
Information system subsystems execution and development
order algorithm implementation and analysis

Robert Kudelić1, Alen Lovrenčić2 and Mladen Konecki3

1 Faculty of Organization and Computer Science, University of Zagreb, Varaždin, 42000, Republic of Croatia

2 Faculty of Organization and Computer Science, University of Zagreb, Varaždin, 42000, Republic of Croatia

3 Faculty of Organization and Computer Science, University of Zagreb, Varaždin, 42000, Republic of Croatia

Abstract
In our previous research we have constructed theoretical
foundations for automated approach that can determine
information system subsystems execution and development order
according to data class interactions. In this paper, we will, from
those theoretical foundations, develop C# algorithm through
which we can see its real time behavior and calculate complexity.
Finally, after algorithm analysis we will conclude with our plans
for further work.
Keywords: Information System, Subsystem, Development,
Execution, Order, Algorithm, Analysis.

1. Introduction

Determining right development and execution order of
information system subsystems, according to its data class
creation and consumption [1], is a problem that has its
roots in graph theory. Therefore, when we tried to solve
this problem first thing we did was to look for the solution
in graph theory. After some time we have found some
solutions that are similar to our problem. Topological sort,
as it can be seen in [2, 3, 4, 5], is an algorithm for directed
acyclic graphs (DAG), where each node is sorted into a
linear order observing the nodes precedence constraint [1].
However, data in an information system often circulates
through several subsystems, going back and forth several
times and since topological sort only works on DAG and
cannot be applied to cycles, we could not implement it in
our solution [1]. Also, a well-known problem in graph
theory is the Hamiltonian path problem, which seeks a
path that visits each node exactly once [1], as it can be
seen in [6, 7, 8, 9]. Nevertheless, since this path or cycle,
in case of the Hamiltonian cycle, does not eliminate cycles
through linear ordering of nodes but rather seeks a path
that visits each node only once, searching for this path
could not be used in our case either [1]. This can be
explained by the fact that graph that represents the
problem we wanted to solve typically does not contain

those paths, since in our linear order adjacent nodes do not
have to be connected [1]. We could not find appropriate
existing solution, therefore we have developed, as it can be
seen in [1], new algorithm that analyzes a directed cyclic
graph (DCG), which represents information system
subsystems data class interaction, and provides us with the
linear order of graph nodes (information system
subsystems) with a minimal number of backward
connections. In this paper we will implement
aforementioned algorithm in C# programming language,
thus we will be able to analyze developed algorithm and
see its real time behavior in one of the most used
programming languages today.

2. Basic notions

In this section we will give basic notions that are necessary
to understand algorithm implementation that has been
done in this paper. Firstly, we will briefly describe
problem solved in [1] so it is clear what we are talking
about. Secondly, we will lay out results, from our previous
research that can be found in [1], that are needed for
algorithm implementation. Our problem is defined with
directed cyclic graph G = (V, E), where E is the edge
between information system subsystems that represents
data classes circulating between those subsystems and V
are vertices that represent the actual IS subsystems [1] that
are created according to the algorithm for information
system decomposition proposed by Lovrenčić in [10, 11].
Also, DCG has a degree on each edge where D(E) ≥ 1 [1].
The problem arises when we want to know which of the
information system subsystems should be implemented
and executed first. For example, let us assume that linear
order (LO) of G, as it can be seen in [1],

LOሺGሻ ≔ ሼISsଵ, … , ISs୧ିଵ, ISs୧ሽ, (1)
is in our case,

,ଵݏܵܫሼܱܮ ,ଶݏܵܫ ,ଷݏܵܫ ,ସݏܵܫ ହሽ. (2)ݏܵܫ
Also, relation for our graph G [1] looks as follows,

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 2, No 3, March 2012
ISSN (Online): 1694-0814
www.IJCSI.org 17

