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Abstract

In this paper the necessary conditions for optimality are obtained
for regular solutions of the time optimal control problems with
time-varying state constraint. Is constructed an example of time
optimal control problem with active time varying state
constraint, where the optimal trajectory achieves the boundary
of the state constraint infinitely number times, the adjoint
function is absolutely continuous, non trivial and at the same
time the adjoint system is homogeneous.
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Introduction

For the first time Pontryagin maximum principle for problems
with state constraints was obtained by Gamkrelidze R. V. in 1959
[1], [2]. In 1963 another variant of the maximum principle [3]
has been received. After that, the matter was the subject of many
studies [5], [6]. This list of works is not exhaustive.

In the case, where there is a restriction only on the control
function and there are no state constraints, necessary optimality
conditions gives Pontryagin’s maximum principle [1]. These
problems have been well studied because of the absolutely
continuity and non-triviality of adjoint functions.

The optimal control problems with state constraints are
recognized as an important and difficult class of the similar
problems, since the maximum principle for such problems [3],
[5], [6] contains an unknown infinite-dimensional Lagrange
multiplier of the complex nature-bounded regular Borel measure
which has a rather complicated relationship with the optimal
trajectory. Therefore, the optimal control problem with state
constraints are outside the scope of the effective application of
the Pontryagin maximum principle [1]. Questions arise: Are there
any solutions of an optimal control problem for which the
corresponding conjugate function is non-trivial and absolutely
continuous, and if so, how to find them?

Applying a similar technique in [14], [15] we try to answer these
questions for non-autonomous systems with time-varying state
constraint.

Analogical question about the structure of the measures
appearing in the ratios of the maximum principle for the classical
optimal control problem was considered by W. W. Hager [7], K.
Malanowski [8], Hoang Xuan Phu [9], H.Maurer [10], A. A.
Milutin [11], J. F. Bonnans [13], for the differential inclusions by
S. M. Aseev [12]. In [7] -[11], [13] sufficient conditions for the
absence of a singular component obtained under the condition
that the time optimal control function is continuous and takes

values strictly in the interior of u.
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In [12], sufficient conditions for the absence of a singular
component obtained under the condition that the set of
admissible velocities are strictly convex and the Hamiltonian of
the system satisfies certain smoothness conditions.

These and the results, obtained in this study are difficult to
compare: they are all proved under different assumptions and
have different conditions. Apparently, this issue need a separate
study.

Statement of the problem
Consider the time optimal control problem with state constraint
for non-autonomous system

X = f(x,u,t),
X(O) = Xa’ X(T) = Xﬂs

ut)yeu(), ae. te[0,T],
g(x(t),t)<0, Vte[0,T]
T — min (1)

Here, X € E" _state variable, U € E™ -control parameter.
Let Q(En) be the set of all nonempty compact and

COI’]VQ( E n) the set of all nonempty compact convex subsets

of
of E". Functions f(X,U,t),a— are continuous in
X

(X,U)and measurable in t. Let the set valued map

U:E'> Q(Em) be measurable and satisfy the estimate
|U (t)| < k(t), where K(t) is a scalar function, Lebesgue
integrable on any finite  time [0,T].
f(x,U(t),t) e convQ(E"), t €[0,T].  g(x,t) is
continuously differentiable with respect to the set of variables,
og(x,t
and L) =0,
OX
Let H(F,y)=max{(f,w): f € F} be the support

interval

where g(X,t) =0.

function of the set F < E" in the direction of W , where
f denotes the scalar product of vectors f and .
N4 p 4
T(A,a) and N(A,a) are the tangent and normal cones to
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a closed, convex set A at a point @ € A, respectively. All
finite-dimensional vectors are considered column vectors.
Function U(t) eU(t), t€[0,T] is called an admissible
control on the interval [0, T ], if it is measurable and one-
valued branch of the multivalued mapping U (1), so that the
corresponding solution X(t), t€[0,T] of the given system
of differential equations satisfies the initial condition
X(0) =X, and the
g(X(t),t) <0, Vte[0,T]. The challenge is in finding an
u(t),t €[0,T], such that the
corresponding trajectory X(t), t e [O,T] satisfies condition
X(T) = Xﬁ and T is minimal.

This work is dedicated to deriving the maximum principle for
which the optimal solution is regular.

