
Semantic Service Composition with QoS End – to – End
Constraints via AND/OR Graphs

Xhemal Zenuni1, Ivan Momtchev2

 1 Faculty of Contemporary Sciences and Technologies, South East European University
Tetovo, 1200, Macedonia

2 Faculty of Computer Systems and Control, Technical University of Sofia
Sofia, 1000, Bulgaria

Abstract

In this paper we present AND/OR graphs as a unifying
framework for semantic service composition that considers users
QoS constraints. The main virtues of this representation among
others are its ability to express semantic inference and to deal
with QoS constraints from different perspectives. In addition it
correctly handles multiple inputs/outputs of services, and allows
high degree of automation. Once service dependencies and QoS
features are formalized as AND/OR graph, we apply a search
algorithm to discover composite services that considers user QoS
end – to – end preferences. The implementation of a prototype
system and the experimental results support our underlying
hypothesis that AND/OR graphs are not only elegant and
expressive formalism for addressing QoS – aware semantic
service composition, but efficient as well.
Keywords: QoS, semantic service composition, AND/OR graphs.

1. Introduction

In recent years, there has been a significant increase of the
number of provided services, resulting in a scale of over
25.000 services available and indexed on Internet [1][2].
This trend has significant ramification to the development
of different types of distributed applications, like Grid [3]
or Cloud [4] computing systems among others, based on
Service Oriented Architectures (SOA) principles.
Despite the diversity and service proliferation, often user
requirements are so complex that no single service can
satisfy the required functionality alone. Therefore, the
need for efficient composition oriented service discovery
and ranking is becoming crucial in such settings.
Service composition has gained significant momentum in
recent research works, yet current approaches and
techniques suffer in several directions. To deal with
service proliferation and automation, the composition
issue has been akin to Artificial Planning problem [5].
However, in traditional AI approaches, QoS is largely
ignored. Apart from functional specification, non -
functional requirements such as quality of service (QoS)

are becoming major concern as natural discrimination
and/or ranking factor when several equivalently functional
solutions exist. Most of the works that considers QoS
aspects are based on directed acyclic graphs (DAG) and
Integer programming (IP) [6][7] for QoS end – to – end
optimization. The problem with these approaches is that
they require the user to provide pre – defined execution
plans as a request, or the determination of service
dependencies is assumed. Another problem is the
assumption that the graph has to be acyclic, as they cannot
deal efficiently with them. On the other hand, IP requires
high running complexity, having serious implication on
time required to discover composite services efficiently in
large systems with many service nodes and potential
selections. Finally, most of current methods lack
systematic evaluation based on more comprehensive
evaluation methodology.
The rest of this paper is organized as follows: Section 2
presents the semantic framework to describe service
signatures and formalizes the service dependencies in form
of an AND/OR graph and we evaluate the expressiveness
of such structure. Section 3 analyzes the basic
constructions structures contained in AND/OR graphs, and
it presents the objective functions and aggregation patterns
of several important QoS parameters in AND/OR graphs.
Section 4 explains the search algorithm employed for
discovering composite services with QoS constraints.
Section 5 presents the system implementation, evaluation
metrics and experimental results of the adopted approach.
Finally, Section 6 concludes the work and indicates future
research directions.

2. Semantic Services and Service Dependency
Graph

In semantic services, the description of services is raised at
ontological level. This unambiguous description of service
signatures, from functional and non - functional aspects is

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 2, No 2, March 2012
ISSN (Online): 1694-0814
www.IJCSI.org 35

