
Towards an information flow in logic programming

Antoun Yaacoub1

 1 Institut de Recherche en Informatique de Toulouse, CNRS - Université de Toulouse
118 route de Narbonne, 31062 Toulouse Cedex 9, France

Abstract

This paper proposes a theoretical foundation of what could be an
information flow in logic programming. Several information
flow definitions (based on success/failure, substitution answers,
bisimulation between goals) are stated and compared. Decision
procedures are given for each definition and complexity is
studied for specific classes of logic programs.
Keywords: Logic programming, Information flow,
Computational complexity.

1. Introduction

Data security is the science and study of methods of
protecting data in computer and communication systems
from unauthorized disclosure and modification. One of the
aspects of data security is the control of information flow
in the system. In some sense, an information flow should
describe controls that regulate the dissemination of
information. These controls are needed to prevent
programs from leaking confidential data, or from
disseminating classified data to users with lower security
clearances.

The theory of information flow in security systems is
well defined for imperative programming. Different
models of information flow were proposed, namely, the
Bell-LaPadula Model [2], nonlattice and nontransitive
models [10, 4] of information flow, and nondeducibility
and noninterference [11]. Each model has rules about the
conditions under which information can move throughout
the system. For example, in the Bell-LaPadula Model
which describes a lattice-based information flow policy,
information can flow from an object in security level A to
a subject in security level B if and only if B dominates A.
Both compile-time mechanisms [6] and runtime
mechanisms [9] supporting the checking of information
flows were also proposed.

Intuitively, information flows from an object x to an

object y if the application of a sequence of commands
causes the information initially in x to affect the
information in y.

For example, the sequence tmp:=x; y:=tmp; has

information flowing from x to y because the (unknown)

value of x at the beginning of the sequence is revealed
when the value of y is determined at the end of the
sequence.

Several studies [5] addressed information flow in
security systems for imperative programming, but none
were concerned to bring answers of what could be an
information flow in security systems for logic
programming. In fact, logic programming is a well-known
declarative method of knowledge representation and
programming based on the idea that the language of first-
order logic is well-suited for both representing data and
describing desired outputs. Logic programming was
developed in the early 1970s based on work in automated
theorem proving, in particular, on Robinson's resolution
principle.

In this paper, we propose three definitions of

information flows in logic programs. These definitions
correspond to what can be observed by the user when a
query G(x,y) is run on a logic program P.

Firstly, we consider that the user only sees whether

her queries succeed or fail. In this respect, we say
information flows from x to y in G when there exists
constants a, b such that G(a,y) succeeds whereas
G(b,y) fails. Secondly, we assume that the user has also
access to the sets of substitution answers computed by the
interpreter with respect to her queries. As a result, in this
case, there is a flow of information from x to y in G if there
are constants a, b such that the substitution answers of
G(a,y) and G(b,y) are different. Thirdly, we suppose
that the user, in addition to the substitution answers, also
observes the SLD-refutation trees produced by the
interpreter. If the SLD-trees of the queries G(a,y) and
G(b,y) can be distinguished in one way or another by the
user, then we will say that information flows from x to y in
G. Of course, it remains to properly define what
"distinguished" means in our setting. Following a
traditional view in program semantics, we will base
distinguishability of SLD-refutation trees on the notion of
bisimilarity.
In section 2 of this paper, we will present some basic
notions about logic programming, syntax and semantics.
In section 3, several definitions of information flow in

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 2, No 1, March 2012
ISSN (Online): 1694-0814
www.IJCSI.org 52

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

logic programming are proposed relatively for a logic
program P and a goal G(x,y) of arity 2, (which stipulates
the existence of a flow from the variable x to the variable y
in the goal G(x,y)). The implications between these
definitions are then studied. Decision procedures are then
given in section 4 for each of the previous definitions and
computational issues studied for some types of logic
programs.

2. Syntax and semantics

In this section, we introduce basic concepts of logic
programming. See [14, 1] for more details. In the
remainder of this article, we will use p, q, … for predicate
symbols, x, y, z, … for variables, f, g, h, … for function
symbols, and a, b, c, … for constants. The language L
considered here is essentially that of first order predicate
logic. It has countable sets of variables, function symbols
and predicate symbols, these sets being mutually disjoint.
Each function and predicate symbol is associated with a
unique natural number called its arity, a (function or
predicate) symbol whose arity is n is said to be an n-ary
symbol. A 0-ary function symbol is referred to as a
constant. A term is a variable, a constant, or a compound
term f(t1,… ,tn) where f is an n-ary function symbol and the
ti are terms, 1i n. A term is ground if no variable occurs
in it. The Herbrand universe of L, denoted UL, is the set of
all ground terms that can be formed with the functions and
constants in L. An atom is of the form p(t1,… ,tn), where p
is an n-ary predicate symbol and the ti are terms, 1  i  n.
An atom is ground if all ti are ground. The Herbrand base
of a language L, denoted BL, is the set of all ground atoms
that can be formed with predicates from L and terms from
UL. A clause is an expression of the form AB1,…,Bn
where A, B1, …, Bn are atoms. A is called the head of the
clause and B1,…,Bn is called its body. A goal is an
expression of the form B1,…,Bn. A clause r of the form
A  (i.e., whose body is empty) is called a fact, and if A is
a ground atom, then r is called a ground fact. The empty
goal is denoted �. A predicate definition is assumed to
consist of a finite set (possibly ordered) of clauses defining
the same predicate. A logic program consists of a finite set
of predicate definitions. With each logic program P, we
associate the language L(P) that consists of the predicates,
functions, and constants occurring in P. If no constant
occurs in P, we add some constant to L(P) to have a
nonempty domain. A substitution is an idempotent
mapping from a finite set of variables to terms. The
identity substitution will be denoted . A substitution 1 is
said to be more general than a substitution 2 if there is a
substitution  such that 2 =1. Two terms t1 and t2 are
said to be unifiable if there exists a substitution  such that
 (t1) =  (t2), in this case  is said to be a unifier for the
terms. If two terms t1 and t2 have a unifier, then they have

a most general unifier mgu(t1,t2) that is unique up to
variable renaming.

