
Hybrid Genetic Algorithms for University Course

Timetabling

Meysam Shahvali Kohshori1and Mohammad Saniee Abadeh2

 1 D ِ◌epartment of Computer, Izeh Branch, Islamic Azad
University, Izeh, Iran

2 Department of Computer, Tarbiat Modares University
 Tehran, Iran

Abstract
 University course timetabling is one of the important and time
consuming issues that each University is involved with it at the
beginning of each. This problem is in class of NP-hard problem
and is very difficult to solve by classic algorithms. Therefore
optimization techniques are used to solve them and produce
optimal or near optimal feasible solutions instead of exact
solutions. Genetic algorithms, because of multidirectional search
property of them, are considered as an efficient approach for
solving this type of problems. In this paper three new hybrid
genetic algorithms for solving the university course timetabling
problem (UCTP) are proposed: FGARI, FGASA and FGATS. In
proposed algorithms, fuzzy logic is used to measure violation of
soft constraints in fitness function to deal with inherent
uncertainly and vagueness involved in real life data. Also,
randomized iterative local search, simulated annealing and tabu
search are applied, respectively, to improve exploitive search
ability and prevent genetic algorithm to be trapped in local
optimum. The experimental results indicate that the proposed
algorithms are able to produce promising results for the UCTP.
Keywords: University course timetabling problem (UCTP),
genetic algorithm, fuzzy logic, local search, heurestic.

1. Introduction

University course timetabling problem is difficult task
faced by educational institutions. Solving a real world
university timetabling problem manually often requires a
large amount of time and expensive resources [1-7]. In
order to handle the complexity of the problems and to
provide automated support for human timetables, much
research in this area has been invested over the years
[3].The university course timetabling problem involves the
scheduling of classes, students, teachers and rooms at a
fixed number of timeslots, in a way that satisfies a set of set
of constraints, which often makes the problem very hard to
solve in real world circumstances [3-4]. In brief there are
two prominent representative instances of the UCTP
problem: Curriculum based course timetabling and post
enrollment course timetabling, both types of problems have

been frequently solved in the past, as evidenced by many
surveys [4-6]. In curriculum based timetabling, conflicts
between courses are determined by the curricula published
by the University. Conflicts in post enrollment timetabling
are established directly by students who individually enroll
into particular courses. It is very difficult to find a general
and effective solution for timetabling due to the diversity of
the problem, the variance of constraints, and particular
requirements from university to university according to the
characteristics. There is no known deterministic
polynomial time algorithm for the UCTP, since it is an NP-
hard combinatorial optimization problem [3] [8].

Constraints in UCTP can usually be divided into two types
[1-4][9]:

 Hard constraints have to be satisfied under any
circumstances. For example, only one course can be
scheduled in a room at any time slot. Timetables with no
violations of hard constraints are called feasible solutions.

 Soft constraints need to be satisfied as much as possible.
For example, number of course for each group should not
go over two per day. Due to the complexity of the real-
world timetabling problem, the soft constraints may need to
be relaxed since it is not usually possible to generate
solutions without violating some of them. Soft constraints
are usually used within the cost evaluation function to
evaluate how good the solutions are.

A wide variety of papers, from the fields of operational
research and artificial intelligence, have addressed the
broad spectrum of university timetabling problems [11].
Early timetabling research focused on sequential heuristics
which represented a simpler and easier method for solving
graph coloring problems, the principle idea being to
schedule events one by one starting with the most difficult
first [12-13]. Researchers have proposed various

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 2, No 2, March 2012
ISSN (Online): 1694-0814
www.IJCSI.org 446

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

timetabling approaches by using constraint-based methods,
graph-based approaches, cluster-based methods,
population-based approaches, meta-heuristic methods,
multi-criteria approaches, hyper-heuristic/self-adaptive
approaches, case-based reasoning, knowledge-based and
fuzzy-based approaches. A comprehensive review and
recent research directions in timetabling can be found in
[5], [10], and [14]. GAs have been used to solve the UCTP
in the literature [5], [9], [15]. Rossi-Doria et al. [16]
compared different meta-heuristics to solve the UCTP.
They concluded that conventional GAs do not give good
results among a number of approaches developed for the
UCTP. Hence, conventional Gas need to be enhanced to
solve the UCTP.