Optimal solution is called regular, if the corresponding conjugate
function is a nontrivial absolutely continuous function.

Lemma 1. Let X(t), t €[0,T] be the some absolutely
continious function, for which g(X(t),t) <0, te[0,T].
Then for almost all t € {S€[0,T]:g(X(s),S) =0} the
inequality

inequality

admissible  control

og(x(t),t) () + ag(x(®,H) _ 0
OX ot Bl

is true.
Proof. Let there exists the derivative X(to) at the point

t, €{s€[0,T]:9(X(s),5) =0} and t, =0, t, = T.
By the definition

dg(x(to)ato) — lim g(x(to + At)ato + At) B g(x(to)ato)

411

g(x(to + At)>t0 + At) - g(x(to)ato) _

dt At—0 At

and for the sufficiently small At >0

g(x(to + At)ato + At) B g(x(to)ato) <0
At -

because dg(x(to ),to) =0 and

g(X(t, + At),t, + At) < 0.

On the other hand

At
_ 9(X(t, + Ab), ) + At) — g(x(ty),t, +Ab)
At
+ g(X(to)ato + At) — g(X(to)ato) —
At
_ 9(x(t, + A, t) + At) — g(X(ty),t, + Ab)
At
+ g(x(to)ato + At) — g(X(to)ato) —
At

_g(X(t, + Ab),t) + At) — g(X(t,),t, + At) y
- X(t, + At) — X(t,)

5 X(t, + At) = x(t,) N

At
+ g(x(to)ato + At) B g(x(to)ato) —
At
_ o(jx(t, + A = x(t)) |
—[gx<x(t0>,to+m>+ o 2D —x()
X(t, + At) — x(t,)
At + 9, (X(t),t)) +
+M <0

At

for the sufficiently small At >0 .
, We have

o(xtt, + A0 - x(t,)] )
X(t, + At) = x(t,)

+ gt(x(to)ato) + +M] =
At

E%[[gx(x(to ).t + A+

X(t, + At) = x(t,)

At
_ 09(X(ty),t,) () + agxH).b)
OX 0 ot -

At the end points 0 and T held a similar argument regarding

the left (at T ) and the right (at 0) limits in the definition of the
derivative.

From the arbitrariness of t € {S €[0,T]:g(X(s),s) =0}
and the absolutely continuity of X(t), t €[0,T] we
conclude that
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ag(x(1),1) () + ag(x®.H T(f (X(1),U (X(0),1),0), X(1)) = T(F (%, (1),
" 5 [0.T] f‘( L0 U@,0,% (1), ae. te[0,T],
aek. e se|0,1]:9(X(S),S)= = . .
Thus, we have proved the lemma. holds, then (X, (t),u,(t)), te [OLT] is called similar to
From the lemma 1 we have the the solution (X(t),T(t)), t €[0,T] of (1)
Lemma 2. If X(t)a te[0,T] isasome admissible Note. The main requirement of this definition is the equality of
trajectory of (1), then optimal values of quality criteria in the original (problem with
U (X(t),t) # ), state constraints (1)) and auxiliary (the problem without phase

constraints (2)) problems.

where Theorem 1. Suppose, there exists a similar solution
ueU(t): g, (x),t)- f(xt),u,t)+ (X, (D), Uy (1)), t[0,T] of @)t
+ g, (X(t),1) <0, (X(t),T(t)), t[0,T]. Then, there exists a nonzero
. absolutely continuous solution of the adjoint system of
if ae. te{se[0,T]: differential equations

U (X(1),1) = 1 9(x(s),8) = 03, .

R . __af (Xo(t)auo(t)at) -r

U(), if ae. w ()= P w(t), ae te[0,T],
te[0,T]\{s€[0,T]: for which, the maximum condition
9(x(5),8)=0}- max {(f (X(),u, 0, p/(1) :u U (XD, D)} =

The proof of the Lemma follows immediately from the lemma ()_((t)a 4 (t))9 ae te [0, -r]

L. holds.

Let (X(1),U(t)), te [O,T] be a solution to (1). If the additional condition

Consider the corresponding auxiliary

af *(Y(t),ﬁ(t),t) _ af *(XO (t)a uo(t)at) (t) _ O
x=f(x,u,t), ae. te[0,T], ox ox y)=u
X(0) =X, X(T) =X, ae te[0,T]
ut)yeuf(), ae. te[0,T], holds, then the conjugate system of differential equations will

have the form
T — min, ) .
and the intermediate yt)=- of (X(g’ u®.n w(t), ae te [0,17].
X
x=f (X, U,t), Proof. At first consider the intermediate optimal control problem

