase (succ(P
- (true,t
 ()

 ()

 ()

 (.)
- (true,f
- (false,
- (false,
 if 
 
 els
 
 end
ndcase 

bprocedure suc
g program P a
ly, succ(P,G) i
is derived fro

lemented in d
cedure bisim, s

uts P, G1, G2 if
ry, bisim can be

SES consists 
ucceeds in P. R
s, one can sh
oracle FAILUR
ch that G fails

programs, o
to co-NP. Henc

g, we do not kn
al programs. 
ss the comple
th respect to ou

in EXPTIME 

ME = APSPA
BI is in A
programs. In th
ing algorithm: 

G1,G2) 
cal Datalog pr

hether G1ZmaxG
P,G1),succ(
true): 
) choose i

such t
) choose a

of Gi i
) choose a 

of Gj i
) call bis
false): re
,true): re
,false): 
(G1 = � if

accept
se 

reject
d if 

cc(.,.) produces
and a goal G a
is true iff there

om G and P. O
deterministic li
seeing that P is
ff G1ZmaxG2. M
e implemented

in the set of 
Restricting P t
how that SUC
RES consists i
s in P. Restrict
one can sho
ce SF is in 2P

now if SA is in

exity of decid
ur third definiti

for hierarchic

ACE, then it su
APSPACE for
his respect, we 

rogram P, two 

G2 
(P,G2)) 

i,j{1,2} 
hat ij 
a successor
in P 
successor

in P 
im(P,G’I,G
ject 
ject 

ff G2 = �) 
 

 

s, given an hie
a Boolean valu
e exists a goal

Obviously, suc
inear time. Co
s hierarchical, i
Moreover, seein
d in polynomial

all pairs 
to binary 

CCESSES 
in the set 
ting P to 
ow that 

P.� 

n 2P too 

ding the 
ion. 

al binary 

uffices to 
r binary 
consider 

goals G1 

r G’i  

r G’j  

G’j) 

then 

erarchical 
ue. More 
l G’ such 
cc(.,.) can 
oncerning 
it accepts 
ng that P 
l space. 

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 2, No 1, March 2012 
ISSN (Online): 1694-0814 
www.IJCSI.org 58

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.



We mention that the different algorithms previously 
presented for goals of arity two can be generalized easily 
to goals with arity higher than two. 
 

5. Conclusion 

In this paper, we have proposed three definitions of 
information flow in logic programs. As proved in section 
4.1, determining whether there exists an information flow 
is undecidable in the general setting. Hence, a natural 
question was to restrict the language of logic programming 
as done in section 4.2. Table 1 contains the results we have 
obtained so far. Much remains to be done. 
Firstly, in the setting of Datalog programs, the main 
difficulty concerning BI comes from loops or infinite 
branches in SLD-refutation trees. Therefore, in order to 
determine, given a Datalog program P and two Datalog 
goals G1 and G2, whether G1ZmaxG2, one can think about 
using loop checking techniques and considering either 
restricted programs, or nvi programs or svo programs. See 
Bol et al [3] for details. 

Table 1: Margin Complexity results 

 
General 
setting 

Datalog 
programs 

Binary hierarchical 
Datalog programs 

SF Undecidable EXPTIME-
complete In 2P 

SA Undecidable EXPTIME-
complete in EXPTIME 

BI Undecidable ? in EXPTIME 

 
Secondly, considering the unfold/fold transformations 

introduced by Tamaki and Sato [15] within the context of 
logic programs optimization, one can ask whether these 
transformations introduce or eliminate information flows. 

 
Obviously, since folding or unfolding clauses in logic 

programs change neither its successes, nor its failures [15], 
nor its substitution answers [13], the information flows 
based either on successes and failures or on substitution 
answers are preserved after applying the transformations 
of Tamaki and Sato. The same cannot be said for 
information flows based on bisimulation. For example, let 
P0 be the logic program containing the following clauses: 
C1: p(a,y)q(y)  
C2: q(y) r(y)  
C3: q(y) s(y)  
C4: r(y)     
C5: s(y)     
C6: p(a’,y)  r’(y)  
C7: p(a’,y)  s’(y) 

C8: r’(y)  
C9: s’(y)  
and let G be the goal p(x,y). 
 
It is easy to verify that ݔ

		஻ூ		
ሱۛሮ ଴ܲ

ܩ
 To see this, we sketch, by .ݕ

omitting the different substitutions, the SLD-refutation 
trees corresponding to the two goals p(a,y) and p(a’,y). 
 

 

Fig. 1  SLD refutation trees to the goals P0?p(a,y) and P0?p(a’,y). 

 
Obviously, as not [p(a,y)Zmaxp(a’,y)], ݔ

		஻ூ		
ሱۛሮ ଴ܲ

ܩ
 .ݕ

By unfolding C1, the program P1 is obtained from P0 by 
replacing C1 with the following clauses:  
C10: p(a,y) r(y)  
C11: p(a,y)  s(y) 
 
In the new transformed program P1, the two SLD-
refutation trees of the goals p(a,y) and p(a’,y) are 
bisimilar as shown in the next figure. 

 

Fig. 2  SLD refutation trees to the goals P1?p(a,y) and P1?p(a’,y). 

Thus ݔ ↛
		஻ூ		

଴ܲ
ܩ
 .ݕ

A general question concerns the definition of 
transformations of logic programs that never introduce or 
eliminate information flows. 
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