Population-based algorithms, particularly genetic
algorithms have been the most common solution in recent
years for UCTP. Therefore, in this paper three algorithms
based on genetic algorithm are presented: FGARI, FGATS
and FGASA. In proposed algorithms, fuzzy logic is used to
measure violation of soft constraints in fitness function to
deal with inherent uncertainly and vagueness involved in
real life data. Also, randomized iterative local search,
simulated annealing and tabu search are applied,
respectively, to improve exploitive search ability and
prevent genetic algorithm to be trapped in local optimum.

The rest of this paper is organized as follows. Section 2
briefly describes related work on the UCTP. The UCTP
studied in this paper is described in Section 3. Section 4
presents the proposed methods in this paper. Experimental
results the sensitivity analysis of key parameters and
comparing the proposed GAs with constructive algorithms
of them are reported and discussed in Section 5. Finally,
Section 6 concludes this paper with some discussions on
the future work.

2. Related Works

Several algorithms have been suggested to solve
timetabling Problems. The first set of algorithms is based
on graph coloring heuristics. These algorithms show a great
efficiency in small instances of timetabling problems, but
are not efficient in large instances. Then, random search
techniques, such as genetic algorithms (GA), simulated
annealing (SA), tabu search (TS), etc., were introduced to
solve timetabling problems [2] [5] [17].

In general, there are two types of meta-heuristics
algorithms [5]. The first type is the local area search –based
algorithms and the second type are population-based
algorithms. Each type has some advantages and
disadvantages. Local area-based algorithms are SA [18], a
very large neighborhood search [1], TS [19], and many

more. Usually, local area-based algorithms focus on the
exploitation rather than exploration, which means that they
move in one direction without performing a wider scan of
the search space. Population-based algorithms start with a
number of solutions and refining them to obtain global
optimal solution (s) in the whole search space. Population
based algorithms that are commonly used to deal with the
timetabling problems are evolutionary algorithms (EAS)
[20] particle swarm optimization [19], colony ANT –
Optimization [21], artificial immune system [16] [20], etc.

In recent years, several researchers have used GAs for
UCTP. They increased the efficiency of Gas using
modified genetic operators and techniques LS [22]. In
general, when a simple GA is applied, it may produce
illegal timetables that have duplication and / or missing
events. Quality of solutions produced by population-based
algorithms may not be better than the local area-based
algorithms mainly due to the fact that population-based
algorithms are more concerned with exploration than
exploitation [5] [23].

Population-based algorithm scans solutions in the entire
search space without concentrating on the individuals of
good fitness within a population. In addition, population-
based algorithms may experience premature convergence,
which may lead to them being trapped into local optima.
Other drawback of these algorithms is requiring more time
[21]. However, Gas have several advantages when
compared to other optimization techniques [20]. For
example, the GAs can perform a multidirectional search
using a set of candidate solutions [22]. Different
combinations of local and global based algorithms has been
reported to solve problems in the timetabling literature [16]
[20], [19]. In addition, it is also being increasingly realized
that EAs without incorporation of problem specific
knowledge do not perform as well as mathematical
programming-based algorithms on certain classes of
timetabling problems [17].

 In this paper, we want to combine the good properties of
local- and global-area-based algorithms to solve the UCTP.
We try to make a balance between the exploration ability
(global improvement) of GAs and exploitation ability
(local improvement) of LS. In addition, an external
memory data structure is introduced to store parts of
previous good solutions and reintroduce these stored parts
into offspring in order to enable the proposed GAs to
quickly locate the optimum of a UCTP.

3. Problem Definition

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 2, No 2, March 2012
ISSN (Online): 1694-0814
www.IJCSI.org 447

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

Description of UCTP in this paper is based curriculum that
generally is used in Iran. The problem consists of the
following entities:

Days and timeslots: A certain number of working days per
week are considered. In this paper, the number of working
days is assumed 5. Each day is divided into a fixed number
of timeslots, which are the same for all days. Here the
number of timeslots per day is considered 9, that each of
them is one hour. Therefore, the total number of timeslots
is 45. Timeslots are numbered from1 to 45 as in many
studies is used [3] [5] [20]. In this paper timeslots are

displayed by setT ൌ ሼtଵ, tଶ, … , tସହሽ.

