
Web Application Security by SQL Injection DetectionTools

Atefeh Tajpour , Suhaimi Ibrahim, Mohammad Sharifi
 Advanced Informatics School

University Technology Malaysia
Malaysia

Abstract— SQL injection is a type of attack which the attacker
adds Structured Query Language code to a web form input
box to gain access or make changes to data. SQL injection
vulnerability allows an attacker to flow commands directly to a
web application's underlying database and destroy
functionality or confidentiality. Researchers have proposed
different tools to detect and prevent this vulnerability. In this
paper we present all SQL injection attack types and also
current tools which can detect or prevent these attacks. Finally
we evaluate these tools.

Keyword: SQL Injection Attacks, detection, prevention, tool,
evaluation.

1. INTRODUCTION

Web applications are often vulnerable to attacks, which
can give attackers easily access to the application's
underlying database. SQL injection attack occurs when a
malicious user, through specifically crafted input, causes a
web application to generate and send a query that functions
differently than the programmer intended.

SQL Injection Attacks (SQLIAs) have known as one of

the most common threats to the security of database-driven
applications. So there is not enough assurance for
confidentiality and integrity of this information. SQLIA is a
class of code injection attacks that take advantage of lack of
user input validation. In fact, attackers can shape their
illegitimate input as parts of final query string which operate
by databases. Financial web applications or secret
information systems could be the victims of this vulnerability
because attackers by abusing this vulnerability can threat
their authority, integrity and confidentiality. So, developers
addressed some defensive coding practices to eliminate this
vulnerability but they are not sufficient.

For preventing the SQLIAs, defensive coding has been

offered as a solution but it is very difficult. Not only
developers try to put some controls in their source code but
also attackers continue to bring some new ways to bypass
these controls. Hence it is difficult to keep developers up to
date, according the last and the best defensive coding
practices. On the other hand, implementing of best practice
of defensive coding is very difficult and need to special
skills. These problems motivate the need for a solution to the
SQL injection problem.

Researchers have proposed some tools to help developers

to compensate the shortcoming of the defensive coding [7,
10, 12]. The problem is that some current tools could not
address all attack types or some of them need special
deployment requirements.

 The paper is organized as follows. In section 2 we define
SQL Injection attack. In section3 we present different SQLI
attack types. In section 4 we review current tools against
SQLI. In section 5 we evaluate SQL Injection detection
or/and prevention tools against all types of SQL injection
attacks and deployment requirements. Conclusion and future
work is provided in section 6.

2. DEFINITION OF SQLIA

Most web applications today use a multi-tier design,
usually with three tiers: a presentation, a processing and a
data tier. The presentation tier is the HTTP web interface, the
application tier implements the software functionality, and
the data tier keeps data structured and answers to requests
from the application tier [21]. Meanwhile, large companies
developing SQL-based database management systems rely
heavily on hardware to ensure the desired performance
[22].SQL injection is a type of attack which the attacker adds
Structured Query Language code to input box of a web form
to gain access or make changes to data. SQL injection
vulnerability allows an attacker to flow commands directly to
a web application's underlying database and destroy
functionality or confidentiality.

2.1 SQL injection attack process

SQLIA is a hacking technique which the attacker adds
SQL statements through a web application's input fields or
hidden parameters to access to resources. Lack of input
validation in web applications causes hacker to be
successful. For the following examples we will assume that a
web application receives a HTTP request from a client as
input and generates a SQL statement as output for the back
end database server.

For example an administrator will be authenticated after

typing: employee id=112 and password=admin. Figure1
describes a login by a malicious user exploiting SQL

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 2, No 3, March 2012
ISSN (Online): 1694-0814
www.IJCSI.org 332

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

Injection vulnerability [11]. Basically it is structured in three
phases:

1. an attacker sends the malicious HTTP request to the

web application

2. creates the SQL statement
3. submits the SQL statement to the back end database

Figure 1: Example of a SQL Injection Attack

The above SQL statement is always true because of the

Boolean tautology we appended (OR 1=1) so, we will access
to the web application as an administrator without knowing
the right password.