The operational behavior of logic programs can be
described by means of SLD-derivations. An SLD-
derivation for a goal G=A1,…,An with respect to a
program P is a sequence of goals G0,…,Gi,Gi+1,… , such
that G0=G, and if Gi = B1,…,Bm, then Gi+1 = B1,…,Bi-1

,B’1,…,B’k,Bi+1,…,Bm such that 1im, BB’1,…,B’k
is a variant of a clause in P that has no variable in common
with any of the goals G0,…,Gi, and  = mgu(Bi,B). The
goal Gi+1 is said to be obtained from Gi by means of
resolution step, and Bi is said to be the resolved atom. Let
G0,…,Gn be an SLD-derivation for a goal G with respect to
a program P, and let i be the unifier obtained when
resolving the goal Gi-1 to obtain Gi, 1 i n. If this
derivation is finite and maximal, i.e., one in which it is not
possible to resolve the goal Gn with any of the clauses in P,
then it corresponds to a terminating computation for G: in
this case, if Gn is the empty goal then we say that P?G
succeeds and the computation is said to succeed with
answer substitution , where  is the substitution obtained
by restricting the substitution n…1 to the variables
occurring in G. if Gn is not the empty goal, then the
computation is said to fail. We say that P?G fails if all
computations from G in P fail. If the derivation is infinite,
the computation does not terminate. Given a program P
and a goal G, let (P?G) be the set of all answer
substitutions of G in P.

In this paper, we will be interested in
 Datalog programs, i.e. logic programs without

function symbols and where each variable
appearing in the head of the clause, must also
appear in its body.

 Binary programs, i.e. logic programs such that,
the body of every program statement is composed
of at most one atom.

 Hierarchical programs, i.e. logic program having
a level mapping such that, in every program
statement A(t1,… ,tn)B, the level of every
predicate symbol in B is less than the level of A.

 Restricted programs, i.e. logic programs such that,
in every program statement A0A1,…,Ak, only Ak
can depend on A0.

 Nonvariable introducing programs (in short nvi)
i.e. logic programs such that, in every program
statement AB1,…,Bn, if a variable appears in
B1,…,Bn, it must also appears in A.

 Single variable occurrence (in short svo) i.e. logic
programs such that, in the body of every program
statement, no variable occurs more than once.

Note that the level mapping of a program is a
mapping from its set of predicate symbols to the non-
negative integers. We refer to the value of the predicate

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 2, No 1, March 2012
ISSN (Online): 1694-0814
www.IJCSI.org 53

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

symbol under this mapping as the level of that predicate
symbol.

3. Information flow

As the theory of information flow is well studied for
imperative programming, it is tempting to see what could
be an information flow in logic programming, especially
given the fact that there are no notions of assignment, or
variable of a program. In fact, variables in logic programs
behave differently from variables in conventional
programming languages. They stand for an unspecified but
single entity rather than for a store location in memory.

The following three definitions for information flow
in logic programming are based on the following principle.
The information flow that occurs when the user asks a goal
to logic programs depends mainly on what parts of the
computation the user sees. In the first definition, the user
only sees whether goals succeed or fail. In the second
definition, the user has access to the set of substitution
answers computed by the program. In the third definition,
the user obtains the shape of the computation trees
produced by the program.

It is now time to present our three definitions of
information flows in logic programs.

3.1 Successes and failures

Let P be a logic program, and G(x,y) be a two
variables goal. We shall say that there is a flow from x to y
in G(x,y) with respect to successes and failures in P (in
symbols ݔ

		ௌி		
ሱۛሮ ܲ

ܩ
ݕ) iff there exists a, b  UL(P) such that

P?G(a,y) succeeds and P?G(b,y) fails.
This intuitively means that when the user only sees

the outputs of computations in terms of successes and
failures, there exists two different a, b  UL(P) such that
this user can distinguish (without seeing what concerns a,
b) between the output for P?G(a,y) and the output for
P?G(b,y).

Example 1. Let P1 be the following program:
p(a,b)
and let G1(x,y) be the following goal:
p(x,y)
Since P1?G1(a,y) succeeds and P1?G1(b,y) fails, then

ݔ
		ௌி		
ሱۛሮ ଵܲ

ଵܩ
 .ݕ

3.2 Substitution answers

Let P be a logic program, and G(x,y) be a two
variables goal. We shall say that there is a flow from x to y
in G(x,y) with respect to substitution answers in P (in

symbols ݔ
		ௌ஺		
ሱۛሮ ܲ

ܩ
 iff there exists a, b  UL(P) such that (ݕ

(P?G(a,y))  (P?G(b,y)).
Roughly speaking, in this definition, the user only

sees the outputs of computations in terms of substitution
answers. As a result, there is a flow if this user can
distinguish (without seeing what is about a, b) the output
of P?G(a,y) and the output of P?G(b,y).

