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Abstract

In this paper, robot tracking of a moving target in cluttered
environments by using an improved potential field controller is
proposed. Genetic algorithms are used to improve the potential
field controller by optimizing the forces applied to the robot.
This improvement makes the robot path much more smoother
during the tracking. A measure of smoothness is used to guide
the genetic algorithm during the optimization. Of course more
smoothing gives less distance and more speed to reach the goal.
The optimized controller is simulated with different cases on
Windows Vista using Matlab Software. These cases include
environments with single obstacle up to three obstacles and
multi-knee corridor. Results are compared to previous work,
illustrating the superiority of the proposed work. Tracking of a
moving target in the same cases are also simulated.

Keywords: Obstacle avoidance, Relative distance, Virtual
sensor, Genetic Algorithm, Artificial potential field.

1. Introduction

Through the advance in mobile robots from path guidance
methods to autonomous mobility, resulting on obstacle
avoidance of robots have emerged steadily over the years
including directional command methods, such as artificial
potential fields [1-5], and speed-space commands, such as
the curvature foundation system [6-9]. However, most
previous results remain a challenging problem as most
existing methods have not considered the mobility of
robots and obstacles. If a robot moves very slowly, most
of the established algorithms can be applied to avoid
obstacles. These algorithms cause a robot to move very
slowly for obstacle avoidance. As it moves faster and
faster, avoidance control is more difficult and the robot
tends to collide more frequently with obstacles. The
virtual sensor concept was introduced in [10] is used in
our work. This concept is similar to that of the Doppler
Effect. When a robot heads to an obstacle, the distance on
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the robot sensor is longer than the virtual sensor. Likewise,
the physical distance on the robot sensor is shorter than
the virtual one when it goes away from an obstacle.

The philosophy of the artificial potential field approach
which is used in the current work can be schematically
described as: the robot moves in a field of forces. The
position to be reached is an attractive pole for the robot
and obstacles are repulsive surfaces for the manipulator
parts. The net force determines the behaviour of the robot
against the objects in its environment.

In this paper, optimization of the potential field controller
forces applied on the robot making the robot path much
smoother, shorter and with high speed will be
demonstrated. Efficiency of robot obstacle avoidance will
be regarded too. The Genetic Algorithm (GA) is used to
select the optimum factors of the repulsive and the
attractive forces in the offline state which can be then
applied on the robot in the online state. The optimum
factors are those who make the robot motion more
smoother. Simulation on Matlab is executed for testing
the performance of the improved potential field controller
in the task of robot obstacle avoidance. The simulation
results are then used to compare the performance of the
proposed system and the established system in [10] to
evaluate the proposed system effectiveness. Tracking a
moving target in cluttered environments by using the
improved potential field controller is also simulated on
Matlab.

This paper is organized as follows. In Section 2,
Avoidability Measure and Odometry will be discussed
briefly. Section 3 illustrates the Artificial Potential Field
theory. Section 4 explains the determination of the
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optimum factors of the potential field controller forces
using GA and illustrates the GA fitness function which is
used in our work. Section 5 shows the performance of the
proposed system by simulation in four different cases. In
addition, comparison with the established system in [10]
will be reviewed. Conclusion and future work are given in
Section 6.

2. Avoidability Measure and Odometry

The efficiency of robot’s motion is determined by the
smoothness, the speed, and selection of the shortest path
to reach to the goal with obstacle avoidance. The
proposed system is concerned with satisfying high
efficiency of the robot’s motion. The speed and direction
of robot motion play a key role for efficient and safe
control. The mobility is taken into account through the use
of a virtual sensor as in [10]. Relative mobility of the
robot is detected by computing its odometry. The
avoidability measure depends on the virtual sensors and
the robot mobility.

2.1 Avoidability Measure (AVM)

The distance between robot and obstacle can be used for
collision detection. If the robot moves, the probability of
collision depends on the speed of the robot. Therefore, the
AVM of a moving robot can be defined by the distance
between the robot and the obstacle, and the speed of the
robot. All of computations of avoidability measure using
virtual sensor in [10] are used in the proposed system.