2.2 Main cause of SQL injection

Web application vulnerabilities are the main causes of

any kind of attack [19]. In this section, vulnerabilities that
might exist naturally in web applications and can be
exploited by SQL injection attacks will be presented:

Invalidated input: This is almost the most common

vulnerability on performing a SQLIA. There are some
parameters in web application, are used in SQL queries. If
there is no any checking for them so can be abused in SQL
injection attacks. These parameters may contain SQL
keywords, e.g. INSERT, UPDATE or SQL control
characters such as quotation marks and semicolons.

Generous privileges: Normally in database the

privileges are defined as the rules to state which database
subject has access to which object and what operation are
associated with user to be allowed to perform on the objects.
Typical privileges include allowing execution of actions, e.g.
SELECT, INSERT, UPDATE, DELETE, DROP, on certain
objects. Web applications open database connections using
the specific account for accessing the database. An attacker
who bypasses authentication gains privileges equal to the
accounts. The number of available attack methods and
affected objects increases when more privileges are given to
the account. the worst case happen If an account can connect
to system that is associated with the system administrator
because normally has all privileges.

Uncontrolled variable size: If variables allow storage of
data be larger than expected consequently allow attackers to
enter modified or faked SQL statements. Scripts that do not
control variable length may even open the way for attacks,
such as buffer overflow.

Error message: Error messages that are generated by the

back-end database or other server-side programs may be
returned to the client-side and presented in the web browser.
These messages are not only useful during development for
debugging purposes but also increase the risks to the
application. Attackers can analyze these messages to gather
information about database or script structure in order to
construct their attack.

Variable Orphism: The variable should not accept any

data type because attacker can exploit this feature and store
malicious data inside that variable rather than is suppose to
be. Such variables are either of weak type, e.g. variables in
PHP, or are automatically converted from one type to
another by the remote database.

Dynamic SQL: SQL queries dynamically built by scripts

or programs into a query string. Typically, one or more
scripts and programs contribute and finally by combining
user input such as name and password, make the WHERE
clauses of the query statement. The problem is that query
building components can also receive SQL keywords and
control characters. It means attacker can make a completely
different query than what was intended.

Client-side only control: If input validation is

implemented in client-side scripts only, then security
functions of those scripts can be overridden using cross-site
scripting. Therefore, attackers can bypass input validation
and send invalidated input to the server-side.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 2, No 3, March 2012
ISSN (Online): 1694-0814
www.IJCSI.org 333

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

Stored procedures: They are statements which are

stored in DBs. The main problem with using these
procedures is that an attacker may be able to execute them
and damage database as well as the operating system and
even other network components. Usually attackers know
system stored procedures that come with different and almost
easily can execute them.

Into Outfile support: Some of RDBMS benefit from the

INTO OUTFILE clause. In this condition an attacker can
manipulate SQL queries then they produce a text file
containing query results. If attackers can later gain access to
this file, they can abuse the same information, for example,
bypass authentication.

Multiple statements: If the database supports UNION

so, attacker has more chance because there are more attack
methods for SQL injection. For instance, an additional
INSERT statement could be added after a SELECT
statement, causing two different queries to be executed. If
this is performed in a login form, the attacker may add him
or herself to the table of users.

Sub-selects: Supporting sub-selects is weakness for

RDBMS when SQL injection is considered. For example,
additional SELECT clauses can be inserted in WHERE
clauses of the original SELECT clause. This weakness
makes the web application more vulnerable, so they may be
penetrated by malicious users easily.

3. SQL INJECTION ATTACK TYPES

 There are different methods of attacks that depending on
the goal of attacker are performed together or sequentially.
For a successful SQLIA the attacker should append a
syntactically correct command to the original SQL query.
Now the following classification of SQLIAs [4, 20] will be
presented.