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

crucial to the determination of service inter –
dependencies and to their transformation to an AND/OR
graph known as Service Dependency Graph (SDG) [8].
However, as SDG is not tightly coupled with specific
semantic service framework, the problem of services is
given by the following definitions:
Definition 1: SOA consists of a set of available services
offered by different providers and used to build distributed

applications. Formally,  nSSSS ,,, 21  , where iS is a

specific service. Each service has a set of methods that are
the most fined grained piece of functionalities and the
most fundamental building blocks that are used to build
the distributed application and resolve specific scientific
or business problem. For simplicity, service and service
methods are used interchangeably.
Definition 2: A service in upper – domain ontology is

defined by the triple  soutini QSSS ,, , where inS is a set

of input data types defined as concepts in specific domain

ontology, outS is a set of output data types defined as

concepts in specific domain ontology, and sQ is a set of

QoS attributes, such as response time or availability also
defined in some specific domain ontology. In addition,
each specific QoS parameter is defined by a metric and a
unit (non – measurable parameters, such as security related
QoS aspects, may not have a unit).
The most important features of services are described in
terms of I/O, which is in the line with the world wide
efforts of the community to ontologically describe services
and QoS, where each parameter can be mapped to a
concept in some domain specific ontology. Once this
semantic framework is given, the transformation of service
signatures to AND/OR graph (as SDG) is straightforward.
Definition 3: The Service Dependency Graph is AND/OR
graph showing the dependencies of services based on I/O
and is defined as five tuple:

 SEATO ,,,, (1)

where O is a set of non – terminal OR nodes. Those are

the service I/O not provided directly by the requester. T is
a set of terminal OR nodes. Those are the available inputs
given by the requester. A is a set of AND nodes. Those
nodes represent the available services (service methods) in
SOA model. As services can be invoked only if all of its
inputs are available at the time of invocation, in services
there is AND logical connection from the input parts. E is
a subset    TOAATO  whose elements are

directed arcs, showing the connection between services
and their I/O. S is an auxiliary (dummy) AND node that is
connected to the desired outputs requested in service
composition problem. The connections of this node are
changed during each request. In addition, theoretically
costs can be assigned to arcs and nodes in such graph.

However, as QoS implications are manifested only if a
service is invoked, the QoS features are assigned as costs
to AND nodes (service nodes) in SDG.
Table 1 data shows a simple service repository of services
semantically described in terms of I/O and QoS aspects,
and Figure 1 presents the Service Dependency Graph of
the same.

Table 1: An illustrative service repository

Service Input Output QoS

S1 D1, D2 D3
Response
Time (rt) =
4ms.

S2 D2, D4 D5
Response
Time (rt) =
1ms.

S3 D3, D5 D6, D7
Response
Time (rt) =
2ms.

S4 D1 D8
Response
Time (rt) =
6ms.

Fig. 1 AND/OR graph showing service dependencies

The following characteristics hold:
 There are no direct edges between two AND

nodes [8]. This means that a given service
operation cannot serve directly as input to
another one, but only through produced output
data or attributes.

 A data node, namely an OR node can be
connected not only to an service operation node,
but to another data node based on the semantic
similarity constructs such as subsume or plug – in,
synonyms, or other relations defined in the
specific domain ontology.

 AND nodes correctly describe the services, as a
service operation cannot be invoked until all its
inputs are fully satisfied.

 The mapping of service descriptions to an
AND/OR graph is straightforward, allowing high
degree of automation.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 2, No 2, March 2012
ISSN (Online): 1694-0814
www.IJCSI.org 36

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

3. Aggregation Patterns and Formulas

The solution to an AND/OR graph, if one exists, is a sub –
graph rather than a path. This solution includes sequential
and parallel edges, and two types of nodes, which all
together form the basic constructs of composition patterns.
They determine the QoS aggregations rules of individual
services and allow us to verify whether a set of services
selected for the composition satisfies the QoS
requirements for the whole composition. Moreover they
serve as a guide for the search algorithms.
AND/OR graphs support three different concrete
aggregation patterns: a) Sequential pattern b) AND – join
pattern and c) OR – join pattern, as depicted in Figure 2.
They are similar to the abstract composition patterns
identified by Jagger et al. [9] from van Der Aalst’s pattern
catalogue, with the difference that AND/OR graphs in
practice are not as rich to support the whole set of patterns.