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

1 → 3ሾ2ሿ 1 → 2ሾ2ሿ
2 → 3ሾ8ሿ 2 → 1ሾ1ሿ
3 → 1ሾ1ሿ 3 → 2ሾ3ሿ 3 → 4ሾ2ሿ
4 → 2ሾ3ሿ 4 → 5ሾ1ሿ
5 → 2ሾ1ሿ

. (3)

Now, as it can be seen from Eq. (2) and (3). ISs2 is
implemented before ISs3, but, ISs2 needs data from ISs3 to
function properly [1]. This means that ISs2 needs to work
with data that has not been created yet and since ISs3
creates more data for ISs2, ISs3 should be implemented and
executed first [1]. From previous example we can clearly
see that information system subsystems can't be
implemented and tested adequately if those same
subsystems do not poses data they need to work with [1].
Also, if subsystems would execute inadequately, like we
have previously described, we would have unnecessary
waiting for data to be processed which is not at all
desirable. Therefore, we have developed algorithm, as it
can be seen in [1], which solves this problem. Algorithm is
divided into two phases [1]:

 determination of starting linear order,
 starting linear order improvement.

In the following section we will quickly present both
phases, for full description see [1]. Determination of
starting linear order is basically trying to, through
heuristics (greedy algorithm) [5], guess a solution that is as
close as possible to final linear order. Firstly, it brings
forward, in LO, all subsystems that are creating large
amounts (maximum) of data classes,

max	ሾݒ௜
௢௨௧
ሱሮ ሻ௜ሿ. (4)ܧሺܦ

Secondly, if we encounter equal number of data classes we
are then taking into consideration data class consumption
and are pushing back subsystems that are consuming large
amounts of data classes,

min ቂݒ௝
௜௡
→ ሻ௝ቃ. (5)ܧሺܦ

Finally, if both of those are equal then it is of no
consequence which subsystem will take precedence in
linear order of development and execution. Starting linear
order improvement phase is gradually correcting starting
linear order until we can't make any more improvements.
Improvements are made by constantly applying the
following rule,
∑൫൛ݔܽ݉ ௣ି௞൯ܿܤ௣൫ݏܵܫൣ െ ௣൯൧ܿܨ௣ି௞൫ݏܵܫ

௣ିଵ
௞ୀଵ ൟ ൑ 0൯, (6)

for which theoretical foundations can be found in [1].
Simply put, this rule constantly searches previously found
linear order for a permutation which will give us less
backward connections (BC). The first time(first pass) this
rule is not valid means that we have found our final
solution, since we cannot make any more adjustment on
linear order that would give less BC. See [1] for
calculation example and detailed explanation of theoretical
foundations mentioned above. Now, when we know how
this algorithm works in theory we will implement it in

practice so we can analyze it and ascertain its real time
behavior and complexity.

3. Algorithm implementation and analysis

In this section we will present implemented C# algorithm.
Algorithm is implemented in C#, for reasons described in
[1] conclusion and partly in this papers introduction. We
will not present entire class that is responsible for making
calculations since there is no point in presenting
instantiations, data manipulation, temporary variables, etc.
outside main algorithm. Therefore, we will present only
core algorithm which is relevant for our analysis. First we
calculate out-degree for subsystems in graph G = (V, E)
given by Eq. (3) according to,

∑ ሻప௝̅ܧሺܦ
௡
௝ୀଵ , (7)

as described in [1].
private void rac_OutD()
{

int suma = 0;
for (int i = 0; i < DataGridView.RowCount; i++)
{
suma = 0;
tMatrSus1[i,0]=DataGridView.Rows[i].HeaderCell.Valu

e;
for (int j = 0; j < DataGridView.RowCount; j++)
 {
suma+=Convert.ToInt32(DataGridView.Rows[i].Cells[j]

.Value);
}
tMatrSus1[i, 2] = suma;
}

}

Then we calculate in-degree for subsystems in graph G =
(V, E) given by Eq. (3) according to,

