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Abstract 
 University course timetabling is one of the important and time 
consuming issues that each University is involved with it at the 
beginning of each. This problem is in class of NP-hard problem 
and is very difficult to solve by classic algorithms. Therefore 
optimization techniques are used to solve them and produce 
optimal or near optimal feasible solutions instead of exact 
solutions.  Genetic algorithms, because of multidirectional search 
property of them, are considered as an efficient approach for 
solving this type of problems.  In this paper three new hybrid 
genetic algorithms for solving the university course timetabling 
problem (UCTP) are proposed: FGARI, FGASA and FGATS. In 
proposed algorithms, fuzzy logic is used to measure violation of 
soft constraints in fitness function to deal with inherent 
uncertainly and vagueness involved in real life data. Also, 
randomized iterative local search, simulated annealing and tabu 
search are applied, respectively, to improve exploitive search 
ability and prevent genetic algorithm to be trapped in local 
optimum. The experimental results indicate that the proposed 
algorithms are able to produce promising results for the UCTP. 
Keywords: University course timetabling problem (UCTP), 
genetic algorithm, fuzzy logic, local search, heurestic. 

1. Introduction 

University course timetabling problem is difficult task 
faced by educational institutions. Solving a real world 
university timetabling problem manually often requires a 
large amount of time and expensive resources [1-7]. In 
order to handle the complexity of the problems and to 
provide automated support for human timetables, much 
research in this area has been invested over the years 
[3].The university course timetabling problem involves the 
scheduling of classes, students, teachers and rooms at a 
fixed number of timeslots, in a way that satisfies a set of set 
of constraints, which often makes the problem very hard to 
solve in real world circumstances [3-4]. In brief there are 
two prominent representative instances of the UCTP 
problem: Curriculum based course timetabling and post 
enrollment course timetabling, both types of problems have 

been frequently solved in the past, as evidenced by many 
surveys [4-6]. In curriculum based timetabling, conflicts 
between courses are determined by the curricula published 
by the University. Conflicts in post enrollment timetabling 
are established directly by students who individually enroll 
into particular courses. It is very difficult to find a general 
and effective solution for timetabling due to the diversity of 
the problem, the variance of constraints, and particular 
requirements from university to university according to the 
characteristics. There is no known deterministic 
polynomial time algorithm for the UCTP, since it is an NP-
hard combinatorial optimization problem [3] [8]. 
 
Constraints in UCTP can usually be divided into two types 
[1-4][9]: 
 
 Hard constraints have to be satisfied under any 
circumstances. For example, only one course can be 
scheduled in a room at any time slot. Timetables with no 
violations of hard constraints are called feasible solutions. 
 
 Soft constraints need to be satisfied as much as possible. 
For example, number of course for each group should not 
go over two per day. Due to the complexity of the real-
world timetabling problem, the soft constraints may need to 
be relaxed since it is not usually possible to generate 
solutions without violating some of them. Soft constraints 
are usually used within the cost evaluation function to 
evaluate how good the solutions are. 
 
A wide variety of papers, from the fields of operational 
research and artificial intelligence, have addressed the 
broad spectrum of university timetabling problems [11]. 
Early timetabling research focused on sequential heuristics 
which represented a simpler and easier method for solving 
graph coloring problems, the principle idea being to 
schedule events one by one starting with the most difficult 
first [12-13]. Researchers have proposed various 
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timetabling approaches by using constraint-based methods, 
graph-based approaches, cluster-based methods, 
population-based approaches, meta-heuristic methods, 
multi-criteria approaches, hyper-heuristic/self-adaptive 
approaches, case-based reasoning, knowledge-based and 
fuzzy-based approaches. A comprehensive review and 
recent research directions in timetabling can be found in 
[5], [10], and [14]. GAs have been used to solve the UCTP 
in the literature [5], [9], [15]. Rossi-Doria et al. [16] 
compared different meta-heuristics to solve the UCTP. 
They concluded that conventional GAs do not give good 
results among a number of approaches developed for the 
UCTP. Hence, conventional Gas need to be enhanced to 
solve the UCTP. 
 