Fig. 2 Aggregation Pattern Structures in AND/OR Graphs

Based on the above mentioned composition patterns,
different individual QoS parameters follow different
aggregation types of formulas. Table 2 summarizes the
aggregation formulas of some of the most important QoS
parameters, recursively defined for AND nodes and OR
nodes. The aggregation value of any node n is recursively
defined by the function h(n). In the given formulas, with ci
we denote the incoming nodes to node n. If the node n is
of AND (service) type, then ci are its inputs. If the node is
an OR node (service I/O attribute), then ci are the
operation (AND) nodes that produce the node n or some
other OR node that points node n based on some semantic
similarity construct such as subclass, synonyms and so on.
For example, in AND nodes, the larger accumulated
response time is used as the composition service response
time, as the service has to wait for all its inputs to become
available before continuing with its execution. And, as the
objective is usually optimization, which means finding the
composite service with minimum response time, in OR
nodes we tend to minimize the response time.
On the other side, throughput is the maximum amount of
information passing through a composite service. Both in

sequence and parallel structures, the throughput is the
minimum value which presents the bottleneck of the
composite service. Moreover, in contrast to response time,
the objective is to find the composite service with highest
throughput, which is tried to be achieved in OR nodes.
In general, the QoS aggregation formulas fall within one
of the following categories.
Certain category of QoS parameters cannot be aggregated.
This is true for non – measurable parameters, and they are
checked locally, even in end - to – end planning. The
second category of QoS attributes follow critical path
algorithm. The response time, execution time and several
other QoS dimensions fall within this category. They have
implications in calculating the overall QoS in parallel
executions of different services. In composite services, the
QoS of this category are calculated as the longest path
from the initial state to the final state. This is important, as
in parallel structures there is no pint to further minimize
the lower value as there is no effect to the global QoS of
the composite service. For the third category, the overall
QoS is calculated as the sum of QoS dimensions of all
involved individual services, regardless in parallel or
sequential manner. The execution price of an execution
plan that represents the composite service is one of the
QoS attributes that is calculated as the sum of all involved
service operations in that plan. And finally, certain QoS
attributes such as reliability or availability are calculated
as product of individual services involved in the overall
composition plan.

Table 2: Aggregation formulas for some QoS parameters in AND/OR
graph nodes

4. The Search Algorithm for Discovery of
Composite Services

Once the service dependencies are formalized as an
AND/OR graph, then the issue of composition discovery
can be regarded as a search problem in that graph. This
opens wide possibilities, as the problem of finding
minimum solution graphs has attracted the attention of
researchers for a long time, and several algorithms that try
to solve this problem has been reported [10][11][12][13].
Earlier algorithms work on implicit graphs and are based
on the assumption that the given graph is acyclic. As this
assumption is not realistic in many real problems,
including the service composition issue, in the second

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 2, No 2, March 2012
ISSN (Online): 1694-0814
www.IJCSI.org 37

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

phase that includes the period from the early 90s, the
efforts were toward the development of algorithms to
solve explicit AND/OR graphs containing cycles.
However, as there is no unified framework describing
AND/OR graph search algorithms and no real benchmarks
exist for their comparison, the task of selecting the right
searching algorithm becomes difficult.
Initially, we have chosen to analyze, adopt, extend, and
evaluate the REV* [13] search algorithm developed by
Chakrabarti. REV* is simple and fast search algorithm that
works on explicit graph in bottom – up fashion and can
deal with cycles. The pseudo code of the original REV*
search algorithm is given as in Algorithm 1.
The user request is given in form of desired outputs,
available inputs and the QoS preference, which formally is
defined by the triple   routin qRSRSR),(, . The problem

is concerned with the optimization of a single QoS
attribute. The system can find a solution based on multiple
QoS parameters, but then a utility functions need to be
applied, as explained in later paragraphs.
In service composition problem represented through
AND/OR graphs and using REV* search algorithm, first
we connect the auxiliary node s to the desired outputs, we
put available inputs to list (queue) O. To all nodes in the
graph, except of the inputs, we set the status to not found
and the aggregate value to ∞. Then in bottom – up fashion,
the status and the corresponding costs are propagated
upwards to all nodes for which all immediate successors
are declared found. OR nodes not satisfying this condition
get their aggregate cost updated, but their status are not
changed to found. Instead, they are added to the priority
queue O for subsequent evaluation. When no other
propagation is possible, the node with smallest
aggregation value is extracted from O and declared found
and this process continues until the start node s is declared
found or when O gets empty. This conservative bottom –
up cost revision strategy ensures that it will never loop
around a cycle due to cost dominance rule, like in Dijkstra
algorithm. In addition, the bug with the “go to” statement
presented in original algorithm has been overcome with
the use of another list R, allowing a cost revision in
recursive like scheme.