(3). We denote

Xt)={xeE":g(x,t) <0}, te[0,T] and
T(X(t),x)={zeE":g,(X,t)z+ g,(x,t) <0},

Xxe X(), te[0,T]. 1t can be easily shown that the

X(O):Xao X(T):Xpa
ueU(X(),t), ae. te[0,T],
g(x(t),t)<0, vte[0,T],

T — min, (3) solution (X(t),U(t)), te [O,f] of (1) is the solution of
the problem (3) also. On the other hand, it is satisfied the
problems. following inclusion

Definition. If there are the points X,.X, and the decision f(X(1),U (X(1),1),t) c T(X(1),X(t)), ae te[0,T].

(X, (1),U, (1)), t€[0,T] of the problem (2), for which

. . In other words the tangent cone T (X (1), X(t)), te [O,f]
the inclusion

to the X (t) at the point  X(1) € X (t) includes the set of

all admissible velocities of the problem (3).
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Very important question arises: Is the state constraint
X(t) e X(t), t€[0,T] aktive? It turns out, there are

cases, when the state constraint X(t) € X (1), t€[0,T] is

inactive in the problem (3). Namely, in the case, when there
exists the similar solution of the auxiliary problem (2) to the

solution (X(t),U(t), te [0,T] of the problem (3), the
state constraint  X(1) € X (1), t €[0,T] is inactive, that is
the following considerations are true.

Because of (Xo 1), Uo(t)), te [O,T]

problem (2), which is a problem without phase constraints, we
can apply the Pontryagin maximum principle for this decision
[1]. In other words, there exists a nontrivial absolutely

is a solution to

continuous function (1), t € [O,T], as a solution of the
dual system of equations

: af " (%, (1), Uy (D), 1)
t)=-—

(1) x

for which, the maximum condition
max {(f (X, (t),u,t),y(t):uel(t)} =

= (% (1), p (1), ae. te[0,T]
holds.
The last equality means that

w(t) e N(f (% (1),U (0,0, % (1), ae.t€[0,T] @
where N (A, @) isanormal cone of the set

Ae COI’IVQ(E”) atapoint & € A.

w(t), ae te[0,T],

By the definition of the similar solutions and conditions of the
theorem,

T (f(X(1),U (X(t),1),1),X(1)) <
c T(f(x,(1),U(t),1),%,(1)), ae. te[0,T],

therefore,

N(f (%, (1),U (1),1), %, (1) =
< N(f(X(1),U(X(1),1),D)X, (1)), ae. te[0,T],

From the inclusion (4), we conclude that the absolutely

continuous nontrivial one valued branch i/ (t), te [0,17] of
the multivalued map N ( f (X, (t),U (t),t), X, (1))

is a one valued branch of the multivalued mapping

N (f (X(0),U (X(0),1), )X (1),

also.
This means that

max {( f (X(t),u,t),w(t)):ucU(X(t),t)} =
= (X(t),w(t)), ae. te[0,T]

te[0,T]

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

413

In case of the additional condition of the theorem, it is easy to

show that the conjugate function W/ (1), te [O,T] satisfies
the system of the differential equations

pty=-2 <Y<2X,U(t),t)

The theorem is proved.
Consider a linear optimal control problem with state constraint

X(t) = AM)X() +77(u, 1),

X(0) € X, X(T) € X,

ut)eU(), ae. te[0,T],
g(x,t)<0, Vte[0,T] )
T — min

w(t), ae te[0,T],

and the corresponding problem without state constraint
X(0) = ADX() +7(u, 1),
X(0)eX,, X(T)eX,,
ut)eU(), ae. tef[0,T], (4
T — min,

Here, A is a given NXN matrix of bounded measurable

elements, 77(U,t) measurable in U and continuous in

u, n(U (t),t) e convQ(E"), t €[0,T].