∑ ሻ௜ఫ̅ܧሺܦ
௡
௜ୀଵ , (8)

as described in [1].
private void rac_InD()
{

int suma = 0;
for (int i = 0; i < DataGridView.ColumnCount; i++)
{
suma = 0;
for (int j = 0; j < DataGridView.RowCount; j++)
{
suma+=Convert.ToInt32(DataGridView.Rows[j].Cells[i]

.Value);
}
tMatrSus1[i, 1] = suma;
}

}

Now, with out-degree and in-degree we can calculate
starting order (SO) as described earlier by Eq. (4) and (5),
for more detail see [1].
private void poc_Red()
{

tMatrSus2 = tMatrSus1;
temp = Convert.ToInt32(tMatrSus2[0, 2]);
int indeks_maks = 0;
int br = DataGridView.RowCount - 1;
int temp2 = Convert.ToInt32(tMatrSus2[0, 1]);
SOM = new object[DataGridView.RowCount, 3];
int br2 = 0;
do
{
for (int i = 0; i < DataGridView.RowCount; i++)
{

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 2, No 3, March 2012
ISSN (Online): 1694-0814
www.IJCSI.org 18

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

if (temp < Convert.ToInt32(tMatrSus2[i, 2]) &
tMatrSus2[i, 0] != null)

{
temp = Convert.ToInt32(tMatrSus2[i, 2]);
indeks_maks = i;
temp2=Convert.ToInt32(tMatrSus2[indeks_maks, 1]);
}
}
for (int i = 0; i < DataGridView.RowCount; i++)
{
if (temp == Convert.ToInt32(tMatrSus2[i, 2]) &

tMatrSus2[i, 0] != null)
{
if (temp2 > Convert.ToInt32(tMatrSus2[i, 1]))
{
indeks_maks = i;
}
}
}
SOM[br2, 0] = tMatrSus2[indeks_maks, 0];
SOM[br2, 1] = tMatrSus2[indeks_maks, 1];
SOM[br2++, 2] = tMatrSus2[indeks_maks, 2];
tMatrSus2[indeks_maks, 0] = null;
for (int i = 0; i < DataGridView.RowCount; i++)
{
if (tMatrSus2[i, 0] != null)
{
temp = Convert.ToInt32(tMatrSus2[i, 2]);
indeks_maks = i;
temp2 = Convert.ToInt32(tMatrSus2[indeks_maks, 1]);
}
}
br--;
} while (br >= 0);

}

Finally, with starting order we can incrementally calculate
final solution according to SO, Eq. (3) and (6).
private void kon_rjes()
{

object[,] tRazmjSus = new
object[DataGridView.RowCount - 1, 2];
object[,] tSum = new object[DataGridView.RowCount -

1, 2];
bool jos = false;
int indeks1 = 0, indeks2 = 0, br4 = 0, suma = 0,
br5 = 0, maxV = 0;
object t1, t2, t3;
do
{
jos = false;
for (int i = 1; i < DataGridView.RowCount; i++)
{
for (int k = 0; k < DataGridView.RowCount; k++)
{
if (SOM[i, 0] == pocMatrSus[k, 0])
{
indeks1 = k;
break;
}
}
for (int j = 0; j < i; j++)
{
for (int h = 0; h < DataGridView.RowCount; h++)
{
if (SOM[j, 0] == pocMatrSus[h, 0])
{
indeks2 = h + 1;
tRazmjSus[j, 0] = SOM[j, 0];
tRazmjSus[j,1]=Convert.ToInt32(pocMatrSus[indeks1,i

ndeks2]) - Convert.ToInt32(pocMatrSus[indeks2 - 1,
indeks1 + 1]);

br4++;
break;
}
}
}
for (int q = br4 - 1; q >= 0; q--)
{
suma += Convert.ToInt32(tRazmjSus[q, 1]);