Population-based algorithms, particularly genetic 
algorithms have been the most common solution in recent 
years for UCTP. Therefore, in this paper three algorithms 
based on genetic algorithm are presented: FGARI, FGATS 
and FGASA. In proposed algorithms, fuzzy logic is used to 
measure violation of soft constraints in fitness function to 
deal with inherent uncertainly and vagueness involved in 
real life data. Also, randomized iterative local search, 
simulated annealing and tabu search are applied, 
respectively, to improve exploitive search ability and 
prevent genetic algorithm to be trapped in local optimum. 
 
The rest of this paper is organized as follows. Section 2 
briefly describes related work on the UCTP. The UCTP 
studied in this paper is described in Section 3. Section 4 
presents the proposed methods in this paper. Experimental 
results the sensitivity analysis of key parameters and 
comparing the proposed GAs with constructive algorithms 
of them are reported and discussed in Section 5. Finally, 
Section 6 concludes this paper with some discussions on 
the future work. 

2. Related Works 

Several algorithms have been suggested to solve 
timetabling Problems. The first set of algorithms is based 
on graph coloring heuristics. These algorithms show a great 
efficiency in small instances of timetabling problems, but 
are not efficient in large instances. Then, random search 
techniques, such as genetic algorithms (GA), simulated 
annealing (SA), tabu search (TS), etc., were introduced to 
solve timetabling problems [2] [5] [17]. 
 
In general, there are two types of meta-heuristics 
algorithms [5]. The first type is the local area search –based 
algorithms and the second type are population-based 
algorithms. Each type has some advantages and 
disadvantages. Local area-based algorithms are SA [18], a 
very large neighborhood search [1], TS [19], and many 

more. Usually, local area-based algorithms focus on the 
exploitation rather than exploration, which means that they 
move in one direction without performing a wider scan of 
the search space. Population-based algorithms start with a 
number of solutions and refining them to obtain global 
optimal solution (s) in the whole search space. Population 
based algorithms that are commonly used to deal with the 
timetabling problems are evolutionary algorithms (EAS) 
[20] particle swarm optimization [19], colony ANT – 
Optimization [21], artificial immune system [16] [20], etc. 
 
In recent years, several researchers have used GAs for 
UCTP. They increased the efficiency of Gas using 
modified genetic operators and techniques LS [22]. In 
general, when a simple GA is applied, it may produce 
illegal timetables that have duplication and / or missing 
events. Quality of solutions produced by population-based 
algorithms may not be better than the local area-based 
algorithms mainly due to the fact that population-based 
algorithms are more concerned with exploration than 
exploitation [5] [23]. 
 
Population-based algorithm scans solutions in the entire 
search space without concentrating on the individuals of 
good fitness within a population. In addition, population-
based algorithms may experience premature convergence, 
which may lead to them being trapped into local optima. 
Other drawback of these algorithms is requiring more time 
[21]. However, Gas have several advantages when 
compared to other optimization techniques [20]. For 
example, the GAs can perform a multidirectional search 
using a set of candidate solutions [22]. Different 
combinations of local and global based algorithms has been 
reported to solve problems in the timetabling literature [16] 
[20], [19]. In addition, it is also being increasingly realized 
that EAs without incorporation of problem specific 
knowledge do not perform as well as mathematical 
programming-based algorithms on certain classes of 
timetabling problems [17]. 
 
 In this paper, we want to combine the good properties of 
local- and global-area-based algorithms to solve the UCTP. 
We try to make a balance between the exploration ability 
(global improvement) of GAs and exploitation ability 
(local improvement) of LS. In addition, an external 
memory data structure is introduced to store parts of 
previous good solutions and reintroduce these stored parts 
into offspring in order to enable the proposed GAs to 
quickly locate the optimum of a UCTP. 

3. Problem Definition 
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Description of UCTP in this paper is based curriculum that 
generally is used in Iran. The problem consists of the 
following entities: 
 
Days and timeslots: A certain number of working days per 
week are considered. In this paper, the number of working 
days is assumed 5. Each day is divided into a fixed number 
of timeslots, which are the same for all days. Here the 
number of timeslots per day is considered 9, that each of 
them is one hour. Therefore, the total number of timeslots 
is 45. Timeslots are numbered from1 to 45 as in many 
studies is used [3] [5] [20]. In this paper timeslots are 

displayed by setT ൌ ሼtଵ, tଶ, … , tସହሽ. 
 
Rooms: Each room has a capacity, expressed in terms of 
number of available seats, and special facilities. 
 
Curricula: A curriculum is a group of courses such that 
any pair of courses in the group has students in common. 
The main feature of courses in the same curriculum is that 
they should not overlap. 
 