Algorithm 1: The adoption and extension of REV* Searching Algorithm

/* create the dummy node s in G and provide the pointers from
the desired outputs to this node */

/* COST INITIALIZATION */
Create a priority queue O ={ }
Create e list R={ }
for each nG do
 if n is terminal node (available input) then
 found[n]=true;
 h(n)=0;
 O.Enqueue(n);
 end

 else
 begin
 found[n] = false;
 h(n)= ∞;
 end;
/* COST REVISION */
while not(found[s]) do
 begin
 if O.isEmpty() then exit(“no solution exists”);
 m=O.Dequeue(); //the node with smallest h(n)
 found[m] = true
 R.append(m); //append m to R
 while(!R.empty())
 begin
 n=R.Pop(); //remove the first node from R to n
 if not(found[s]) then
 for each pP(m) and not(found[p]) do
 begin
 if and(found[p]) for each  pSp  then

 begin
 found[p]=true;
 if p is an AND node then
 //calculate the aggregate value as described in Sec.3 //
 //or Eq.(5).Example for the response time //
   phpqph rt  max)()(;

 if p is an OR node then
   phph  min)(;

 if pO then remove it from O;

 if pR then
 R.append(p);
 end;
 if p is an OR node then
 begin
   phph  min)(;

 O.Enqueue(p);
 end;
 end;
 end;

In current model, the uniformity of properties and
especially of units used in QoS description is assumed. For
example, the property describing the response time should
be generally given in milliseconds or seconds, and all
given values should be generated by the same definition.
Otherwise, a preprocessing phase of data is required
before applying the search algorithm.
In addition, the search algorithms are commonly used to
find minimal solution graphs. However for certain QoS
properties, such as service availability, larger values
means better. In this case, the search algorithm has to be
changed to search for larger QoS accumulated values, or it
needs to transform those QoS parameters first using the
inverse variation using Equation 2, change the aggregation
formula appropriately and then again searching for
minimal solution graph:

p
p q

q
1

ˆ  (2)

In many cases the user has preferences over multiple QoS
variables. If the solution needs to be found on the

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 2, No 2, March 2012
ISSN (Online): 1694-0814
www.IJCSI.org 38

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

integration of several QoS attributes, we a two step
solution is proposed. First, the unification and
normalization of QoS parameters should be conducted.
Different QoS parameters have different range of values,
so they have to be scaled on the same range, as an
important and useful step for their classification. Several
techniques exists [14], such as z – score normalization, or
decimal scaling, yet we have selected min – max
normalization given through Equation 3 as it performs a
linear transformation and preserves the relationships
among the original data values.

 ii
ii

ii
i qnewqnew

qq

qq
q min_max_ˆ

minmax

min 



 (3)

Once QoS parameters normalized, we apply the following
objective function to transform them into one single total
cost:

 



N

i

j
ii qwt

1

cos (4)

where N is the number of different QoS parameters (
iq)

taken into consideration,
iw is the weight given to QoS

parameter i denoting how important is a specific QoS
attribute to a user. In addition, the following conditions

must hold: 



N

i
iw

1

1 and]1,1[j where j=1 if for the

given QoS parameter lower values means better, and j=-1
if for the same parameter greater values means better.
After these preprocessing steps, the multiple QoS are
transformed into one single value, and a search algorithm
can be applied directly to find the minimal solution graph.
The aggregation formula in this case is calculated as:

   
  


 

 
nodeORch

nodeANDchnt
nh

i

i

min

)(cos (5)