Rooms: Each room has a capacity, expressed in terms of
number of available seats, and special facilities.

Curricula: A curriculum is a group of courses such that
any pair of courses in the group has students in common.
The main feature of courses in the same curriculum is that
they should not overlap.

Professors: Each professor has a specific timetable for
his/her presence in the University and specializes in
offering certain subjects.

Courses: Each course has a fixed period of time and is
related to the particular subject and requires that is held in
room with particular capacity and facilities.

According to above entities, UCTP is allocation of
timeslot, professor and the room to set of courses so that all
desired hard constraints are met and soft constraints are
satisfied as far as possible.

Hard constraints that must be satisfied in order to
keep the timetable feasible are the following:

1. Courses in each curriculum must not have overlap.
2. Each room must not have more than one course in

a specific timeslot.
3. Each professor must not be assigned to more than

one room in a specific timeslot.
4. Each professor must only teach at days he/she is

available at university.
5. A class that is assigned to a course must have

facilities and capacity that the course need.

Soft constraints that should be satisfied in order the
timetable to be considered of high quality are the
following:

1. Each course is assigned to a professor that it is in his area

of expertise.
2. Timetable of each professor should be same as the

timetable that presented by professor.
3. Minimum and maximum number of hours of attendance

of each student per day is satisfied.
4. Lectures belonging to a curriculum should be adjacent to

each other.
5. A class hasn’t scheduled in the last timeslots of a day.
6. Minimum and maximum number of hours of attendance

of each professor is satisfied.
7. Student presence in consecutive hours per day.

4. Proposed Algorithms

In this paper three hybrid genetic algorithms are proposed,
FGARI, FGASA and FGATS that are combination of
genetic algorithm, fuzzy logic and local search algorithms.
The difference between these algorithms is in local search
algorithm of them. In fact, these algorithms are modified
genetic algorithms that general pseudo-code of them has
shown in figure 1.

We use the steady state genetic algorithm model as
mentioned in [11], where only one child solution is
generated with selection, crossover and mutation at each
generation. The child then will be improved by local
search. In the end, the worst population member is replaced
with the new child individual. The main components of
these algorithms are described in following subsections.

Fig. 1General pseudo-code of proposed algorithms

4.1 Chromosome Representation

Encoding of chromosomes for GA model is an essential
factor in success of a GA as it will affect not only the

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 2, No 2, March 2012
ISSN (Online): 1694-0814
www.IJCSI.org 448

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

efficiency and performance of GA but also the speed and
quality of final result.

In this paper a chromosome is represented as a 3	 ൈ
஼ܰmatrix, where ஼ܰ is number of courses. The index of

columns is the identification number of a course and
content of rows of the matrix shows identification number
of the instructor, start timeslot and room successively.
Figure 2 shows the structure of a chromosome.

Fig. 2 Chromosome structure

4.2 Initial Population

The initial population is generated so that the random
properties of solutions are preserved and all hard
constraints are satisfied too.
For this purpose, using the inputs of UCTP a professor-
course matrix, a conflict-course matrix and a room-course
matrix, a professor-timeslot matrix and room-timeslot
matrix are generated.

A professor-course matrix is a	 ௉ܰ 	ൈ 	 ஼ܰ matrix where each
element in the matrix is represented by “0”, “1” or “2”.
The value “0” shows that the professor cannot teach the
course. The value “1” shows that the professor can teach
the lesson but not expert in that course. The value “2”
chows that the professor is expert in the course. ௉ܰ and 	 ஼ܰ
show number of professors and number of courses
respectively.

A conflict-course matrix is a ஼ܰ 	ൈ 	 ஼ܰ matrix where each
element in the matrix is represented by “0” or “1. The value
“0” shows that the courses have no conflict. The value “1”
shows that the courses have conflict.

A room-course matrix is a ோܰ 	ൈ 	 ஼ܰ matrix where each
element in the matrix is represented by “0” or “1. The value
“0” shows that the room is not suitable for the course. The
value “1” shows that the room is suitable for the course.
ோܰ	shows number of rooms.