2.2 Odometry

The proposed system depends on the angle approach [11,
12] to compute the odometry. Fig. 1 [13] gives a very
rough overview about the geometrical relationship of this
approach.

AY

Y

Fig. 1 Overview about the geometrical relationship.

The rotation speed ? is proportional to the speed
difference of the two wheels as follows:
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Where : VL and VR are the forward speeds for the left
and the right wheels respectively, distwheel is the distance
between the two wheels, rwheel is the radius of the wheel,
oLand ®R are the rotational speeds for the left and the
right wheels respectively.

The forward speed V is proportional to the average wheel
speed as follows:

V=T = Tl (o, + wp) &)
x'=x+Vcosa-At Ax =V cosa - At x
y' =y +Vsina- At Ay =V sina - At y

a' = a+ wAt Aa = wAt @
V cosa
= |V sina €)]
1)

Where: x, y are the coordinates of the robot in the x-y
plane, o is the heading angle of the robot, At is the time
step, X', y' are the new location of the robot after time step
in the x-y plane, o' is the new heading angle of the robot.

3. Artificial Potential Field

An artificial potential field U,,(t) consists of the attractive
force U, (t) and the repulsive force Ui(t). The distance
between the nth actual sensor on the robot and the
obstacle d,, (t, n) in [1] is replaced with the distance
between the nth virtual sensor on the robot and the
obstacle vgy,(t, n) in [10].

Uare (P (8), Po(8), By) = Ui (B-(D), Po (D)) +

Uy(B.(0), By) @

Where: P,(t) is the robot position at time t, Py(t) is the
obstacle position at time t, and P, is the goal position.

Uk(Pr(t); Po(t)) = EKr (Usvr(t) - ;) lf USUr(t) <e¢
0 lf USUr(t) > €

where €=1 5)

1

Ug(Pr(t)tPg) = ;Kalpr(t)_Pglz (6)

Where: K, is the repulsive force factor, € is the distance
between the robot and the obstacle in which the repulsive
force must be applied on the robot, K, is the attractive
force factor.
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The force on robot pose P.(t) can be calculated from the
gradient function of the artificial potential field as:

= et (U 16.1)) = 0
= —grad (Uart(P, Po(t))) — grad (U(m(P,%))
= Fo(B(0) + F, (B(®)) A

As the robot approaches the obstacle the repulsive force
Fo(P(t)) increases. On the other hand, the attractive force
to the goal Fy(P(t)) will be decreased as it approaches its
goal. Therefore, the net force from the artificial potential
fields enables the robot to smoothly move to the goal.

4. Determining the Optimum Factors and
Fitness function

The attractive and repulsive coefficients K,, K, of the
forces are determined empirically in [10], that shouldn't
grantee a fast and smooth robot path. To overcome that
empirical factors determination, one of the optimization
techniques such as (GA) can be used to better determine
those factors.

The fitness function which is used in GA optimizer is the
smoothness (SM) that is defined as a criterion of the
evaluation to measure the various robot trajectories.

SM = ZQ:O((pn - (pn—l) (®
_ -1 Yn=Yn-1
o, = tan po— 9

Where : m = the last pose number of robot trajectory, x,
and y, represent the robot position at n™ sampling time.
@y, is the angle between current and former position at n™
sampling time.

First the optimum parameters for the potential field
controller are obtained in offline state. It includes guided
random search operation using GA to determine the
optimum factors for K; and K, which are the factors of the
repulsive and the attractive forces respectively. Four
different environments for testing the improved potential
field controller are used. These cases are those typically
used in [10]. The best fitness and the best individual
figures are yielded after applying the GA optimizer for
these four cases. The following subsections illustrate these
four cases.