5. System Implementation and Evaluation

A prototype system that is based on the proposed approach
is implemented in C# and the same is evaluated on a test
set. The approach is evaluated according to two main
criteria’s: confusion – based metrics which mainly
includes the verification of correctness and completeness,
and the time – based performance. In absence of common
and widely accepted evaluation methodology, such
evaluation is considered to be more comprehensive and in
line with the recent research efforts and works [15][16], as
the most important metrics related to semantic – based
service discovery techniques.
The algorithm is tested against the requirements of the
annual WS – Challenge[17]. WS – Challenge provides a
significant collection of semantically described services
and test tools. Each service in test sets is annotated with

the response time and throughput as QoS data. Moreover,
it provides evaluation scenarios, which can be used for
matching the reference service compositions with the one
provided by the composition system, for the given request.
WS Challenge uses software to generate a test set which
consists of five basic files: (1) Services.wsdl contains a
repository of available services, semantically described by
I/O signatures; (2) Servicelevelagreements.wsla gives the
response time and the throughput for each service
described in the first file; (3) Taxonomy.owl contains the
ontology describing the relationships of concepts used as
I/O in semantic service descriptions; (4) Challenge.wsdl
containing the problem of the requested service and (5)
Solution.bpel contains the solution for the given problem.
We used the generator to create 10 test sets. In the first
five test sets, the number of services remained constant,
and we changed the number of concepts in ontology. In
the last five test sets, the number of concepts remained
constant, having 10000 concepts as considering this
number enough rich to describe variety of different
services. The number of services was constantly increased,
reaching the number of 20000 services which closely
resembles the actual number of real services provided on
Internet.
Such settings open the opportunities to see what is the
effect of the ontology size and the number of services on
the time performance needed to discover the composite
services.
Table 3 and Table 4 show the details of the test set, and
the last column shows the time performance of the REV*
algorithm needed to discover the composite service in this
case. The experiment was conducted on Lenovo
ThinkCenter A70Z machine, with an Intel Pentium Core 2
Duo E7500 processor, and with 2GB memory running on
Windows 7.

Table 3: A test set where the number of concepts increases while the
services remain constant

Number of
concepts

Number of
services

Time (ms)

2000 1000 48
4000 1000 57
6000 1000 62
8000 1000 66

10000 1000 68

The results of Table 2 shows that on a test set with fix
number of services, the time performance of REV*
algorithm gracefully changes with the increasing number
of concepts in ontology.

Table 4: A test set where the number of services increases while the
number of concepts remains constant

Number of
concepts

Number of
services

Time (ms)

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 2, No 2, March 2012
ISSN (Online): 1694-0814
www.IJCSI.org 39

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

10000 4000 141
10000 8000 177
10000 12000 198
10000 16000 211
10000 20000 223

The results in Table 3 shows that when the number of
concepts is constant, the time performance of REV*
changes more linearly with the increase number of
services. This is important, as in future when the number
and diversity of concepts in ontology will be rich and
sufficient to describe variety of things, the size of the
ontology will remain constant or it will be changed
slightly, but the number of services will increase because
of new businesses provided through services on Internet.
Generally, in all test sets, REV* performs efficiently,
finding the composition services in no more than 223 ms
and discover them correctly. This makes the model an
efficient approach to automatic construction of composite
services with optimal end – to –end QoS.

5. Conclusions and Future Work

In this paper, we address comprehensively a QoS aware
semantic composition model that uses AND/OR graphs as
intermediate planning domain. The model is expressive
and elegant dynamic environment that enables to find QoS
end – to end optimization execution plans from different
perspectives and using different searching techniques.
A specific search algorithm was extended and used to find
composition plans for a given composition request.
Moreover, the algorithm is implemented and its
performance is evaluated on a significant size of concepts
and services that scale on real number of available services
today. The results show that AND/OR graphs are efficient
environment for discovery of QoS aware composite
services and it can address some of the major problems
found on competitive approaches.
The investigation of new search algorithms and efficient
data structures for implementation will be conducted.
Evaluations on more significant data sets will be
performed, to further evaluate the proposed model.