A professor-timeslot matrix is a ௉ܰ 	ൈ 	45 matrix where
each element in the matrix is represented by “0”, “1” or
“2”. The value “0” shows that the professor don’t attend at
university. The value “1” shows that the professor attends
in university but don’t desire to teach in that timeslot. The

value “2” shows that the professor attends in university and
desire to teach in that timeslot.

A room-timeslot matrix is a ோܰ 	ൈ 	45 matrix where each
element in the matrix is represented by “0” or “1” The
value “0” shows that the room is empty in the timeslot. The
value “1” is not empty in the timeslot.

After defining these matrixes, courses sorted according to
the number of professors that can teach them in ascending
order. Then for each course are randomly selected
professor, timeslot and room, respectively, so that all hard
constraints are satisfied, and as follows:

1. Select a professor based on professor-course matrix.
2. Select a suitable timeslot between the timeslots of the

selected professor form step 1 using professor-timeslot
matrix.

3. Select a suitable room according to room-timeslot matrix
and room-course matrix.

4.3 Fitness Function

Fitness of a solution depends on the satisfying of the hard
and soft constraints. In these algorithms the initial
population, genetic operators and local search algorithms
have defined so that all hard constraints of the all solutions
satisfied. Therefore, the fitness function is depended only
on meeting soft constraints. So, the fitness function is
addressed only by the soft constraints. On the other hand,
the soft constraints are somewhat qualitative, it is vague
and difficult to measure them accurately and there are some
if-then relationships between them, which can describe
easily fuzzy rules. Then, we use fuzzy logic for measuring
soft constrains and define proper member function for each
soft constraint. The fitness function is defined as follow:

ሻܫሺ݊݋݅ݐܿ݊ݑ݂ݏݏ݁݊ݐ݅ܨ ൌ 	෍ݓ௜ߤୗ୭୤୲ഠ	෫ 																																			ሺ1ሻ

଻

௜ୀଵ

 Whereμୗ୭୤୲ഠ	෫ shows the value of member function of i୲୦
soft constraint that has a value in range	ሾ0,1ሿ, and w୧ shows
the weight of i୲୦ soft constraint that is assumed 100 in this
paper for all soft constraints. Therefore the worst value for
fitness of a solution is 700.

 4.4 Selection

In proposed algorithms, tournament selection is used. In
this method, 2 solutions are selected randomly by roulette
wheel. Then best solution between them is selected. The
selection process is applied twice at each generation to
select two parents for reproduction.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 2, No 2, March 2012
ISSN (Online): 1694-0814
www.IJCSI.org 449

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

 4.5 Crossover

Generally, it has been shown that the uniform crossover is
more effective for many problems especially for numerical
optimization problems [9] [21]. In this paper a uniform
crossover operator is used with a probability	 ஼ܲ.Finally, if
the child had violation of hard constraints; we use a repair
function to improve it if possible. Otherwise crossover
operation is repeated.

4.6 Mutation

In this paper random is used with a probability	 ௠ܲ. It
randomly selects a proper timeslot randomly for subject
according to course-timeslot matrix. If the course had
violation of hard constraints, we use a repair function to
improve it if possible. Otherwise crossover operation is
repeated.

4.7 Local Search Algorithms

Three local search algorithms have been presented in this
paper that based of them three hybrid genetic algorithms
have been proposed. All three local search algorithms act
based on following neighborhood structures:

Nଵ: select a professor at random and swap the timeslot of
two courses that related to that professor so that hard
constraints are not violated.

Nଶ: Choose a single course at random and move it to
another random feasible timeslot.

Nଷ: select a course at random and change professor. If it is
necessary change timeslot and room receptively.

Nସ: select a course randomly, and then select a course that
has same length and subject with that. Finally swap
timeslot of them.

Randomized Iterative local search: This algorithm is
used in FGARI algorithm. In each iteration of this
algorithm a list with K element of neighborhood structures,
which mentioned above, is generated randomly. The all
neighborhoods are applied to main solution and fitness of
that is measured for each neighborhood. Best solution is
compared with main solution. If the best solution was
better than the main solution, the main solution is replaced
with best solution. Otherwise the main solution is replaced
with best solution with a very low probability to prevent
local optima.
Pseudo-code of this algorithm is shown in figure 3.