Professors: Each professor has a specific timetable for 
his/her presence in the University and specializes in 
offering certain subjects. 
 
Courses: Each course has a fixed period of time and is 
related to the particular subject and requires that is held in 
room with particular capacity and facilities. 
 
According to above entities, UCTP is allocation of 
timeslot, professor and the room to set of courses so that all 
desired hard constraints are met and soft constraints are 
satisfied as far as possible. 
 
Hard constraints that must be satisfied in order to 
keep the timetable feasible are the following: 
 
1. Courses in each curriculum must not have overlap. 
2. Each room must not have more than one course in 

a specific timeslot. 
3. Each professor must not be assigned to more than 

one room in a specific timeslot. 
4. Each professor must only teach at days he/she is 

available at university. 
5. A class that is assigned to a course must have 

facilities and capacity that the course need. 
 

Soft constraints that should be satisfied in order the 
timetable to be considered of high quality are the 
following: 

 
1. Each course is assigned to a professor that it is in his area 

of expertise. 
2. Timetable of each professor should be same as the 

timetable that presented by professor. 
3. Minimum and maximum number of hours of attendance 

of each student per day is satisfied. 
4. Lectures belonging to a curriculum should be adjacent to 

each other. 
5. A class hasn’t scheduled in the last timeslots of a day. 
6. Minimum and maximum number of hours of attendance 

of each professor is satisfied. 
7. Student presence in consecutive hours per day.  

4. Proposed Algorithms 

In this paper three hybrid genetic algorithms are proposed, 
FGARI, FGASA and FGATS that are combination of 
genetic algorithm, fuzzy logic and local search algorithms. 
The difference between these algorithms is in local search 
algorithm of them. In fact, these algorithms are modified 
genetic algorithms that general pseudo-code of them has 
shown in figure 1. 
 
We use the steady state genetic algorithm model as 
mentioned in [11], where only one child solution is 
generated with selection, crossover and mutation at each 
generation. The child then will be improved by local 
search. In the end, the worst population member is replaced 
with the new child individual. The main components of 
these algorithms are described in following subsections. 

Fig. 1General pseudo-code of proposed algorithms 
 

4.1 Chromosome Representation 

Encoding of chromosomes for GA model is an essential 
factor in success of a GA as it will affect not only the 

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 2, No 2, March 2012 
ISSN (Online): 1694-0814 
www.IJCSI.org 448

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.



efficiency and performance of GA but also the speed and 
quality of final result. 
 
In this paper a chromosome is represented as a 3	 ൈ
஼ܰmatrix, where ஼ܰ is number of courses. The index of 

columns is the identification number of a course and 
content of rows of the matrix shows identification number 
of the instructor, start timeslot and room successively. 
Figure 2 shows the structure of a chromosome. 
 

 

Fig. 2 Chromosome structure 

4.2 Initial Population 

The initial population is generated so that the random 
properties of solutions are preserved and all hard 
constraints are satisfied too. 
For this purpose, using the inputs of UCTP a professor-
course matrix, a conflict-course matrix and a room-course 
matrix, a professor-timeslot matrix and room-timeslot 
matrix are generated.  
 
A professor-course matrix is a	 ௉ܰ 	ൈ 	 ஼ܰ  matrix where each 
element in the matrix is represented by “0”, “1” or “2”.  
The value “0” shows that the professor cannot teach the 
course. The value “1” shows that the professor can teach 
the lesson but not expert in that course. The value “2” 
chows that the professor is expert in the course. ௉ܰ and 	 ஼ܰ 
show number of professors and number of courses 
respectively. 
 
A conflict-course matrix is a ஼ܰ 	ൈ 	 ஼ܰ matrix where each 
element in the matrix is represented by “0” or “1. The value 
“0” shows that the courses have no conflict. The value “1” 
shows that the courses have conflict.  
 
A room-course matrix is a ோܰ 	ൈ 	 ஼ܰ matrix where each 
element in the matrix is represented by “0” or “1. The value 
“0” shows that the room is not suitable for the course. The 
value “1” shows that the room is suitable for the course. 
ோܰ	shows number of rooms. 