Example 2. Let P2 be the following program:
p(a,y) 
and let G2(x,y) be the following goal:
p(x,y)
Since (P2?G2(a,y)) = {} and (P2?G2(b,y)) = , then

ݔ
		ௌ஺		
ሱۛሮ ଶܲ

ଶܩ
 .ݕ

3.3 Bisimulation

Our third definition of flow is based on the notion of
bisimulation between goals. Let P be a logic program and
Z be a binary relation between goals. We shall say that Z is
a P-bisimulation iff for all goals G, H, if GZH then:

 for all goals G’ succP(G), there exists H’
succP(H), such that G’ZH’.

 for all goals H’ succP(H), there exists G’
succP(G), such that G’ZH’.

 G = � iff H =�.
Above, succP(G) denotes the set of all goals obtained

from a goal G by means of a resolution step in the program
P.

Lemma 1 The relation identity Id between goals is a P-
bisimulation.

Lemma 2 If Z is a P-bisimulation, then Z-1 is also a P-
bisimulation.

Lemma 3 If Z1, Z2 are two P-bisimulations, then the
composition Z1Z2 defined by Z1Z2 = {(G,H)/I, GZ1I and
IZ2H} is also a P- bisimulation.

Proof. Suppose that (G,H)  Z1Z2.
Then there exists I such that GZ1I and IZ2H. Let G0 be a
successor of G.
Since GZ1I, then there exists I’ successor of I such that
G’Z1I’.
Since IZ2H, then, there exists H’ successor of H such that
I’Z2H’. Thus, (G’,H’)  Z1Z2.
With a similar reasoning, if H’ is a successor of H, we can
find a G’ successor of G such that (G’,H’)  Z1Z2.�

Lemma 4 Let (Zi)iI be a family of P-bisimulations, then
⋃ ܼ௜௜∈ூ is also a P-bisimulation .

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 2, No 1, March 2012
ISSN (Online): 1694-0814
www.IJCSI.org 54

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

By lemma 4, there exists a maximal P-bisimulation,
denoted Zmax.

Example 3. Let P be the following program:
p(a,y)q(y)
p(b,y) r(y)
p(b,y) s(y)
and let G, H be respectively the following goals p(a,y)
and p(b,y)
Let Z be the binary relation between goals such that:
p(a,y) Z p(b,y)
q(y) Z r(y)
q(y) Z s(y)
Obviously, Z is a P-bisimulation. Since G Z H, then G Zmax
H.

Lemma 5 Zmax is an equivalence relation.
Proof. By lemmas 1, 2 and 3.�

Let P be a logic program, and G(x,y) be a two
variables goal. We shall say that there is a flow from x to y
in G(x,y) with respect to the bisimulation in P (in symbols
ݔ
		஻ூ		
ሱۛሮ ܲ

ܩ
ݕ) iff there exists a, b  UL(P) such that

not[G(a,y)ZmaxG(b,y)].
In this definition, there is a flow if the user, by only

seeing the outputs of computations in terms of
bisimulation between goals, can distinguish (without
looking at a, b) the output of P?G(a,y) and the output of
P?G(b,y).

Example 4. Let P3 be the following program:
p(x,a)
p(a,b) q(a)
and let G3(x,y) be the goal: p(x,y).
Let us prove not[p(a,y)Zmaxp(b,y)].
Suppose that p(a,y)Zmaxp(b,y).
Since q(a)succP3(p(a,y)), then there should be
G3succP3(p(b,y)) such that q(a)ZmaxG3.
The problem is that the only goal in succP3 (p(b,y)) is
the empty goal, which cannot be bisimilar to q(a).
Hence, not[p(a,y)Zmaxp(b,y)].

Therefore ݔ
		஻ூ		
ሱۛሮ ଷܲ

ଷܩ
 .ݕ

3.4 Links between the definitions of information flow

The existence of a flow with respect to substitution
answers does not entail the existence of a flow with
respect to successes and failures. To see this, it suffices to
consider the following example.

Example 5. Let P be the following program:
p(a,b)
p(Z,c)

and let G(x,y) be the goal: p(x,y). Since
(P?G(a,y))={y/b,y/c} and (P?G(b,y))={y/c}, then
ݔ

		ௌ஺		
ሱۛሮ ܲ

ܩ
 Since P?G(a,y) and P?G(b,y) both succeed, then .ݕ

ݔ ↛
		ௌி		 ܲ

ܩ
 .However, one can establish the following result .ݕ

Lemma 6 Let P be a logic program and G(x,y) be a two
variables goal. If ݔ

		ௌி		
ሱۛሮ ܲ

ܩ
ݔ then 	ݕ

		ௌ஺		
ሱۛሮ ܲ

ܩ
 .ݕ

Proof. Suppose that ݔ
		ௌி		
ሱۛሮ ܲ

ܩ
 then there exists a, b  UL(P) ,ݕ

such that P?G(a,y) succeeds and P?G(b,y) fails. Therefore,
(P?G(a,y)), and (P?G(b,y))=. Consequently,
ݔ
		ௌ஺		
ሱۛሮ ܲ

ܩ
 �.ݕ

The existence of a flow with respect to bisimulation does
not entail the existence of a flow with respect to successes
and failures. The next example explains why.