Fig. 3 Pseudo-code of randomized iterative local search algorithm

Simulated annealing algorithm: Simulated annealing
algorithm is used in FGASA as local search algorithm.
Simulated annealing is very sensitive to its parameters and
approaches that used for determine this parameter is very
important. Some of the most important of these parameters
are initial temperature, final temperature and cooling
method.

In this paper, to determine the initial temperature	 ଴ܶ, 100
new solutions are produced through the neighborhood
structures, and then the maximum difference between the
fitness of two consecutive solutions is considered as the
initial temperature. The final temperature 	 ௙ܶ is
assumed0.09	 ଴ܶ. The cooling function according to the
method that proposed in [14] is as follow:

௥ܶାଵ ൌ 	
௥ܶ

1 ൅ ߚ	 ௥ܶ
																																																													ሺ2ሻ

Where ௥ܶ shows the current temperature and ߚ is a fixed
value that is assumed 0.1 in this paper.

This algorithm is iterated once at each temperature.
Pseudo-code of this algorithm is shown in figure 4.

Tabu search algorithm: Tabu search algorithm is used in
FGATS. The newly visited neighborhood lists are added
into the tabu list (which has a fixed length). In this
algorithm, a list with K element of neighborhood structures
is generated randomly. Each neighborhood in the list is
applied Ltimes to main solution consequently. Then the
fitness of the new solution is measured. New solution is
compared with main solution. If the new solution was
better than the main solution, the main solution is replaced

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 2, No 2, March 2012
ISSN (Online): 1694-0814
www.IJCSI.org 450

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

with new solution. Otherwise the main solution is replaced
with new solution with a very low probability to prevent
local optima. Finally the neighborhood list is added into
tabu list. Pseudo-code of this algorithm is shown in figure
5.

Fig. 4 Pseudo-code of simulated annealing algorithm

Fig. 5 Pseudo-code of tabu search algorithm

5. Experimental Results

In this section, we experimentally investigate the
performance of the proposed methods FGARI, FGASA,
and FGATS using an exhaustive simulation. The

performance of these algorithms is measured in terms of
best fitness and execution time. All algorithms were coded
in MATLAB. All the simulations presented in this section
have been conducted on datasets, which were proposed in
the website of the second international timetabling
competition [23] for the timetabling competition. These
datasets are somewhat near to many of the real-world
problem constraints and consistent with the educational
system of Iran. Table 1 presents the data of these datasets
in that were classified in nine different groups. Also, Table
2 demonstrates the values of proposed algorithm
parameters that had been used in simulations. The values of
these parameters have been determined experimentally and
using the experiences of previous researchers in context the
university courses timetabling.

Table 1: Dataset properties

Dataset
 number

Average number
of courses

Average number
of rooms

Average number
of professors

1 30 5 6

2 70 9 13

3 100 12 17

4 150 21 28

5 200 21 32

6 250 27 37

7 300 28 45

8 350 33 53

9 400 35 60

Table 2: Parameter settings in proposed algorithms

value Parameter

0.8 Crossover probability

0.5 Mutation probability

100 Population size

9 Tabu list size

9
Neighborhood structures list
size in FGARI and FGASA

3
Neighborhood structures list
size in FGATS

3 L parameter in FGATS

3000 Maximum number of generation

Three times the numberof courses
Maximum number of iteration
in local search algorithms

200 Average number of courses

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 2, No 2, March 2012
ISSN (Online): 1694-0814
www.IJCSI.org 451

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

Two sets of experiments were carried out in this
study. The first sets of experiments are devoted to
analyze the sensitivity of parameters for the
performance of GA for the UCTP. The second set of
experiments compare the performance of investigated
GAs with or without the local search strategy on the
test UCTPs. For both sets of experiments, there were
5 runs of each algorithm on each dataset and
average values are used.

5.1 Evaluation the Effect of Crossover
Probability Parameter on Proposed GA

Performance of in genetic algorithm is very sensitive to
crossover probability (஼ܲ) parameter. To assess the impact
of this parameter, the proposed genetic algorithm (without
local search phase) is run with four different values (0.2,
0.4, 0.6 and 0.8) for crossover probability. Figure 2 shows
the effect of changing ஼ܲ on GA. In figure 6, the
horizontal axis display the number of generations and
vertical axis shows the fitness of the best solution. As seen
in figure 6, the ability of GA for finding the optimal
solution improves when the value of ஼ܲincreases from 0.2
to 0.8. This occurs because when we choose a large value
for	 ஼ܲ, the possibility of generating new solutions increases
and search is getting wider.