 
A professor-timeslot matrix is a ௉ܰ 	ൈ 	45 matrix where 
each element in the matrix is represented by “0”, “1” or 
“2”.  The value “0” shows that the professor don’t attend at 
university. The value “1” shows that the professor attends 
in university but don’t desire to teach in that timeslot. The 

value “2” shows that the professor attends in university and 
desire to teach in that timeslot. 
 
A room-timeslot matrix is a ோܰ 	ൈ 	45 matrix where each 
element in the matrix is represented by “0” or “1” The 
value “0” shows that the room is empty in the timeslot. The 
value “1” is not empty in the timeslot. 
 
After defining these matrixes, courses sorted according to 
the number of professors that can teach them in ascending 
order. Then for each course are randomly selected 
professor, timeslot and room, respectively, so that all hard 
constraints are satisfied, and as follows: 
 
1. Select a professor based on professor-course matrix. 
2. Select a suitable timeslot between the timeslots of the 

selected professor form step 1 using professor-timeslot 
matrix. 

3. Select a suitable room according to room-timeslot matrix 
and room-course matrix. 

4.3 Fitness Function 

Fitness of a solution depends on the satisfying of the hard 
and soft constraints. In these algorithms the initial 
population, genetic operators and local search algorithms 
have defined so that all hard constraints of the all solutions 
satisfied. Therefore, the fitness function is depended only 
on meeting soft constraints. So, the fitness function is 
addressed only by the soft constraints. On the other hand, 
the soft constraints are somewhat qualitative, it is vague 
and difficult to measure them accurately and there are some 
if-then relationships between them, which can describe 
easily fuzzy rules. Then, we use fuzzy logic for measuring 
soft constrains and define proper member function for each 
soft constraint. The fitness function is defined as follow: 
 

ሻܫሺ݊݋݅ݐܿ݊ݑ݂ݏݏ݁݊ݐ݅ܨ ൌ 	෍ݓ௜ߤୗ୭୤୲ഠ	෫ 																																			ሺ1ሻ

଻

௜ୀଵ

 

 

 Whereμୗ୭୤୲ഠ	෫  shows the value of member function of i୲୦ 
soft constraint that has a value in range	ሾ0,1ሿ, and w୧ shows 
the weight of i୲୦ soft constraint that is assumed 100 in this 
paper for all soft constraints. Therefore the worst value for 
fitness of a solution is 700. 

 4.4 Selection 

In proposed algorithms, tournament selection is used.  In 
this method, 2 solutions are selected randomly by roulette 
wheel. Then best solution between them is selected. The 
selection process is applied twice at each generation to 
select two parents for reproduction. 
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 4.5 Crossover 

Generally, it has been shown that the uniform crossover is 
more effective for many problems especially for numerical 
optimization problems [9] [21]. In this paper a uniform 
crossover operator is used with a probability	 ஼ܲ.Finally, if 
the child had violation of hard constraints; we use a repair 
function to improve it if possible. Otherwise crossover 
operation is repeated. 

4.6 Mutation 

In this paper random is used with a probability	 ௠ܲ. It 
randomly selects a proper timeslot randomly for subject 
according to course-timeslot matrix. If the course had 
violation of hard constraints, we use a repair function to 
improve it if possible. Otherwise crossover operation is 
repeated. 

4.7 Local Search Algorithms 

Three local search algorithms have been presented in this 
paper that based of them three hybrid genetic algorithms 
have been proposed. All three local search algorithms act 
based on following neighborhood structures: 
 
Nଵ: select a professor at random and swap the timeslot of 
two courses that related to that professor so that hard 
constraints are not violated. 
 
Nଶ: Choose a single course at random and move it to 
another random feasible timeslot. 
 
Nଷ: select a course at random and change professor. If it is 
necessary change timeslot and room receptively. 
 
Nସ: select a course randomly, and then select a course that 
has same length and subject with that. Finally swap 
timeslot of them. 
 
Randomized Iterative local search: This algorithm is 
used in FGARI algorithm. In each iteration of this 
algorithm a list with K  element of neighborhood structures, 
which mentioned above, is generated randomly. The all 
neighborhoods are applied to main solution and fitness of 
that is measured for each neighborhood. Best solution is 
compared with main solution. If the best solution was 
better than the main solution, the main solution is replaced 
with best solution. Otherwise the main solution is replaced 
with best solution with a very low probability to prevent 
local optima.  
Pseudo-code of this algorithm is shown in figure 3. 
 