Example 6. Let P3 and G3 be the program and goal

considered in example 4. We know that ݔ
		஻ூ		
ሱۛሮ ଷܲ

ଷܩ
ݕ .

Nevertheless, since all the goals of the form G3(a,y), with

aUL(P) succeed, thus ݔ ↛
		ௌி		

ଷܲ
ଷܩ
 .ݕ

Nevertheless, it is worth noting at this point the following.

Lemma 7 Let P be a logic program and G(x,y) be a two
variables goal. If ݔ

		ௌி		
ሱۛሮ ܲ

ܩ
ݔ then	ݕ

		஻ூ		
ሱۛሮ ܲ

ܩ
 .ݕ

Proof. Suppose that ݔ
		ௌி		
ሱۛሮ ܲ

ܩ
 Thus, there exists a, b  UL(P) .ݕ

such that P?G(a,y) succeeds and P?G(b,y) fails. Suppose
that G(a,y)ZmaxG(b,y). Since P?G(a,y) succeeds, then there
exists an SLD-refutation G0,…,Gn of G(a,y) in P. That is to
say, G0=G(a,y), Gn=� and Gi is a successor of Gi-1 in P for
i=1,…,n. Since G(a,y)ZmaxG(b,y) in P, thus P?G(b,y)
succeeds: a contradiction. Thus, not[G(a,y)ZmaxG(b,y)] and
ݔ
		஻ூ		
ሱۛሮ ܲ

ܩ
 .ݕ

3.5 Information flow definitions over goals with arity
> 2

We now generalize the previous definitions by considering
goals with arity higher than two. Firstly, we consider
information flows between two variables. Secondly, we
consider information flows between two sets of variables.
The generalization of the previous three definitions to
goals with arity higher than two and by only considering
information flows between two variables leads us to the
following three definitions:

Definition 1 For a logic program P and a goal
G(x1,…,xk,… ,xm,… ,xp) of arity p

ݔ
		ௌி		
ሱۛሮ

ܲ
,ଵݔሺܩ … , ,௞ݔ …	 , ,	…,௠ݔ ௣ሻݔ

 iff ݕ

 a,a’  UL(P), a  a’

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 2, No 1, March 2012
ISSN (Online): 1694-0814
www.IJCSI.org 55

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

 c1,… ,ck-1,ck+1,… ,cm-1,cm+1,… ,cp  UL(P) such that
P?G(c1,… ,ck-1,a,ck+1,… ,cm-1,xm,cm+1,… ,cp) succeeds and
P?G(c1,… ,ck-1,a’,ck+1,… ,cm-1,xm,cm+1,… ,cp) fails.

Definition 2 For a logic program P and a goal
G(x1,…,xk,… ,xm,… ,xp) of arity p

ݔ
		ௌ஺		
ሱۛሮ

ܲ
,ଵݔሺܩ … , ,௞ݔ …	 , ,	…,௠ݔ ௣ሻݔ

 iff ݕ

 a,a’  UL(P), a  a’
 c1,… ,ck-1,ck+1,… ,cm-1,cm+1,… ,cp  UL(P) such that
[P?G(c1,… ,ck-1,a,ck+1,… ,cm-1,xm,cm+1,… ,cp)]
[P?G(c1,… ,ck-1,a’,ck+1,… ,cm-1,xm,cm+1,… ,cp)].

Definition 3 For a logic program P and a goal
G(x1,…,xk,… ,xm,… ,xp) of arity p

ݔ
		஻ூ		
ሱۛሮ

ܲ
,ଵݔሺܩ … , ,௞ݔ …	, ,	…,௠ݔ ௣ሻݔ

 iff ݕ

 a,a’  UL(P), a  a’
 c1,… ,ck-1,ck+1,… ,cm-1,cm+1,… ,cp  UL(P) such that
not[P?G(c1,… ,ck-1,a,ck+1,… ,cm-1,xm,cm+1,… ,cp) Zmax
P?G(c1,… ,ck-1,a’,ck+1,… ,cm-1,xm,cm+1,… ,cp)].

The idea behind the previous definitions is that in
order to see if there is a flow from xk to xm, one can try to
instantiate the p-2 other variables to some constants and to
find two constants a, a’ for which the instantiations of the
variable xk by a or a’ leads to a success and failure for the
first definition, or different substitutions answers for the
second definition or two different shapes of resolution
trees for the third definition.

By considering x1 = x, xm = y and p = 2, we find again
the same information flow definitions for goals of arity
two. In addition, with this generalization, the results of
lemma 6 and 7 are also preserved.

Now we will generalize the previous notions to cover

information flows from a set of variables to a set of
variables. For this, we will proceed in 2 steps (Due to
space limitation, we will consider only in this subsection
the information flow based on success and failure).

1. Information flow from a set of variables to a single
variable
For a program P and a goal G(x1,… ,xk,xl,xm,… ,xn), we say
that there is a flow from {x1,… ,xk} to xl iff one can
instantiate the variables {xm,… ,xn} by some constants and
instantiate the variables {x1,… ,xk} in two different
manners and thus lead to a success and failure.
ሼݔଵ, … , ௞ሽݔ

		ௌி		
ሱۛሮ

ܲ
,ଵݔሺܩ … , ,௞ݔ ,	௟ݔ ,	…,௠ݔ ௡ሻݔ

 iff ݕ

 cm,… ,cn  UL(P), a1,… ,ak,a’1,… ,a’k  UL(P) such that
(a1,… ,ak)  (a’1,… ,a’k) and
P?G(a1,…,ak,xl,cm,…,cn) succeeds
and
P?G(a’1,…,a’k,xl,cm,… ,cn) fails.