Fig. 6 Fitness of GA algorithm under different values of 	۱۾

5.2 Evaluation the Effect of Mutation Probability
Parameter on Proposed GA

Mutation probability (௠ܲ) is another important parameter
that influence the efficiency of GA. Figure 7 shows the
behavior of GA with different values of ௠ܲ. From Figure 7,
it can be seen that when the value of ௠ܲincreases from 0.1

to 0.5, the performance of GA improves due to the
possibility of generating new solutions increases. However,
when the value of ெܲis further raised, the performance of
GA drops. This occurs because a large value of ௠ܲcause a
suddenly change, and after a few generations, GA may be
trapped in a suboptimal state, and Hence, cannot obtain the
optimal solution.

Fig. 7 Fitness of GA algorithm under different values of 	ܕ۾

5.3 Comparison of the Fitness of FGARI with
GA and RI Algorithms

As described in section IV, FGARI is a hybrid algorithm
based on GA and RI algorithms. In this experiment has
shown that the proposed algorithm FGARI has better
performance than its constructive algorithms (GA and RI).
Figure 8 demonstrates the average fitness of each algorithm
in each generation. From the slope of the GA curve in
figure 8 can be concluded that the GA after a while stuck in
local optimum. However, RI algorithm has the ability to
achieve the optimal solution, but its convergence speed is
very low. By combining GA and RI in FGARI, the speed
of GA and the ability of exploitation RI have been used
simultaneous. The results are shown in Figure 8 confirms
this.

5.4 Comparison of the Fitness of FGASA with
GA and SA Algorithms

Figure 9 displays the performance of FGASA algorithm,
which is combination of GA and SA algorithms, in
comparison with its fundamental algorithms regarding the
fitness. Simulation results show that combining GA and SA
algorithms in FGASA reach a better solution in less time.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 2, No 2, March 2012
ISSN (Online): 1694-0814
www.IJCSI.org 452

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

Also, SA algorithm has low convergence speed, but don’t
trap in local optimum same as RI.

Fig. 8 Fitness of FGARI, RI and GA algorithms in each generation

Fig. 9 Fitness of FGASA, SA and GA algorithms in each generation

5.5 Comparison of the Fitness of FGATS with
GA and TS Algorithms

FGATS has been combined from GA and TS algorithms.
Figure 10 shows that FGATS algorithm has generally
better performance for solving UCTP than its constructive
algorithms (GA and TS).

Fig. 10 Fitness of FGATS, TS and GA algorithms in each generation

5.6 Comparison of the Fitness of Three Proposed
Algorithms (FGARI, FGASA and FGATS)

Figure 11 shows the efficiency of three proposed
algorithm. As mentioned in section VI, the base of the three
algorithms is same and the only difference is in the local
search method that is used in them. As seen in Figure 10,
FGATS has the best performance and FGARI has the worst
performance. However the performance difference is not
very significant and all three algorithms have acceptable
ability to solve the UCTP.

Fig. 11 Fitness of FGARI, FGASA and FGATS algorithms in each
generation

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 2, No 2, March 2012
ISSN (Online): 1694-0814
www.IJCSI.org 453

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

5.7 Comparison of the Fitness of Three Proposed
Algorithms (FGARI, FGASA and FGATS) with
Their Constructive Algorithms on Different
Datasets

Fig. 12 Fitness of FGARI, FGASA, FGATS, RI, SA, TS and GA
algorithms on each datasets of table 1

Figure 12 demonstrates the result of comparison of three
proposed algorithm with their fundamental algorithm on
different datasets in table 1. The horizontal axis shows the
dataset number and vertical axis is the fitness of best
solution that obtained by each algorithm. For achieve the
results shown in figure 12, we had executed all algorithms
for a specific same period of time. From Figure 12, it is
seen that all algorithms have almost the same results for
small datasets. But, this similarity becomes less in larger
datasets. Generally, with increasing the size of datasets,
fitness decrease. However FGATS has the more acceptable
fitness than other algorithm particularly when the dataset is
large