 

Fig. 3 Pseudo-code of randomized iterative local search algorithm 

Simulated annealing algorithm: Simulated annealing 
algorithm is used in FGASA as local search algorithm. 
Simulated annealing is very sensitive to its parameters and 
approaches that used for determine this parameter is very 
important. Some of the most important of these parameters 
are initial temperature, final temperature and cooling 
method.  
 
In this paper, to determine the initial temperature	 ଴ܶ, 100 
new solutions are produced through the neighborhood 
structures, and then the maximum difference between the 
fitness of two consecutive solutions is considered as the 
initial temperature. The final temperature 	 ௙ܶ is 
assumed0.09	 ଴ܶ. The cooling function according to the 
method that proposed in [14] is as follow: 
 

௥ܶାଵ ൌ 	
௥ܶ

1 ൅ ߚ	 ௥ܶ
																																																													ሺ2ሻ 

 
Where ௥ܶ shows the current temperature and ߚ is a fixed 
value that is assumed 0.1 in this paper.  
 
This algorithm is iterated once at each temperature. 
Pseudo-code of this algorithm is shown in figure 4. 
 
Tabu search algorithm: Tabu search algorithm is used in 
FGATS. The newly visited neighborhood lists are added 
into the tabu list (which has a fixed length). In this 
algorithm, a list with K  element of neighborhood structures 
is generated randomly. Each neighborhood in the list is 
applied Ltimes to main solution consequently. Then the 
fitness of the new solution is measured. New solution is 
compared with main solution. If the new solution was 
better than the main solution, the main solution is replaced 
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with new solution. Otherwise the main solution is replaced 
with new solution with a very low probability to prevent 
local optima. Finally the neighborhood list is added into 
tabu list. Pseudo-code of this algorithm is shown in figure 
5. 
 

 

Fig. 4 Pseudo-code of simulated annealing algorithm 

 

Fig. 5 Pseudo-code of tabu search algorithm 

5. Experimental Results 

In this section, we experimentally investigate the 
performance of the proposed methods FGARI, FGASA, 
and FGATS using an exhaustive simulation. The 

performance of these algorithms is measured in terms of 
best fitness and execution time. All algorithms were coded 
in MATLAB. All the simulations presented in this section 
have been conducted on datasets, which were proposed in 
the website of the second international timetabling 
competition [23] for the timetabling competition. These 
datasets are somewhat near to many of the real-world 
problem constraints and consistent with the educational 
system of Iran. Table 1 presents the data of these datasets 
in that were classified in nine different groups.  Also, Table 
2 demonstrates the values of proposed algorithm 
parameters that had been used in simulations. The values of 
these parameters have been determined experimentally and 
using the experiences of previous researchers in context the 
university courses timetabling.  

Table 1: Dataset properties 

Dataset 
 number 

Average number 
of courses 

Average number 
of rooms 

Average number 
of professors 

1 30 5 6 

2 70 9 13 

3 100 12 17 

4 150 21 28 

5 200 21 32 

6 250 27 37 

7 300 28 45 

8 350 33 53 

9 400 35 60 

Table 2: Parameter settings in proposed algorithms 

value  Parameter  

0.8  Crossover probability  

0.5  Mutation probability  

100  Population size  

9  Tabu list size  

9  
Neighborhood structures list 
size in FGARI and FGASA 

3  
Neighborhood structures list 
size in FGATS 

3  L parameter in FGATS  

3000  Maximum number of generation  

Three times the numberof courses 
Maximum number of iteration 
in local search algorithms 

200  Average number of courses  
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Two sets of experiments were carried out in this 
study. The first sets of experiments are devoted to 
analyze the sensitivity of parameters for the 
performance of GA for the UCTP. The second set of 
experiments compare the performance of investigated 
GAs with or without the local search strategy on the 
test UCTPs. For both sets of experiments, there were 
5 runs of each algorithm on each dataset and 
average values are used.  

5.1 Evaluation the Effect of Crossover 
Probability Parameter on Proposed GA  

Performance of in genetic algorithm is very sensitive to 
crossover probability ( ஼ܲ) parameter. To assess the impact 
of this parameter, the proposed genetic algorithm (without 
local search phase) is run with four different values (0.2, 
0.4, 0.6 and 0.8) for crossover probability. Figure 2 shows 
the effect of changing  ஼ܲ on GA. In figure 6, the 
horizontal axis display the number of generations and 
vertical axis shows the fitness of the best solution. As seen 
in figure 6, the ability of GA for finding the optimal 
solution improves when the value of ஼ܲincreases from 0.2 
to 0.8. This occurs because when we choose a large value 
for	 ஼ܲ, the possibility of generating new solutions increases 
and search is getting wider. 