tSum[q, 0] = tRazmjSus[q, 0];
tSum[q, 1] = suma;
}
for (int h = br4 - 1; h >= 0; h--)
{
if (Convert.ToInt32(tSum[h, 1]) > maxV)
{
maxV = Convert.ToInt32(tSum[h, 1]);
br5 = h;
}
}
if (maxV > 0)
{
t1 = SOM[i, 0];
t2 = SOM[i, 1];
t3 = SOM[i, 2];
for (int n = i - 1; n >= br5; n--)
{
SOM[n + 1, 0] = SOM[n, 0];
SOM[n + 1, 1] = SOM[n, 1];
SOM[n + 1, 2] = SOM[n, 2];
}
SOM[br5, 0] = t1;
SOM[br5, 1] = t2;
SOM[br5, 2] = t3;
jos = true;
}
br4 = 0;
br5 = 0;
suma = 0;
indeks1 = 0;
indeks2 = 0;
suma = 0;
maxV = 0;
t1 = null;
t2 = null;
t3 = null;
Array.Clear(tRazmjSus, 0, DataGridView.RowCount -

1);
Array.Clear(tSum, 0, DataGridView.RowCount - 1);
}
} while (jos);

}
As it can be seen algorithm is divided into four major parts:

 method for finding in-degree,
 method for finding out-degree,
 method for finding starting order,
 method for improving starting order and

incrementally finding final solution.
Methods for in/out-degree calculation are calculating in
and out degree for every subsystem in a graph G = (V, E)
according to Eq. (3), (7) and (8) respectively. When in and
out degree is calculated we are executing method for
starting order calculation. Method for calculating starting
order takes previously calculated in/out degree and,
according to Eq. (4) and (5) described in previous chapter
(for more details see [1]), calculates starting linear order.
Now, when we have starting linear order we are applying
Eq. (6) on SO and Eq. (3) and gradually improving linear
order until we can't make any more improvements. When
method which seeks final solution executes and does not
find candidates for position change we know that this is
the best solution. We can see from this description as well
as from source code that method for finding final solution
needs to execute one more time when final solution is
found since we do not know in advance that this is the end
(like bubble sort [12]). When we take a look at developed
algorithm data structures we can see that arrays are used

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 2, No 3, March 2012
ISSN (Online): 1694-0814
www.IJCSI.org 19

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

exclusively. There is a reason for that. If you look closely
at the problem of finding development and execution order
and graph G = (V, E) that visually describes it, first data
structure that comes to mind is a list. Nevertheless, as it
can be seen in [10, 11] and other practical examples,
dynamic memory allocation and constant list manipulation
and memory allocation becomes rather slow process when
you constantly need to allocate extremely large amount of
list elements. Since, we know exactly how much memory
is necessary for our calculations and data manipulation and
since these days there is no shortage of memory we can
immediately allocate memory we need. Therefore, we
have ensured, at least from this point of view, that
developed algorithm will run faster. In the following
section we will comment on calculated algorithm
complexity. Complexity for the function rac_OutD() is
O(n2). If we take into account that complexity of this
function is proportional to the size of data structure that
holds data for the problem, this function is very efficient.
The same can be said for the second, rac_InD(), and the
third, poc_Red(), function since complexity for these
functions is also O(n2). Unfortunately, the fourth function,
kon_rjes(), which calculates final solution does not follow
previous functions regarding complexity. This function
complexity is O(n3). However, when we take into account
difficulty and seriousness of the problem this was to be
expected. From a practical standpoint O(n3) is a good
complexity, nevertheless, from a pure theoretical
standpoint it could be better. Namely, we would be
satisfied if this function had worst case complexity of
O(n2), like previous functions, since this function also
stores its data in two-dimensional array, unfortunately this
function needs to execute additional calculations in order
to achieve its final state and find final solution.