Tautologies: This type of attack injects SQL tokens to the
conditional query statement to be evaluated always true.
This type of attack used to bypass authentication control and
access to data by exploiting vulnerable input field which use
WHERE clause.

"SELECT * FROM employee WHERE userid = '112' and
password ='aaa' OR '1'='1'"
As the tautology statement (1=1) has been added to the
query statement so it is always true.

llegal/Logically Incorrect Queries: when a query is
rejected , an error message is returned from the database
including useful debugging information. This error
messages help attacker to find vulnerable parameters in the
application and consequently database of the application. In
fact attacker injects junk input or SQL tokens in query to
produce syntax error, type mismatches, or logical errors by
purpose. In this example attacker makes a type mismatch
error by injecting the following text into the pin input field:

1) Original URL:
http://www.arch.polimi.it/eventi/?id_nav=8864
2) SQL Injection:
http://www.arch.polimi.it/eventi/?id_nav=8864'

3) Error message showed:
SELECT name FROM Employee WHERE id =8864\'

From the message error we can find out name of table and
fields: name; Employee; id. By the gained information
attacker can organize more strict attacks.

Union Query: By this technique, attackers join injected
query to the safe query by the word UNION and then can
get data about other tables from the application.
Suppose for our examples that the query executed from the
server is the following:
SELECT Name, Phone FROM Users WHERE Id=$id
By injecting the following Id value:

$id=1 UNION ALL SELECT creditCardNumber,1 FROM
CreditCarTable
We will have the following query:

SELECT Name, Phone FROM Users WHERE Id=1 UNION
ALL SELECT creditCardNumber,1 FROM CreditCarTable

which will join the result of the original query with all the
credit card users.

Piggy-backed Queries: In this type of attack, intruders
exploit database by the query delimiter, such as ";", to
append extra query to the original query. With a successful
attack database receives and execute a multiple distinct
queries. Normally the first query is legitimate query,
whereas following queries could be illegitimate. So attacker
can inject any SQL command to the database. In the
following example, attacker inject " 0; drop table user " into
the pin input field instead of logical value. Then the
application would produce the query:

SELECT info FROM users WHERE login='doe' AND
pin=0; drop table users

Because of ";" character, database accepts both queries and
executes them. The second query is illegitimate and can
drop users table from the database. It is noticeable that some
databases do not need special separation character in
multiple distinct queries, so for detecting this type of attack,
scanning for a special character is not impressive solution.

Stored Procedure: Stored procedure is a part of database
that programmer could set an extra abstraction layer on the
database. As stored procedure could be coded by
programmer, so, this part is as inject able as web application
forms. Depend on specific stored procedure on the database
there are different ways to attack. In the following example,
attacker exploits parameterized stored procedure.

CREATE PROCEDURE DBO.isAuthenticated
@userName varchar2, @pass varchar2, @pin int
AS
EXEC("SELECT accounts FROM users
WHERE login=’" +@userName+ "’ and pass=’"
+@password+
"’ and pin=" +@pin);
GO

For authorized/unauthorized user the stored procedure
returns true/false. As an SQLIA, intruder input “ ’ ;

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 2, No 3, March 2012
ISSN (Online): 1694-0814
www.IJCSI.org 334

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

SHUTDOWN; - -” for username or password. Then the
stored procedure generates the following query:

SELECT accounts FROM users WHERE login=’doe’

AND pass=’ ’; SHUTDOWN; -- AND pin=

After that, this type of attack works as piggy-back attack.

The first original query is executed and consequently the
second query which is illegitimate is executed and causes
database shut down. So, it is considerable that stored
procedures are as vulnerable as web application code.