2. Generalization of the previous definition of
information flow from a set of variables to a set of
variables
For a program P and a goal G(x1,… ,xk,xl,… xm-1,xm,… ,xn)
we say that there is a flow from {x1,… ,xk} to {xl,… ,xm-1}
iff there is a flow from {x1,… ,xk} to every variable in
{xl,… ,xm-1}.
ሼݔଵ, … , ௞ሽݔ

		ௌி		
ሱۛሮ

ܲ
,ଵݔሺܩ … , ௡ሻݔ

ሼݔ௟, … , ௠ିଵሽ iffݔ

∀݆ ൌ 1,… ,݉ െ 1, ሼݔଵ, … , ௞ሽݔ
		ௌி		
ሱۛሮ

ܲ
,ଵݔሺܩ … , ௡ሻݔ

 ௝ݔ

A similar remark applies here too, by considering k = 1,
and l=m-1, we find again the same definitions of
information flows between single variables.

3.6 Non-transitivity of information flow in logic
programs

Most of the policies of information flow in imperative
programming are represented by a lattice structure, which
means that if information flows from a variable x to a
variable y and from y to z, then there is a flow from x to z.
In such contexts, the information flow relation between
program variables is transitive. It is interesting to
investigate this property on the information flow of logic
programs according to our definitions.

Several counter examples prove that the information
flow relation according to our definitions is not transitive.

Non transitivity of the information flow for the first
definition based on success and failure
For the following program P4:
p(a,a,a)
p(x,a,b) 
and the goal G(x,y,z) : p(x,y,z), we have:

ݔ
		ௌி		
ሱۛሮ ସܲ

,ݔሺܩ ,ݕ ,(P4?G(a,y,a) succeeds, P4?G(b,y,a) fails) ݕሻݖ

ݕ
		ௌி		
ሱۛሮ ସܲ

,ݔሺܩ ,ݕ ,(P4?G(a,a,z) succeeds, P4?G(a,b,z) fails) ݖሻݖ

but we have not ݔ
		ௌி		
ሱۛሮ ସܲ

,ݔሺܩ ,ݕ ݖሻݖ (both P4?G(a,a,z) and

P4?G(b,a,z) succeed).

Non transitivity of the information flow for the second
definition based on substitutions answers
For the following program:
p(x,y,z)q(x,y), r(y,z)
q(x,y) 
q(a,c) 
r(y,c) 
r(c,d) 
and the goal G(x,y,z) : p(x,y,z), we have:

ݔ
		ௌ஺		
ሱۛሮ

ܲ
,ݔሺܩ ,ݕ ݕሻݖ ((P?G(a,y,c)) ={y=c,}, (P?G(b,y,c))

={}),

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 2, No 1, March 2012
ISSN (Online): 1694-0814
www.IJCSI.org 56

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

ݕ
		ௌ஺		
ሱۛሮ

ܲ
,ݔሺܩ ,ݕ ݖሻݖ ((P?G(a,c,z))= {z/c,z/d}, (P?G(a,b,z))

={z/c}),

but we have not ݔ
		ௌ஺		
ሱۛሮ

ܲ
,ݔሺܩ ,ݕ ,(P?G(a,c,z))={z/c,z/d}) ݖሻݖ

(P?G(b,c,z)) ={z/c,z/d}).

Non transitivity of the information flow for the third
definition based on bisimulation between goals
For the same previous program P4 and the goal G(x,y,z) :
p(x,y,z), we have:

ݔ	
		஻ூ		
ሱۛሮ ସܲ

,ݔሺܩ ,ݕ ݕሻݖ (not tree(P4?G(a,y,a)) Zmax

tree(P4?G(b,y,a)),

ݕ	
		஻ூ		
ሱۛሮ ସܲ

,ݔሺܩ ,ݕ ݖሻݖ (not tree(P4?G(a,a,z)) Zmax

tree(P4?G(a,b,z))),

but we have not ݔ
		஻ூ		
ሱۛሮ ସܲ

,ݔሺܩ ,ݕ ݖሻݖ (tree(P4?G(a,a,z)) Zmax

tree(P4?G(b,a,z))).

This non-transitivity of our information flow relation

can be explained by the particular role of variables in logic
programming. The truth is that in imperative programs, the
basic instruction is the assignment operation, whereas in
logic programs, the basic instructions are the resolution
rule and the unification.