4.1 One Obstacle in the Workspace

In Case 1, there is only one obstacle and one robot in the
workspace. The start point is (0,0) and the end point is
(4,2). After applying the GA optimizer, the optimum
values of K,, K, according to our fitness function are
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13.4210, 0.2628. The best fitness and the best individual
figures for this case are shown in Fig. 2.

¥ T
B Lt Ven biet ook Dekisp Wodow Hilp "
Bt Q62678 Wean 0 2676
|
fir
{
gw-
.
i
¥ L} 2 n i i [ n ] L] n
Grantan

e of s

Fig. 2 The best fitness and the best individual figures which are yielded
after applying the GA for case 1.

4.2 Two Obstacles in the Workspace

In Case 2, there are 1 robot and 2 obstacles in the
workspace. The start point is (0,0) and the end point is
(4,3) in this case. The GA optimizer gives the optimum
values of K,, K, which are 15.7406, 0.1927. The best
fitness and the best individual figures are shown in Fig. 3.
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Fig. 3 The best fitness and the best individual figures which are yielded
after applying the GA for case 2.
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4.3 Three Obstacles in the Workspace :' g H%L:‘_I‘_ﬁ_m'
In Case 3, 1 robot and 3 obstacles are in the workspace. e T
The start and the end points are equivalent to Case 2. The m‘ l —
GA optimizer gives the optimum values of K,, K; which " "
are 20.7208, 0.0285 while the best fitness and the best . ..
individual figures are shown in Fig. 4. g e
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Fig. 4 The best fitness and the best individual figures which are yielded
after applying the GA for case 3.

4.4 Corridor Environment

In Case 4, the robot moves in the corridor and two
obstacles are given. The start and the end points are (2,0)
and (6.5,6.5), respectively. The GA optimizer gives the
optimum values of K,, K, which are 13.7519, 0.7037. Due
to the complex path in the fourth case, the best fitness and
the mean fitness have big values, relative to the previous
cases, during all generations as shown in Fig. 5. Although
this case is complex but the result is optimized by using
GA optimizer. The best fitness and the best individual
figures are shown in Fig. 5.

Now, the optimum values of K, and K; which are obtained
from the offline state in each case will be applied at the
online state. The following section shows the robot’s
motion at the online state in the four cases after applying
the optimum values of K, and K.
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Fig. 5 The best fitness and the best individual figures which are yielded
after applying the GA for case 4.

5. Simulation Results

This section shows the simulation results of robot
motion in four different environments at three states.
The first state is the robot motion to go to a static
goal at each environment using its K, and K, values.
The second state is the robot motion to go to a static
goal at each environment using the average values of
K, and K, of the four environments. The third state is
robot tracking of a moving target using the average
values of K, and K, of the four environments.
Sections 5.1, 5.2 and 5.3 show the simulation results
in the four environments at these three states
respectively.

5.1 Robot Motion to reach a Static Goal in each
environment with its K, and K, values

To show the optimization achieved in the performance of
the proposed method, it is compared with [10].

5.1.1 One Obstacle in the Workspace

The motion paths in case 1 are shown in Fig. 6(a, b). The
start point and the end point are as mentioned in section
4.1. The robot with empirical values of K, and K, displays
slower evasive action, as in Fig. 6(a), than the proposed
system using the optimum values of K, and K, as in Fig.
6(b). Fig. 6(a) shows abrupt changes in the robot’s path.
However, the second robot displays smoother changes.
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Fig. 6 Robot trajectories in Case 1. (a) Without Optimization [10], (b) '1._1 0 1 2 3 4 5
With Optimization.

5.1.2 Two Obstacles in the Workspace

Case 2 displays abrupt directional changes on the robot’s
path which uses empirical values of K, and K, as shown in
Fig. 7(a). These abrupt changes are occurred due to a
slower response of a repulsive force to the obstacle and an
attractive force to the goal. On the contrary, the robot’s
path using the proposed method is rounder and smoother
as shown in Fig. 7(b). The start point and the end point are
as mentioned in section 4.2.
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(b

Fig. 7 Robot trajectories in Case 2. (a) Without Optimization [10], (b)
With Optimization.