Inference: By this type of attack, intruders change the
behaviour of a database or application.There are two well-
known attack techniques that are based on inference: blind-
injection and timing attacks.
 Blind Injection: Sometimes developers hide the error
details which help attackers to compromise the database. In
this situation attacker face to a generic page provided by
developer, instead of an error message. So the SQLIA
would be more difficult but not impossible. An attacker can
still steal data by asking a series of True/False questions
through SQL statements. Consider two possible injections
into the login field:

SELECT accounts FROM users WHERE login=’doe’ and
1=0 -- AND pass= AND pin=0
SELECT accounts FROM users WHERE login=’doe’ and
1=1 -- AND pass= AND pin=0
 If the application is secured, both queries would be
unsuccessful, because of input validation. But if there is no
input validation, the attacker can try the chance. First the
attacker submit the first query and receives an error message
because of "1=0". So the attacker does not understand the
error is for input validation or for logical error in query.
Then the attacker submits the second query which always
true. If there is no login error message, then the attacker
finds the login field vulnerable to injection.

 Timing Attacks: A timing attack lets an attacker gather
information from a database by observing timing delays in
the database's responses. This technique by using if-then
statement cause the SQL engine to execute a long running
query or a time delay statement depending on the logic
injected. This attack is similar to blind injection and attacker
can then measure the time the page takes to load to
determine if the injected statement is true. This technique
uses an if-then statement for injecting queries. WAITFOR is
a keyword along the branches, which causes the database to
delay its response by a specified time.

For example, in the following query:
declare @s varchar(8000) select @s = db_name() if
(ascii(substring(@s, 1, 1)) & (power(2, 0))) > 0 waitfor
delay '0:0:5'

Database will pause for five seconds if the first bit of the
first byte of the name of the current database is 1. Then code
is then injected to generate a delay in response time when the
condition is true. Also, attacker can ask a series of other
questions about this character. As these examples show, the
information is extracted from the database using a vulnerable
parameter.

Alternate Encodings: In this technique, attackers modify
the injection query by using alternate encoding, such as
hexadecimal, ASCII, and Unicode. Because by this way they
can escape from developer’s filter which scan input queries
for special known "bad character". For example attacker use
char (44) instead of single quote that is a bad character. This
technique with join to other attack techniques could be
strong, because it can target different layers in the
application so developers need to be familiar to all of them to
provide an effective defensive coding to prevent the alternate
encoding attacks. By this technique, different attacks could
be hidden in alternate encodings successfully.

In the following example the pin field is injected with
this string: "0; exec (0x73587574 64 5f77 6e)," and the result
query is:

SELECT accounts FROM users WHERE login=" AND
pin=0; exec (char(0x73687574646f776e))

This example use the char () function and ASCII
hexadecimal encoding. The char () function takes
hexadecimal encoding of character(s) and returns the actual
character(s). The stream of numbers in the second part of the
injection is the ASCII hexadecimal encoding of the attack
string. This encoded string is translated into the shutdown
command by database when it is executed

4. SQL INJECTION DETECTION AND
PREVENTION TOOLS

Although developers deploy defensive coding or OS
hardening but they are not enough to stop SQLIAs to web
applications so researchers have proposed some of tools to
assist developers. It is noticeable that there are more
approaches that have not implemented as a tool yet. This
paper emphasizes on tools not techniques.

Huang and colleagues [18] propose WAVES, a black-
box technique for testing web applications for SQL injection
vulnerabilities. The tool identify all points a web application
that can be used to inject SQLIAs. It builds attacks that target
these points and monitors the application how response to
the attacks by utilize machine learning.

JDBC-Checker [12, 13] was not developed with the intent
of detecting and preventing general SQLIAs, but can be
used to prevent attacks that take advantage of type
mismatches in a dynamically-generated query string. As
most of the SQLIAs consist of syntactically and type correct
queries so this technique would not catch more general
forms of these attacks.

 CANDID [2, 7] modifies web applications written in
Java through a program transformation. This tool
dynamically mines the programmer-intended query structure
on any input and detects attacks by comparing it against the
structure of the actual query issued. CANDID’s natural and
simple approach turns out to be very powerful for detection
of SQL injection attacks.