4. Decidability / Complexity

We now study the computational complexity of the
following decision problems:

ௌிߨ ቊ
Input:	A	logic	program	ܲ, a	two	variables	goal	ܩሺݔ, ሻݕ

Output:	Determine	whether	ݔ
		ܨܵ		
ሱሮ

ܲ

ܩ
ݕ

ௌ஺ߨ ൝
Input:	A	logic	program	ܲ, a	two	variables	goal	ܩሺݔ, ሻݕ

Output:	Determine	whether	ݔ
		ܣܵ		
ሱሮ

ܲ

ܩ
ݕ

஻ூߨ ቊ
Input:	A	logic	program	ܲ, a	two	variables	goal	ܩሺݔ, ሻݕ

Output:	Determine	whether	ݔ
		ܫܤ		
ሱሮ

ܲ

ܩ
ݕ

4.1 Undecidability

In the general setting, our decision problems are
undecidable.
Proposition 1. The three decision problems above are
undecidable.
Proof. (SF) We will reduce the following undecidable
decision problem 1 [7] to SF :

ଵߨ ൜
Input:	A	logic	program	ܲ, a	ground	goal	ݍሺܽሻ

Output:	ܲ? succeeds	ሺܽሻݍ

Let (P,q(a)) be an instance of 1 and let (P’,G(x,y)) be the
instance of SF defined by: P’ = P{G(a,y)q(a)}, where
G is a new predicate symbol of arity 2 and a is a new
constant. We need to show that, P?q(a) succeeds iff
ݔ
		ௌி		
ሱۛሮܲᇱ

ܩ
 .ݕ

() Suppose that P?q(a) succeeds. Thus P’?G(a,y)
succeeds and P’?G(b,y) fails, consequently ݔ

		ௌி		
ሱۛሮܲᇱ

ܩ
 .ݕ

() Suppose that ݔ
		ௌி		
ሱۛሮܲᇱ

ܩ
 then there exists a’, b’  UL(P) ,ݕ

such that P’?G(a’,y) succeeds and P’?G(b’,y) fails. Thus,
a’ = a and b’a. Thus, P?q(a) succeeds.

(SA) A similar proof applies here.

(BI) We will reduce the following undecidable decision
problem [8] to BI:

ଶߨ ൜
Input:	A	binary	logic	program	ܲ, a	ground	goal	ݍሺܽሻ

Output:	The	SLD െ tree	of	ܲ? branch	failure	a	contains	ሺܽሻݍ

Let (P,q(a)) be an instance of 2 and let (P’,G(x,y)) be the
instance of BI defined by:
P’ = P{
G(a,y) q(a);
G(b,y)G(b,y) for all b in L(P) such that a  b,
G(f(x1,… ,xn),y)  G(f(x1,… ,xn),y) for all f in L(P)}
Remark that for all a’  UL(P), the computation tree of
P’?G(a’,y) consists of a unique infinite branch. We need to
show that the SLD-tree of P?q(a) contains a failure branch
iff ݔ

		஻ூ		
ሱۛሮ ܲᇱ

ܩ
 .ݕ

() Suppose that the SLD-tree of P?q(a) contains a
failure branch. Thus the SLD-tree of P’?G(a,y) will
eventually contains this failure branch while the SLD-tree
of P’?G(b,y) will have infinite branche(s). Consequently
ݔ
		஻ூ		
ሱۛሮܲᇱ

ܩ
 .ݕ

() Suppose that ݔ
		஻ூ		
ሱۛሮ ܲᇱ

ܩ
 then there exists a’,b’  UL(P) ,ݕ

such that not[P’?G(a’,y)ZmaxP’?G(b’,y)]. Hence, either a’
or b’ is equal to a. Thus (in the case of a’ = a) the SLD-
tree of P?q(a) contains a failure branch.�

4.2 Decidability

If one restricts the language to Datalog programs and goals
then determining existence of information flows becomes
decidable.
Proposition 2. SF is EXPTIME-complete for Datalog
programs.
Proof. (Membership) The following algorithm decides the
existence of the information flow in Datalog programs.
Require: A Datalog program P, a goal G(x,y), finite
Herbrand Universe UL(P) ={a1,… ,an}

Ensure: ݔ
		ௌி		
ሱۛሮ

ܲ
,ݔሺܩ for the Datalog program P and the		ݕሻݕ

goal g
1: answer = false
2: i = 0
3: while i < n and not answer do
4: i = i + 1; j = i
5: while j < n and not answer do
6: j = j + 1

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 2, No 1, March 2012
ISSN (Online): 1694-0814
www.IJCSI.org 57

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

7

8
9
1
1
1

T
D
f

(H
c
E

L
in
i

(
P
		ௌ
ሱ

(

s
it

P
p
P

C


P
D
P
a
P
R
G
E
1
2
3

4
5
6
7

7:

8:
9:
10: end w
11: end whi
12: return

This algorithm
Datalog is pro
follows that it c

Hardness) In
consider the f
EXPTIME-hard

ଷߨ ൜
Inpu
Outp

Let (P,A) an
nstance of SF

s a new
 .
) Suppose t

P’?g(a,y) succ
ௌி		
ሱۛሮ

ܲᇱ

݃ . ݕ

) Suppose t

such that P’?g(
t follows that a

Proposition 3.
programs.
Proof. A proof

Concerning SF

2P if one cons

Proposition 4
Datalog program
Proof. Let u
algorithm with
Procedure SF(
Require: A bin
G(x,y).
Ensure: ݔ

		ௌி		
ሱۛሮ ܲ

ܩ
1: For all
2: For all
3: if (P?G(

P?G(b,y
4: Accep
5: else
6: Rejec
7: end if

if (P?G(
P?G(aj ,
or (P?G
P?G(aj ,
 an
end if

while
ile
answer

m is determini
gram complet

can be executed

order to pro
following deci
d [16]:
ut:	A	Datalog	pro
put:	ܲ? 	a	is	ܣሺ	ܣ
instance of 