5.8 Comparison of the Execution Time of Three
Proposed Algorithms (FGARI, FGASA and
FGATS) on Different Datasets

Table 3 shows required time for FGARI, FGASA and
FGATS algorithms to satisfy 70% soft constraints (reach
fitness 210) in terms of second on each dataset of table 1.
As mentioned in section VI, the base of these algorithms is
same and the only difference is in the local search method
that is used in them. With regarding the pseudo-code of
three local search algorithms, which have been shown in
figure 3, figure 4 and figure 5, the time complexity of them
is same. Therefore the GA algorithm with TS can find
optimal solution in less time, especially when the dataset is
large.

Table 3: Required time (in terms of second) of FGARI, FGASA and
FGATS algorithms to satisfy 70% soft constraints

Dataset number FGATS FGASA FGARI

1 79 74 73

2 302 312 320

3 598 623 631

4 1476 1682 1785

5 2191 2312 2459

6 2904 3201 3400

7 4025 4216 4561

8 5143 5418 5721

9 6230 6761 7051

6. Conclusions and Future Works

 In this study, we proposed three algorithms FGARI (Fuzzy
Genetic Algorithm guided by Randomized Iterative local
search algorithm), FGASA (Fuzzy Genetic Algorithm
guided by Simulated Annealing algorithm) and FGATS
(Fuzzy Genetic Algorithm guided by Tabu Search
algorithm) for solving UCTP. These algorithms are based
on heuristics RI (randomized iterative), SA (Simulated
Annealing), TS (Tabu Search), GA (Genetic Algorithm)
and fuzzy logic. Due to the random nature of genetic
operators in GA, classical genetic algorithms extremely
violate the hard constraints during the evolution process.
This makes the algorithm convergence time is too long. To
solve this problem, genetic operators have been genetically
modified to not allow any hard constraints are violated, in
other words, the proposed algorithms work on feasible
solutions and try to satisfy the soft constraints as possible.
Also, the classical genetic algorithm because of its high
emphasis on exploration may be trapped in local optimum.
Therefore in the proposed genetic algorithms after applying
the genetic operators, local search methods (RI, SA and
TS) has been used to ability of exploitation of the proposed
GA algorithms can be strengthened.

Because the algorithm work on feasible solutions, the
fitness function is depended only on meeting soft
constrains. But, the soft constraints have not binary
property and they are somewhat qualitative, vague and
uncertain. Also, they are sometimes in conflict with each
other. To overcome this ambiguity and uncertainty, the
fitness of a solution in proposed algorithms is determined
using fuzzy logic by a set of fuzzy rules.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 2, No 2, March 2012
ISSN (Online): 1694-0814
www.IJCSI.org 454

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

In order to test the performance of proposed GAs for the
UCTP, experiments were carried out to analyze the
sensitivity of parameters and the effect of local search
algorithms for the performance of GAs based on a set of
benchmark UCTP instances. Simulation results have shown
that performance of GA is very sensitive to crossover
Probability and mutation probability. Large value for
crossover Probability (near to 0.8) and average value for
mutation probability (0.4 to 0.6) are able to produce good
results. The experimental results show that the proposed
FGATS is competitive and works reasonably well across
all problem instances in comparison with other approaches.
Generally, with the help of the local search, GA is able to
efficiently find optimal or near-optimal solutions for the
UCTP, and hence, can act as a powerful tool for the UCTP.
However, the proposed algorithms with regarding to
assumed constraints and performed simulations have been
shown acceptable performance for solving university
course timetabling but they should be evaluated for more
real environments with more constraints in future.

The idea of a hybrid solution for solving UCTP is very
open. For example, instead the GA in proposed algorithms
optimization ant colony algorithm or multi population GA
can be used. Performance of RI, SA and TS is very
sensitive to neighborhood structures. We can focus on
design more efficient neighborhood structure. Also, given
that the proposed algorithm have been introduced to UCTP,
modified version of this algorithm can designed for solving
university exam timetabling problem. Many uniprocessor
approaches are purposed in literature solving UCTP,
multiprocessor versions of these algorithms can be
considered as future work.