In SQL Guard [10] and SQL Check [5] queries are
checked at runtime based on a model which is expressed as a
grammar that only accepts legal queries. SQL Guard
examines the structure of the query before and after the
addition of user-input based on the model. In SQL Check,
the model is specified independently by the developer. Both

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 2, No 3, March 2012
ISSN (Online): 1694-0814
www.IJCSI.org 335

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

approaches use a secret key to delimit user input during
parsing by the runtime checker, so security of the approach is
dependent on attackers not being able to discover the key. In
two approaches developer should to modify code to use a
special intermediate library or manually insert special
markers into the code where user input is added to a
dynamically generated query.

AMNESIA combines static analysis and runtime

monitoring [16, 17]. In static phase, it builds models of the
different types of queries which an application can legally
generate at each point of access to the database. Queries are
intercepted before they are sent to the database and are
checked against the statically built models, in dynamic
phase. Queries that violate the model are prevented from
accessing to the database. The primary limitation of this tool
is that its success is dependent on the accuracy of its static
analysis for building query models.

 WebSSARI [15] use static analysis to check taint flows
against preconditions for sensitive functions. It works based
on sanitized input that has passed through a predefined set of
filters. The limitation of approach is adequate preconditions
for sensitive functions cannot be accurately expressed so
some filters may be omitted.

SecuriFly [14] is another tool that was implemented for
java. Despite of other tool, chases string instead of character
for taint information. SecurityFly tries to sanitize query
strings that have been generated using tainted input but
unfortunately injection in numeric fields cannot stop by this
approach. Difficulty of identifying all sources of user input
is the main limitation of this approach.

Positive tainting [1] not only focuses on positive tainting

rather than negative tainting but also it is automated and does
need developer intervention. Moreover this approach
benefits from syntax-aware evaluation, which gives
developers a mechanism to regulate the usage of string data
based not only on its source, but also on its syntactical role in
a query string.

 IDS [6] use an Intrusion Detection System (IDS) to
detect SQLIAs, based on a machine learning technique. The
technique builds models of the typical queries and then at
runtime, queries that do not match the model would be
identified as attack. This tool detects attacks successfully but
it depends on training seriously. Else, many false positives
and false negatives would be generated.

Another approach in this category is SQL-IDS [8] which

focus on writing specifications for the web application that
describe the intended structure of SQL statements that are
produced by the application, and in automatically monitoring
the execution of these SQL statements for violations with
respect to these specifications.

 SQLPrevent [11] is consists of an HTTP request
interceptor. The original data flow is modified when
SQLPrevent is deployed into a web server. The HTTP
requests are saved into the current thread-local storage.
Then, SQL interceptor intercepts the SQL statements that
are made by web application and pass them to the SQLIA
detector module. Consequently, HTTP request from thread-
local storage is fetched and examined to determine whether

it contains an SQLIA. The malicious SQL statement would
be prevented to be sent to database, if it is suspicious to
SQLIA.

 Swaddler [3], analyzes the internal state of a web
application. It works based on both single and multiple
variables and shows an impressive way against complex
attacks to web applications. First the approach describes the
normal values for the application’s state variables in critical
points of the application’s components. Then, during the
detection phase, it monitors the application’s execution to
identify abnormal states.

5. EVALUATION

 In this section, the SQL injection detection or prevention
tools presented in section IV would be compared. It is
noticeable that this comparison is based on the evaluation
which the authors of tools have done empirically. They used
a testbed for their tool. In particular, they used a set of web
applications and a set of inputs for those applications that
included both legitimate inputs and SQLIAs.

5.1 Comparison of SQL Injection Detection/Prevention
Tools Based on Attack Types

 Proposed tools were compared to assess whether it was
capable of addressing the different attack types presented in
Section III. It is noticeable that this comparison is based on
the articles not empirically experience.

 Tables 1 summarize the results of this comparison. The

symbol “” is used for tool that can successfully stop all
attacks of that type. The symbol “-” is used for tool that is
not able to stop attacks of that type. The symbol “” refers to
tool that the attack type only partially because of natural
limitations of the underlying approach.