4. Last word

In this paper we have implemented and analyzed algorithm
for which we have previously developed theoretical
foundations. When we take into consideration
implemented algorithm, its complexity and difficulty of
the problem we would argue that the problem we were
trying to solve in information system development and
implementation is solved. Nevertheless, as we mentioned
in our previous research, this implemented algorithm will
be empirically analyzed so we can more precisely
ascertain its real time behavior. We have done some minor
testing of the algorithm but this is far from sufficient.
Also, there is a possibility that this algorithm can be
applied to similar problems in information system
development and implementation field of research. Finally,
this paper has shown that, at least from theoretical
standpoint, there is still room and need for further
optimization. With that in mind, we will try either to

further optimize current algorithm or develop
approximation algorithm of a lesser complexity, as stated
above preferably quadratic.

Acknowledgments

This research is funded by Croatian Ministry of Science
and is a part of a larger project “Automation of Procedures
in Information System Design”.

References
[1] R. Kudelić, A. Lovrenčić, Automatic determination of

information system subsystems execution and development
order, IRECOS (2011).

[2] Huang Wei J., Cai Li Gang, Hu Yu Jing, Wang Xue L., Ling
Ling, Process planning optimization based on genetic
algorithm and topological sort algorithm for digraph, Jisuanji
Jicheng Zhizao Xitong/Computer Integrated Manufacturing
Systems, Volume 15, n. 9 (2009) 1770-1778.

[3] Moon Chiung K., Yun Youngsu S., Leem Choon Seong,
Evolutionary algorithm based on topological sort for
precedence constrained sequencing, IEEE Congress on
Evolutionary Computation (2007), pp. 1325-1332.

[4] Li YL. Zhang JH. Li CA, Note on Some Topological
Properties of Sets in Information Systems, Kybernetes,
Volume 27 (1998).

[5] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest,
Clifford Stein, Introduction to Algorithms (MIT Press and
McGraw-Hill, 2001).

[6] Lijiang Zhao, A matrix solution to Hamiltonian Path of any
graph, Proceedings - 2010 International Conference on
Intelligent Computing and Cognitive Informatics (2010), pp.
440-442.

[7] Feng JF., Giesen HE., Guo YB., Gutin G., Jensen T., Rafiey
A., Characterization of edge-colored complete graphs with
properly colored Hamilton paths, Journal of Graph Theory,
Volume 53 (2006) 333-346.

[8] Dyer M., Frieze A., Jerrum M., Approximately Counting
Hamilton Paths and Cycles in Dense Graphs, SIAM Journal
on Computing, Volume 27 (1998) 1262-1272.

[9] Michael R. Garey, David S. Johnson, Computers and
Intractability: A Guide to the Theory of NP-Completeness
(W.H. Freeman, First Edition 1979).

[10] A. Lovrenčić, The problem of optimization of the process of
decomposition of an information system, Journal of
Information and Organizational Sciences, Vol. 1, n. 22 (1997)
27-43.

[11] A. Lovrenčić, An efficient algorithm for information system
decomposition, Journal of Information and Organizational
Sciences, Vol. 22, n. 2 (1998) 137-151.

[12] D. Knuth, The Art of Computer Programming: Sorting and
Searching, Volume 3 (Addison-Wesley, 1998).

Robert Kudelić received his masters degree in Information
Science (2009) from the Faculty of Organization and Informatics,
University of Zagreb where he is currently a teaching and research
assistant. He is a researcher on the scientific project Automation of
Procedures in Information System Design.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 2, No 3, March 2012
ISSN (Online): 1694-0814
www.IJCSI.org 20

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

Alen Lovrenčić received his masters degree (1999) and his PhD
(2004) from the Faculty of Organization and Informatics, University
of Zagreb. He is currently associate professor at the Faculty of
Organization and Informatics. He was/is a leader of several
scientific projects and was/is involved with working on several
journals/conferences.

Mladen Konecki received his masters degree in Information
Science from the Faculty of Organization and Informatics,
University of Zagreb where he is currently a teaching and research
assistant. He is a researcher on the scientific project Automation of
Procedures in Information System Design.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 2, No 3, March 2012
ISSN (Online): 1694-0814
www.IJCSI.org 21

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