 

Fig. 6 Fitness of GA algorithm under different values of 	۱۾ 

5.2 Evaluation the Effect of Mutation Probability 
Parameter on Proposed GA  

Mutation probability ( ௠ܲ) is another important parameter 
that influence the efficiency of GA. Figure 7 shows the 
behavior of GA with different values of ௠ܲ. From Figure 7, 
it can be seen that when the value of ௠ܲincreases from 0.1 

to 0.5, the performance of GA improves due to the 
possibility of generating new solutions increases. However, 
when the value of ெܲis further raised, the performance of 
GA drops. This occurs because a large value of ௠ܲcause a 
suddenly change, and after a few generations, GA may be 
trapped in a suboptimal state, and Hence, cannot obtain the 
optimal solution. 

 

Fig. 7 Fitness of GA algorithm under different values of 	ܕ۾ 

5.3 Comparison of the Fitness of FGARI with 
GA and RI Algorithms 

As described in section IV, FGARI is a hybrid algorithm 
based on GA and RI algorithms. In this experiment has 
shown that the proposed algorithm FGARI has better 
performance than its constructive algorithms (GA and RI). 
Figure 8 demonstrates the average fitness of each algorithm 
in each generation. From the slope of the GA curve in 
figure 8 can be concluded that the GA after a while stuck in 
local optimum. However, RI algorithm has the ability to 
achieve the optimal solution, but its convergence speed is 
very low. By combining GA and RI in FGARI, the speed 
of GA and the ability of exploitation RI have been used 
simultaneous. The results are shown in Figure 8 confirms 
this. 

5.4 Comparison of the Fitness of FGASA with 
GA and SA Algorithms 

Figure 9 displays the performance of FGASA algorithm, 
which is combination of GA and SA algorithms, in 
comparison with its fundamental algorithms regarding the 
fitness. Simulation results show that combining GA and SA 
algorithms in FGASA reach a better solution in less time. 
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Also, SA algorithm has low convergence speed, but don’t 
trap in local optimum same as RI. 

 

Fig. 8 Fitness of FGARI, RI and GA algorithms in each generation 

 

 

Fig. 9 Fitness of FGASA, SA and GA algorithms in each generation 

5.5 Comparison of the Fitness of FGATS with 
GA and TS Algorithms 

FGATS has been combined from GA and TS algorithms. 
Figure 10 shows that FGATS algorithm has generally 
better performance for solving UCTP than its constructive 
algorithms (GA and TS).  
 

 

Fig. 10 Fitness of FGATS, TS and GA algorithms in each generation 

5.6 Comparison of the Fitness of Three Proposed 
Algorithms (FGARI, FGASA and FGATS)  

Figure 11 shows the efficiency of three proposed 
algorithm. As mentioned in section VI, the base of the three 
algorithms is same and the only difference is in the local 
search method that is used in them. As seen in Figure 10, 
FGATS has the best performance and FGARI has the worst 
performance. However the performance difference is not 
very significant and all three algorithms have acceptable 
ability to solve the UCTP. 
 

 

Fig. 11 Fitness of FGARI, FGASA and FGATS algorithms in each 
generation 

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 2, No 2, March 2012 
ISSN (Online): 1694-0814 
www.IJCSI.org 453

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.



5.7 Comparison of the Fitness of Three Proposed 
Algorithms (FGARI, FGASA and FGATS) with 
Their Constructive Algorithms on Different 
Datasets 

 

Fig. 12 Fitness of FGARI, FGASA, FGATS, RI, SA, TS and GA 
algorithms on each datasets of table 1 

Figure 12 demonstrates the result of comparison of three 
proposed algorithm with their fundamental algorithm on 
different datasets in table 1. The horizontal axis shows the 
dataset number and vertical axis is the fitness of best 
solution that obtained by each algorithm. For achieve the 
results shown in figure 12, we had executed all algorithms 
for a specific same period of time. From Figure 12, it is 
seen that all algorithms have almost the same results for 
small datasets. But, this similarity becomes less in larger 
datasets. Generally, with increasing the size of datasets, 
fitness decrease. However FGATS has the more acceptable 
fitness than other algorithm particularly when the dataset is 
large 