Consequence. Let there exist a similar
(X, (1), U, (1), t[0,T] of (6) to the solution
(X(t),T(t), t €[0,T] of (5). Then there exists a nontrivial

solution of the adjoint system of differential equations

w(t)=—-A"(H(t), ae. te[0,T],

for which, the maximum condition

max {(7(u,t),y (t),u eU (X(t),0)} =
= (n(U(t),t),w(t)), ae. te[0,T]
holds.

The proof follows easily from the proof of the theorem.

solution

Note. For linear on X' systems, an additional condition is always

satisfied, since in this case

of "(X(0),u(t),t) _ A () = of " (X, (1), Uy (1), 1)
ox ox ’
ae te[0,T],

Thus, in cases, linear with respect to the phase coordinates, we
need only condition for the existence of the similar solutions.
Example

Consider the linear time optimal control problem
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XX (00 - i 1
_ 0 _( 5 )a X(T)—(I,O), u_ly If te TnoaTno +t—
X, = U, 2

u[<1, xt)eX(), te[0,T], !
where u-+ 1, if te Tno +—,Tm .
2

(X,X)eE?: 0<x,<t+T,,

if te|T,,T,+ :
[ " 24} VAN

X)) = /
(X,X)eE*: 0<x,<T  —t, w )
it te|T 4+ T 1/
no 2% > 'nl |» c:llf,
and :-.III
|
n-1 2 n 2 ] [T 7} [ [T B [3
T2 Ta :Z_i_z' Fig. 1.
i=0 22 i=0 22
T — min.

Taking into account expression for the subset

U((X(1)), te [0,T] wehave

Solution.
A straightforward calculation shows that for Tno and Tm the

following relations

23 33 u<l, te[Tno,T + 1/}
2 _ 92 2 _n2 _ . 272
T,=1 2 q o272 U (X(t) = {u] <1: 1
22 _92 72 _92 us-1, telT,,+—F.T, |
hold, 2
For each time interval Tn , N=1,2,... on the first half _
- ! - In other words, for all Tn , h=12,... and 1 €[0,T]
TnO’TnO +—| the function g(x,t) is
24 1 Toos Tho !
. ) u<l, t
g(X,t) =X, =t —=T,,. On the second half ’ €| o> T 24
- LT U (X(1)) = |
Tno +T/,Tnl the function g(X,1) is -1}, te {Tno +2TA,TM}
L 272
g (X t) =x —T. +t Hence, optimal control function is
sr) T M2 nl .
Consequently, .
L, if te|T,,T
g, (X(O.D f (XD, 0,1+ GX (M), 1) = T { S 24}
- u((t) = n=123,..
X, (1) . 1 . 1
(091) ’ -1, if te TnoaTno +T/ -1, if te TnO + T’Tnl
_ u 272 ] 24
2(t) . 1 . .
(0,1)- +1, if te|T,+ " T Consider the auxiliary problem
272
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X, =X,
X, =U,

T — min.
As a similar solution U, 1), te [O,T] of the problem we
can take Uo(t) =1, te [O,T]. Because,

T(U,1) = (~0,0] and

(_0090]9 te TnoﬂTnO +% >
o 2%
TUXMD),u®) = |
10}, te|T, +2TA’TM

n=12.3,...

hence, we have

TU(X(1)),ut)) cTU,u,(t)), ae te[0,T].
Thus, the condition of the existence of the similar solution is
satisfied, that is there exists the nontrivial absolutely continuous

adjoint function W (1) = (l,f -1), te [0,-]7] , asa

solution of the adjoint system of differential equations
w, =0,
V="V

for which the maximum condition

HUX®),p (1) = @O,p 1), ae te[o,T].
holds.

The graph of the corresponding optimal trajectory Y(t) is given
in the fig.1.

Conclusion

Thus, we constructed the example of time optimal control
problem with active time varying state constraint, where the
optimal trajectory achieves the boundary of the state constraint
infinitely number times, the adjoint function is absolutely
continuous, non trivial and at the same time the adjoint system
is homogeneous.

Note that, the results obtained in this study include the entire
regular optimal trajectory, i. e. the optimal trajectory is
investigated as a whole, not dividing it to boundary or interior
parts.
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The advantage of this result is the fact that the adjoint equation is
much simpler and has the same form as in optimal control
problems without state constraints and regular trajectory in this

case may be irregular for the whole set U .
A specialty of this work is also that the maximum condition is

not taken on a set U , but the subset U (X(t)) c U, as done
in [14], [15].
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