F defined by P
predicate

that A is a log
ceeds and P

that ݔ
		ௌி		
ሱۛሮ

ܲᇱ

݃ T .ݕ

(a’,y) succeeds
a’ = a and b’ 

 SA is is EXP

similar to the p

F, determining
siders binary hi

4. SF is in 
ms.

us consider t
oracle:

(P,G(x,y))
nary hierarchic

 ݕ
a in UL(P)
b in UL(P)
(a,y)  SU
y)  FAILUR
pt

ct

(ai,y) suc
y) fails)
G(ai,y) f
y) succeed
nswer = tru

stic and using
te for EXPTIM
d in EXPTIME

ove EXPTIME
ision problem

ogram	ܲ, a	grou
logical	consequ

3 and let (P’
’ = P{g(a,y)
symbol. Thu

gical conseque
’?g(b,y) fails.

Then there exis

s and P’?g(b’,y
 a. Thus, P?A.

PTIME-comple

previous one a

existence of f
ierarchical Dat

2P for bina

the following

cal Datalog pro

do
do

UCCESSES a
RES) then

cceeds and

fails and
ds) then
ue

g the fact tha
ME [16, 12], i
E.

E-hardness, w
m known to b

und	atom	ܣ
uence	of	ܲሻ

’,g(x,y)) be th
 A}, where g
us P?A if

ence of P, thu
Consequently

sts a, b  UL(P

y) fails. Hence
.�

ete for Datalo

applies here.�

flows is even in
talog programs

ry hierarchica

g deterministi

ogram P, a goa

nd

d

d

at
it

we
be

he
g
ff

us
y

P)

e,

g

n
s.

al

ic

al

The ora
(P,G) s
hierarch
belongs
of all p
binary
FAILU

At the t
for bina
Now, l
existenc

Propos
Datalog
Proof.
demons
hierarch
the follo
Proced
Requir
and G2.
Ensure
1: ca
2:
3:

4:

5:

6:
7:
8:
9:
10:
11:
12:
13:
14:
15: e

The sub
Datalog
precisel
that G’
be imp
the proc
its inpu
is binar

acle SUCCES
such that G su
hical program
s to NP. The o
pairs (P,G) suc

hierarchical
URES belongs t

time of writing
ary hierarchica
let us addres
ce of flows wit

sition 5. BI is
g programs.
Since EXPTIM
strate that 
hical Datalog p
owing alternati

dure bisim(P,G
re: A hierarchi

e: Deciding wh
ase (succ(P
- (true,t
 ()

 ()

 ()

 (.)
- (true,f
- (false,
- (false,
 if

 els

 end
ndcase

bprocedure suc
g program P a
ly, succ(P,G) i
is derived fro

lemented in d
cedure bisim, s

uts P, G1, G2 if
ry, bisim can be

SES consists
ucceeds in P. R
s, one can sh
oracle FAILUR
ch that G fails

programs, o
to co-NP. Henc

g, we do not kn
al programs.
ss the comple
th respect to ou

in EXPTIME

ME = APSPA
BI is in A
programs. In th
ing algorithm:

G1,G2)
cal Datalog pr

hether G1ZmaxG
P,G1),succ(
true):
) choose i

such t
) choose a

of Gi i
) choose a

of Gj i
) call bis
false): re
,true): re
,false):
(G1 = � if

accept
se

reject
d if

cc(.,.) produces
and a goal G a
is true iff there

om G and P. O
deterministic li
seeing that P is
ff G1ZmaxG2. M
e implemented

in the set of
Restricting P t
how that SUC
RES consists i
s in P. Restrict
one can sho
ce SF is in 2P

now if SA is in

exity of decid
ur third definiti

for hierarchic

ACE, then it su
APSPACE for
his respect, we

rogram P, two

G2
(P,G2))

i,j{1,2}
hat ij
a successor
in P
successor

in P
im(P,G’I,G
ject
ject

ff G2 = �)

s, given an hie
a Boolean valu
e exists a goal

Obviously, suc
inear time. Co
s hierarchical, i
Moreover, seein
d in polynomial

all pairs
to binary

CCESSES
in the set
ting P to
ow that

P.�

n 2P too

ding the
ion.

al binary

uffices to
r binary
consider

goals G1

r G’i

r G’j

G’j)

then

erarchical
ue. More
l G’ such
cc(.,.) can
oncerning
it accepts
ng that P
l space.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 2, No 1, March 2012
ISSN (Online): 1694-0814
www.IJCSI.org 58

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

We mention that the different algorithms previously
presented for goals of arity two can be generalized easily
to goals with arity higher than two.

5. Conclusion

In this paper, we have proposed three definitions of
information flow in logic programs. As proved in section
4.1, determining whether there exists an information flow
is undecidable in the general setting. Hence, a natural
question was to restrict the language of logic programming
as done in section 4.2. Table 1 contains the results we have
obtained so far. Much remains to be done.
Firstly, in the setting of Datalog programs, the main
difficulty concerning BI comes from loops or infinite
branches in SLD-refutation trees. Therefore, in order to
determine, given a Datalog program P and two Datalog
goals G1 and G2, whether G1ZmaxG2, one can think about
using loop checking techniques and considering either
restricted programs, or nvi programs or svo programs. See
Bol et al [3] for details.