References
[1] E. Al – Masri and Q.H. Mahmoud. “Investigating web

services on the world wide web”, in Proceedings of the 17th
international conference on World Wide Web, 2008.

[2] Seekda. Web Services Search Engine.
http://webservices.seekda.com/. Last accessed on December
2011.

[3] L. Srinavisan and J. Treadwell. “An Overview of Service –
Oriented Architecture, Web Services and Grid Computing”,
HP Software Global Business Unit, 2005.
citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.83.8488

[4] W. Voorsluys, J. Broberg, and R. Buyya. CLOUD
COMPUTING: Principles and Paradigms. John Wiley and
Sons, Inc, Hoboken, New Jersey, USA, 2011.

[5] B. George and P. Dimitris. “Automated Web Service
Composition: State of the Art and Research Challenges”,
Technical Report ICS-FORTH/TR-409, Foundation for
Research & Technology – Hellas, Greece, 2010.

[6] Y. Tao, Z. Yue and L. Kwei – Jay. “Efficient Algorithms for
Web Services Selection with End-to-End QoS Constraints”,
in ACM Transactions.Web, 2007, Vol.1.

[7] L. Zeng, B. Benatallah, A. Ngu, M. Dumas, J. Kalagnanam
and H. Chang. “QoS – aware Middleware for Web Services
Composition”, IEEE Transactions on Software Engineering,
Vol.30, No.5, 2004, pp.311 – 327.

[8] Q. A. Lang. “AND/OR Graph and Search Algorithm for
Discovering Composite Web Services”, International Journal
of Web Services Research. Vol.2, No. 4, 2005, pp.46 – 64.

[9] M.C. Jaeger, G. Rojec – Goldman and G. Muhl. in The
International EEE Conference on e –Technology, e –
Commerce and e – Service, 2005, pp.181 – 185.

[10] A.Mahanti, S. Ghose and S. Sadhukhan. “A Framework for
Searching AND/OR Graphs with Cycles”, in CoRR journal,
vol. cs.AI/0305001, 2003.

[11] A.H. Eric and Z. Shlomo. “Heuristic Search in Cyclic
AND/OR Graphs”, in Proceedings AAAI-98, 1998, pp.412 –
418.

[12] A. Mahanti and A. Bagchi. “AND/OR Graph Heuristic
Search Methods”, Journal of the ACM, Vol. 32, No.1, 1985.

[13] P.P. Chakrabarti. “Algorithms for Searching Explicit
AND/OR Graphs and their Applications to Problem
Reduction Search”, Artificial Intelligence, Vol.65, No.2,
1994, pp. 329 – 345.

[14] H. Jiawey and K. Micheline. Data Mining: Concepts and
Techniques. Morgan Kauffman, 2nd edition, 2005.

[15] E. Silva, L. Pires and M. Sinderen. “A Framework for the
Evaluation of Semantic – based Service Composition
Approaches”, in: Seventh IEEE European Conference on
Web Services, pp.66 – 74, 2009.

[16] U. Kuster, H. Lausen, and B. Konig – Ries. “Evaluation of
Semantic Service Discovery - A Survey and Directions for
Future Research”, in: Post-Proceedings of the 2nd Workshop
on Emerging Web Services Technology (WEWST07) in
conjunction with the 5th IEEE European Conference on Web
Services (ECOWS07), Halle (Saale), Germany, November
2007.

[17] C. J. Petrie, H. Lausen, and M. Zaremba, “Sws challenge -
first year overview,” in International Conference on
Enterprise Information Systems, 2007, pp. 407–412.

Xhemal Zenuni is assistant at SEEU, and PhD student at French
Language Faculty of Electrical Engineering, Technical University of
Sofia, with primary research interest on the triangle SOA, Grid and
intelligent agents.

Ivan Momtchev is dean of French Language Faculty of Electrical
Engineering, Technical University of Sofia, from 2005.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 2, No 2, March 2012
ISSN (Online): 1694-0814
www.IJCSI.org 40

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