Table1: Comparison of Tools with Respect to Attack Types

As the table shows the stored procedure is a critical

attack which is difficult for some tools to stop it. It is
consisting of queries that can execute on the database.
However, most of tools consider only the queries that
generate within application. So, this type of attack make
serious problem for some tools.

5.2. Comparison of SQL Injection Detection/Prevention
Tools Based on Deployment Requirement

Each tool with respect to the following criteria was
evaluated: (1) Does the tool require developers to modify
their code base? (2) What is the degree of automation of the
detection aspect of the tool? (3) What is the degree of

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 2, No 3, March 2012
ISSN (Online): 1694-0814
www.IJCSI.org 336

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

automation of the prevention aspect of the tool? (4) What
infrastructure (not including the tool itself) is needed to
successfully use the tool? The results of this classification
are summarized in Table2.

Table2: Comparison of Tools Based on Deployment Requirements

Table2 determines the degree of automation of tool in
detection or prevention of attacks. Actually automatically
detection and prevention is ability of tool that provides user
satisfaction. Also table shows that which tool needs to
modify the source code of application. Moreover, additional
infrastructure that is required for each tool that usually leads
to inconvenience for users is illustrated.

5.3Comparison of Tools Based on Evaluation Parameters

The authors of proposed tools have evaluated their tools
in common parameters: efficiency, effectiveness and
performance, flexibility and stability. The results of this
classification are summarized in Table 3. Definition of the
measured parameters [11]:

Efficiency

 False positive: is a false alarm. It is when the tool
incorrectly categorizes a benign request being as a
malicious attack.

 False negative: occurs when a malicious attack is
not recognized, so the tool lets it pass normally.

Effectiveness

 Attacks Detection: the percentage of real attacks,
correctly detected.

 Attacks Prevention: the percentage of real attacks
correctly blocked after being detected.

Flexibility

 Different Types of SQLIAs: the ability of the tool
to detect/prevent different types of SQL Injection
attacks such as those were presented in section II.

Performance
 Detection Overhead: is the time spent for a

detection of a SQLIA once the tool is running.
 Prevention Overhead: is the time spent to detect

and block (prevent) a SQLIA once the tool is
running.

Stability

 Environment Independence
o Web Applications: the possibility to test

the tool on different types of web
applications, such as open
source/commercial, large/small.

o Databases: testing on web applications
that use different backend databases, such
as open source (e.g. MySQL) commercial
(e.g. Oracle).

o Programming Languages: the ability of
the tool to work on web applications
written in different programming
languages, such as J2EE, .NET, PHP and
so On.

o Operating Systems: the ability of the tool
to run on different OS such as Windows
and Linux.

o Application Servers: the possibility to
run the tool in a network using different
type of Application Server such Tomcat.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 2, No 3, March 2012
ISSN (Online): 1694-0814
www.IJCSI.org 337

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

Table 3: Comparison of Tools based on Evaluation Parameters

Based on the table4, different criteria such as efficiency,
effectiveness, stability, flexibility and performance for
choosing an appropriate tool could be considered. For
example the table shows that which programming language
could be supported by the specific tool. Also, by flexibility,
types of SQL injection attack which are addressed by the
tool could be identified. “All” means that the tool can stop
all type of attack successfully and “All/p” means that the
tool can stop all the attack type partially.

On the other hand, we believe that the value of some

evaluation parameters such as efficiency, effectiveness and
performance is depend on testbed that have been used by
each author such as equipments, tools and scripts for attack
so the value of these parameters may change in empirically
evaluation in a common testbed.

6. CONCLUSION AND FUTURE WORK

In this paper we presented the various types of SQLIAs.
Then we investigated SQL injection detection and
prevention tools. After that we compared these tools in
terms of their ability to stop SQLIA.