Table 1: Margin Complexity results

General
setting

Datalog
programs

Binary hierarchical
Datalog programs

SF Undecidable EXPTIME-
complete In 2P

SA Undecidable EXPTIME-
complete in EXPTIME

BI Undecidable ? in EXPTIME

Secondly, considering the unfold/fold transformations

introduced by Tamaki and Sato [15] within the context of
logic programs optimization, one can ask whether these
transformations introduce or eliminate information flows.

Obviously, since folding or unfolding clauses in logic

programs change neither its successes, nor its failures [15],
nor its substitution answers [13], the information flows
based either on successes and failures or on substitution
answers are preserved after applying the transformations
of Tamaki and Sato. The same cannot be said for
information flows based on bisimulation. For example, let
P0 be the logic program containing the following clauses:
C1: p(a,y)q(y)
C2: q(y) r(y)
C3: q(y) s(y)
C4: r(y) 
C5: s(y) 
C6: p(a’,y)  r’(y)
C7: p(a’,y)  s’(y)

C8: r’(y) 
C9: s’(y) 
and let G be the goal p(x,y).

It is easy to verify that ݔ

		஻ூ		
ሱۛሮ ଴ܲ

ܩ
 To see this, we sketch, by .ݕ

omitting the different substitutions, the SLD-refutation
trees corresponding to the two goals p(a,y) and p(a’,y).

Fig. 1 SLD refutation trees to the goals P0?p(a,y) and P0?p(a’,y).

Obviously, as not [p(a,y)Zmaxp(a’,y)], ݔ

		஻ூ		
ሱۛሮ ଴ܲ

ܩ
 .ݕ

By unfolding C1, the program P1 is obtained from P0 by
replacing C1 with the following clauses:
C10: p(a,y) r(y)
C11: p(a,y)  s(y)

In the new transformed program P1, the two SLD-
refutation trees of the goals p(a,y) and p(a’,y) are
bisimilar as shown in the next figure.

Fig. 2 SLD refutation trees to the goals P1?p(a,y) and P1?p(a’,y).

Thus ݔ ↛
		஻ூ		

଴ܲ
ܩ
 .ݕ

A general question concerns the definition of
transformations of logic programs that never introduce or
eliminate information flows.

Acknowledgments

We would like to thank Philippe Balbiani and Ali Awada
for valuable discussions regarding information flow and
complexity.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 2, No 1, March 2012
ISSN (Online): 1694-0814
www.IJCSI.org 59

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

References
 [1] C. Baral and M. Gelfond. Logic programming and

knowledge representation. Journal of Logic Programming,
19-20:73-148, 1994.

[2] D. Bell, and L. LaPadula. Secure computer systems:
Mathematical foundations and model. The MITRE
Corporation Bedford MA Technical Report M74244, 1(M74-
244):42, 1973.

[3] R. Bol, K. Apt, and J. Klop. An analysis of loop checking
mechanisms for logic programs. Theoretical Computer
Science, 86:35-79, 1991.

[4] D. Denning. A lattice model of secure information
ow. Commun. ACM, 19:236-243, 1976.

[5] D. Denning. Cryptography and Data Security. Addison-
Wesley, 1982.

[6] D. Denning and P. Denning. Certification of programs for
secure information flow. Commun. ACM, 20:504-513, 1977.

[7] P. Devienne, P. Lebègue, A. Parrain, J.-C. Routier, and J.
Wrtz. Smallest Horn clause programs. The Journal of Logic
programming, 27:227-267, 1996.

[8] P. Devienne, P. Lebègue, and J.-C. Routier. Halting problem
of one binary Horn clause is undecidable. STACS 93,
665:48-57, 1993.

[9] J. Fenton. Memoryless subsystems. The Computer Journal,
17:143-147, 1974.

[10] S. Foley. A model for secure information flow. In Security
and Privacy, 1989. Proceedings., 1989 IEEE Symposium on,
pages 248-258. IEEE Computer Society, 1989.

[11] J. Goguen and J. Meseguer. Security policies and security
models. Security and Privacy, IEEE Symposium on, 0:11,
1982.

[12] N. Immerman. Relational queries computable in polynomial
time. Information and Control, 68:86-104, 1986.

[13] T. Kawamura and T. Kanamori. Preservation of stronger
equivalence in unfold/fold logic program transformation.
Theoretical Computer Science, 75:139-156, 1990.

[14] J. Lloyd. Foundations of logic programming. Springer-
Verlag, 1984.

[15] H. Tamaki and T. Sato. Unfold/fold transformations of logic
programs. In In S.-. Trnlund, editor, Proceedings of The
Second International Conference on Logic Programming,
pages 127-139, 1984.

[16] M. Y. Vardi. The complexity of relational query languages
(extended abstract). In Proceedings of the fourteenth annual
ACM symposium on Theory of computing, STOC '82, pages
137-146. ACM, 1982.

Antoun Yaacoub is currently a Ph.D. student in computer science
in Université Paul Sabatier at Toulouse – France. He’s conducting
his research at the Institut de recherche informatique de Toulouse
(IRIT) – France. His research focuses on defining, identifying and
analyzing the flow of information (from a security point of view) in
logic programs. He previously worked on various aspects of the
French language and focused on the types of links existing
between the words.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 2, No 1, March 2012
ISSN (Online): 1694-0814
www.IJCSI.org 60

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