5.8 Comparison of the Execution Time of Three 
Proposed Algorithms (FGARI, FGASA and 
FGATS) on Different Datasets 

Table 3 shows required time for FGARI, FGASA and 
FGATS algorithms to satisfy 70% soft constraints (reach 
fitness 210) in terms of second on each dataset of table 1. 
As mentioned in section VI, the base of these algorithms is 
same and the only difference is in the local search method 
that is used in them. With regarding the pseudo-code of 
three local search algorithms, which have been shown in 
figure 3, figure 4 and figure 5, the time complexity of them 
is same. Therefore the GA algorithm with TS can find 
optimal solution in less time, especially when the dataset is 
large.  

Table 3: Required time (in terms of second) of FGARI, FGASA and 
FGATS algorithms to satisfy 70% soft constraints 

Dataset number FGATS FGASA FGARI 

1 79 74 73 

2 302 312 320 

3 598 623 631 

4 1476 1682 1785 

5 2191 2312 2459 

6 2904 3201 3400 

7 4025 4216 4561 

8 5143 5418 5721 

9 6230 6761 7051 

6. Conclusions and Future Works 

 In this study, we proposed three algorithms FGARI (Fuzzy 
Genetic Algorithm guided by Randomized Iterative local 
search algorithm), FGASA (Fuzzy Genetic Algorithm 
guided by Simulated Annealing algorithm) and FGATS 
(Fuzzy Genetic Algorithm guided by Tabu Search 
algorithm) for solving UCTP. These algorithms are based 
on heuristics RI (randomized iterative), SA (Simulated 
Annealing), TS (Tabu Search), GA (Genetic Algorithm) 
and fuzzy logic. Due to the random nature of genetic 
operators in GA, classical genetic algorithms extremely 
violate the hard constraints during the evolution process. 
This makes the algorithm convergence time is too long. To 
solve this problem, genetic operators have been genetically 
modified to not allow any hard constraints are violated, in 
other words, the proposed algorithms work on feasible 
solutions and try to satisfy the soft constraints as possible. 
Also, the classical genetic algorithm because of its high 
emphasis on exploration may be trapped in local optimum. 
Therefore in the proposed genetic algorithms after applying 
the genetic operators, local search methods (RI, SA and 
TS) has been used to ability of exploitation of the proposed 
GA algorithms can be strengthened. 
 
Because the algorithm work on feasible solutions, the 
fitness function is depended only on meeting soft 
constrains. But, the soft constraints have not binary 
property and they are somewhat qualitative, vague and 
uncertain. Also, they are sometimes in conflict with each 
other. To overcome this ambiguity and uncertainty, the 
fitness of a solution in proposed algorithms is determined 
using fuzzy logic by a set of fuzzy rules. 
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In order to test the performance of proposed GAs for the 
UCTP, experiments were carried out to analyze the 
sensitivity of parameters and the effect of local search 
algorithms for the performance of GAs based on a set of 
benchmark UCTP instances. Simulation results have shown 
that performance of GA is very sensitive to crossover 
Probability and mutation probability. Large value for 
crossover Probability (near to 0.8) and average value for 
mutation probability (0.4 to 0.6) are able to produce good 
results. The experimental results show that the proposed 
FGATS is competitive and works reasonably well across 
all problem instances in comparison with other approaches. 
Generally, with the help of the local search, GA is able to 
efficiently find optimal or near-optimal solutions for the 
UCTP, and hence, can act as a powerful tool for the UCTP. 
However, the proposed algorithms with regarding to 
assumed constraints and performed simulations have been 
shown acceptable performance for solving university 
course timetabling but they should be evaluated for more 
real environments with more constraints in future.  
 
The idea of a hybrid solution for solving UCTP is very 
open. For example, instead the GA in proposed algorithms 
optimization ant colony algorithm or multi population GA 
can be used. Performance of RI, SA and TS is very 
sensitive to neighborhood structures. We can focus on 
design more efficient neighborhood structure. Also, given 
that the proposed algorithm have been introduced to UCTP, 
modified version of this algorithm can designed for solving 
university exam timetabling problem. Many uniprocessor 
approaches are purposed in literature solving UCTP, 
multiprocessor versions of these algorithms can be 
considered as future work. 
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