In addition, the current tools were compared based on

deployment requirement (modifying source code, additional
infrastructure and automation of detection or prevention)
and common evaluation parameters (efficiency,
effectiveness, stability, flexibility and performance).

 In our future work we will propose a framework for
measuring effectiveness, efficiency, stability and

performance of tools in common criteria to prove the
strength and weakness of them.

ACKNOWLEDGEMENTS

This research is supported by the RU grant of University
Technology Malaysia. Thanks to UTM-RMC, government of
Malaysia and individuals who are directly or indirectly
involved in this research.

REFERENCES

[1] W. G. Halfond, J. Viegas and A. Orso, “A Classification of

SQL Injection Attacks and Countermeasures,” College of
Computing Georgia Institute of Technology IEEE, 2006.

[2] Sruthi Bandhakavi, Prithvi Bisht, P. Madhusudan, CANDID:
Preventing SQL Injection Attacks using Dynamic Candidate
Evaluation. Proceedings of the 14th ACM conference on
Computer and communications security. ACM, Alexandria,
Virginia, USA.page:12-24.

[3] Marco Cova, Davide Balzarotti. Swaddler: An Approach for
the Anomaly-based Detection of State Violations in Web
Applications. Recent Advances in Intrusion Detection,
Proceedings, Volume: 4637 Pages: 63-86 Published: 2007.

[4] William G.J. Halfond, Jeremy Viegas and Alessandro Orso,
“A Classification of SQL Injection Attacks and
Countermeasures,” College of Computing Georgia Institute of
Technology IEEE, 2006.

[5] Z. Su and G. Wassermann. The Essence of Command Injection
Attacks in Web Applications. ACM SIGPLAN
Notices. Volume: 41, pp: 372-382, 2006.

[6] F. Valeur, D. Mutz, and G. Vigna. A Learning-Based Approach

to the Detection of SQL Attacks. Detection of Intrusions And

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 2, No 3, March 2012
ISSN (Online): 1694-0814
www.IJCSI.org 338

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

Malware, And Vulnerability Assessment,
Proceedings, Volume: 3548, pp: 123-140, 2005.

[7] P. Bisht, P. Madhusudan. CANDID: Dynamic Candidate

Evaluations for Automatic Prevention of SQL Injection
Attacks. ACM Transactions on Information and System
Security Volume: 13, Issue: 2, 2010.

[8] K. Kemalis and T.Tzouramanis. SQL-IDS: A Specification-

based Approach for SQL Injection Detection Symposium on
Applied Computing. 2008, pp: 2153-2158 , Fortaleza, Ceara,
Brazil. New York, NY, USA: ACM.

[9] A. S. Christensen, A. Moller, and M. I. Schwartzbach. Precise

Analysis of String Expressions. In Proc. 10th International
Static Analysis Symposium, SAS '03, volume 2694, pp 1-18.
Springer-Verlag, June 2003.

[10] G. T. Buehrer, B. W. Weide, and P. A. G. Sivilotti. Using

Parse Tree Validation to Prevent SQL Injection Attacks. In
International Workshop on Software Engineering and
Middleware (SEM), 2005.

[11] F.Monticelli, PhD SQLPrevent thesis. University of British

Columbia (UBC) Vancouver, Canada.2008.

[12] C. Gould, Z. Su, and P. Devanbu. JDBC Checker:A Static

Analysis Tool for SQL/JDBC Applications. In Proceedings
of the 26th International Conference on Software
Engineering (ICSE 04) Formal Demos, pp 697–698, 2004.

[13] Wassermann, G; Gould, C; Su, Z, et al. Static Checking of

Dynamically Generated Queries in Database Applications.
ACM Transactions on Software Engineering and
Methodology.-- Volume: 16, Issue: 4, 2007.

[14] M. Martin, B. Livshits, and M. S. Lam. Finding Application

Errors and Security Flaws Using PQL: A Program Query
Language. ACM SIGPLAN Notices, Volume: 40, Issue: 10,
pp: 365-383, 2005.