References
[1] Abdullah S. “Heuristic Approaches for University

Timetabling Problems”. PhD thesis, School of Computer
Science and Information Technology, The University of
Nottingham, United Kingdom, 2006.

[2] Shahvali M., and et al. “A fuzzy genetic algorithm with local
search for university course timetabling”, Proc. of
ICMI2011, pp.250-254, 2011.

[3] Yang S, Jat S. N. “Genetic algorithms with guided and local
search strategies for university course timetabling”. IEEE
TSMC, vol. 41, NO. 1, January, 2011.

[4] Abdullah S. and et al, “Using a randomized iterative
improvement algorithm with composite neighborhood
structures”. Proc. of 6th ICMH, pp. 153–169, 2007.

[5] Chaudhuri A, De K. “Fuzzy Genetic Heuristic for University
Course Timetable Problem”. IJASCA, Vol. 2, No. 1, March,
2010.

[6] Daskalaki S, BirbasT, Housos E. “An integer programming
formulation for a case study in university timetabling”.
EJOR, 153, 117–135, 2004.

[7] Khuri S, Walters T, Sugono Y. “A grouping genetic
algorithm for coloring the edges of graphs”. Proc. of the
ACM/SIGAPP Symposium on Applied Computing, ACM
Press, pp.422-427, 2000.

[8] White G, Xie B, Zonjic S. “Using tabu search with longer
term memoryand relaxation to create examination
timetables”. EJOR, Vol.153, No.16, pp.80-91, 2004.

[9] Welsh D. J. A, Powell M. B. “The upper bound for the
chromatic number of a graph and its application to
timetabling problems”. The Computer Journal, vol. 11, pp.
41–47, 1967.

[10] Burke E. K. and et al, “A tabu-search hyper-heuristic for
timetabling and rostering”. Journal of Heuristics. 9(6), pp
451-470, 2003.

[11] Smith KA, Abramson D, Duke D. “Hopfield neural networks
for timetabling: formulations methods, and comparative
results”. CIE,44(2):283–305, 2003.

[12] Cambazard H. and et al,. “Interactively solving school
timetabling problems using extensions of constraint
programming”.Lecture notes in computer science, p. 190–
207, 2005.

[13] Wren A. “Scheduling, Timetabling and rostering—a special
relationship,the practice and theory of automated
timetabling”. Lecture notes in computer science, vol. 1153,
p. 46–76, 1996.

[14] Asmuni H, Burke E. K, Garibaldi J. M. “Fuzzy multiple
heuristicordering for course timetabling”. Proceeding of the
5th UKWI, London, pp. 302–309, 2005.

[15] Burke E. K., and et al.“A Graph-based hyper heuristic for
timetabling problems”.EJOR, 176: 177–192, 2006.

[16] Rossi-Doria O, and et al. “A comparison of the performance
of differentmeta-heuristics on the timetabling problem”.
Proc. of 4th ICPTAT, vol. 2740, pp. 329–351.

[17] Socha K, Knowles J, Samples M. “A max-min ant system for
the university course timetabling problem:. Proc.of the 3rd
IWAA, Vol.2463, pp.1-13, . 2002.

[18] Zervoudakis K, Stamatopoulos P. “A generic object-oriented
constraint-based model for university course timetabling” .
Proc of 3rdICPTAT, pp 28-47, 2001.

[19] Abdullah S., and et al. “A Hybrid EvolutionaryApproach to
the University Course TimetablingProblem”. Proc of the
2007 IEEE EC, pp. 1764–1768, 2007.

[20] Alkan A., Ozcan E.. “Memetic algorithms for timetabling
evolutionary computation”. Proc of the 2003 IEEE CEC, vol.
3, pp. 1796–1802, 2003.

[21] Broder S.“Final examination scheduling”. Com. of the
ACM,7(8): 494–498, 1964.

[22] Ten Eikelder , and et al “Some complexity aspects of
secondary school timetabling problems”. Lecture notes in
computer science,vol. 2079, p. 18–27, 2001.

[23] http://www.cs.qub.ac.uk/itc2007.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 2, No 2, March 2012
ISSN (Online): 1694-0814
www.IJCSI.org 455

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