 [15] Y. Huang, F. Yu, C. Hang, C. H. Tsai, D. T. Lee, and S. Y.

Kuo. Securing Web Application Code by Static Analysis and
Runtime Protection. In Proceedings of the 12th International
World Wide Web Conference (WWW 04), May 2004.

[16] W. G. Halfond and A. Orso. AMNESIA: Analysis and

Monitoring for NEutralizing SQL-Injection Attacks. In
Proceedings of the IEEE and ACM International Conference
on Automated Software Engineering (ASE 2005), Long
Beach, CA, USA, Nov 2005.

[17] W. G. Halfond and A. Orso. Combining Static Analysis and

Runtime Monitoring to Counter SQL-Injection Attacks. In
Proceedings of the Third International ICSE Workshop on
Dynamic Analysis (WODA 2005), pp 22–28, St. Louis, MO,
USA, May 2005.

[18] Y. Huang, S. Huang, T. Lin, and C. Tsai. A Testing

Framework for Web Application Security Assessment.
Journal of Computer Networks, Volume: 48 Issue: 5, Pp:
739-761, 2005.

[19] T. Pietraszek and C. V. Berghe. Defending against Injection

Attacks through Context-Sensitive String evaluation. Recent
Advances in Intrusion Detection, Volume: 3858, Pp: 124-
145, 2006.

[20] Atefeh Tajpour, Suhaimi Ibrahim, Maslin Masrom,

"Evaluation of SQL Injection Detection and Prevention
Techniques”. International Journal of Advancements in
Computing Technology, 2011, Korea.

[21] Bogdan Carstoiu, Dorin Carstoiu. Zatara, the Plug-in-able

Eventually Consistent Distributed Database, Journal of
AISS, Vol. 2, No. 3, pp. 56-67, 2010.

[22] Dorin Carstoiu, Elena Lepadatu, Mihai Gaspar, "Hbase - non

SQL Database, Performances Evaluation", Journal of
IJACT, Vol. 2, No. 5, pp. 42-52, 2010.

 Atefeh Tajpour: She received her B.S. in Computer Engineering

from Iran University of Science and Technology in 1995 and her
M.S. in Information Security from University Technology Malaysia
in 2010. Also she has more than 12 years experience in application
programming and system analysis in Iran. She is currently working
toward the PhD degree in computer science in University
Technology Malaysia. Her interest is in web application security.
She has published articles in IEEE, Computer Society and
International Journal of Advancements in Computing Technology.
She is also reviewer of IEEE international conference.

 Suhaimi Ibrahim received the Bachelor in Computer Science

(1986), Master in Computer Science (1990), and PhD in Computer
Science (2006). He is an Associate Professor attached to Dept. of
Software Engineering, Advanced Informatics School (AIS),
Universiti Teknologi Malaysia International Campus, Kuala
Lumpur. He currently holds the post of Deputy Dean of AIS. He is
an ISTQB certified tester and being appointed a board member of
the Malaysian Software Testing Board (MSTB). He has published
many articles in international conferences and international journals
such as the International Journal of Web Services Practices, Journal
of Computer Science, International Journal of Computational
Science, Journal of Systems and Software, and Journal of
Information and Software Technology. His research interests
include software testing, requirements engineering, Web services,
software process improvement, mobile and trusted computing.

 Mohammad Sharifi received a Master’s degree in Software

Engineering and a Doctorate in Information Systems (Information
Technology management and Improvement) from the IAUN (Iran)
and UTM (Malaysia) in 2006 and 2010 respectively. He has several
years’ experiences at different universities in Iran and Malaysia and
the inventor of two inventions in Iran as well. He has also authored
and co-authored a lot of reviewed scientific publications and
distinguished reviewer of some IEEE international
conferences. His main research interests are IT Service and
Security Management, IT Governance, E-Health, SMEs and other
related fields.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 2, No 3, March 2012
ISSN (Online): 1694-0814
www.IJCSI.org 339

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