5.1.3 Three Obstacles in the Workspace

Fig. 8 shows the robot trajectory for Case 3. The start
point and the end point are as mentioned in section
4.2.The robot in previous work makes zigzagging in its
path due to slow evasive action.
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Table 1. It shows the large optimization is occurred in the
proposed system.

As shown from the Table 1 a large optimization of the
smoothness is occurred. When the path of the robot is
smoother it means that the robot takes shortest path and it
takes less time to go to the goal.
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Fig. 8 Robot trajectories in Case 3. (a) Without Optimization [10], (b) 3l
With Optimization.
1t
5.1.4 Corridor Environment or-
e

In Case 4, the robot moves in the corridor and two
obstacles are given. Fig.9 shows the robot trajectory. The
start point and the end point are as mentioned in section
4.4,

The simulation results show that using the proposed
method the robot has better performances with respect to
smoothness in all cases. The smoothness is computed
using the fitness function for each case and compared
with the smoothness recorded by the previous work in
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Fig. 9 Robot trajectories in Case 4. (a) Without Optimization [10], (b)
With Optimization.

1JCSI

www.lJCSl.org



IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 2, No 3, March 2012
ISSN (Online): 1694-0814
www.lJCSl.org 478

5.2 Robot Motion to reach a Static Goal in each
environment using the average values of K, and K,

. :
8/08=n

The average of the values of K, and K, in the four cases
are computed which are 15.9086 and 0.296, respectively.
These two average values are applied onto the four cases.
The paths of the robot at these four cases with these
average values are shown in Fig. 10. The smoothness
achieved at each case using the average values of K, and
K, is shown also in Table 1.

Table 1: The Comparison of Smoothness between the Proposed Method
Using GA and the Previous Work

Smoothness Case 1 Case 2 Case 3 Case 4

Without GA | 133.7309 | 303.4949 | 510.1164 | 1420.295

With GA 0.6268 0.9614 0.9803 54.0509
Using (©
Average 0.6593 21. 8747 42.061 55.5763
Factors

R [RSODE L]

FPAREEIET:

A

(d)

Fig. 10 Robot trajectories with the average values (a) Case 1, (b)
Case 2, (c) case 3, (d) Case 4.

5.3 Tracking of a Moving Target

In this simulation, we have two robots which are called
Robol and Robo2. Robol should track Robo2 and Robo2
should go to its static goal (end-point). Tracking and
motion of the two robots at the four environments are
shown in this section.

Using the average values of K, and K; of the four cases,
and computing the forces which are applied on the two
robots make each of them move to its goal smoothly as
shown in the Fig.11 (a, b, ¢, and d). Where, the red path
represents Robol's tracking path which follows Robo2,
and the blue path represents Robo2's path to reach to the
end point which is coloured by a green colour. The start
position of Robol and Robo2, and the end point location
®) at each case are shown in Table 2.
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Fig. 11 Robol tracks robo2 in (a)case 1, (b) case 2, (c) case 3, (d) case 4.

: ; ; : Table 2: The Comparison of Smoothness between the Proposed Method
4l ] ; ; ; Using GA and the Previous Work

Position Case 1 Case2 | Case3 | Case4

Robol (0, 0) 0,0) | (0,00 | (0.5,0)

Robo2 | (35,05 | 3,-05 | 3.1) | 25,1

End-Point | (4,2) 4,3) | 5.2) |(65,65)

6. Conclusions

In this paper, computation of odometry is used to reflect

the mobility of moving robot. GA optimizer is used in

(b) different robot environments to select the optimum factors

of the forces to reach the goal while avoiding obstacles.

"Bl Fqures == The optimized parameters are tested in four different
Fle Edit View Tnsen Tools Desktop Window Help 4 environments. The results show the superiority of the
optimized controller generally and inclusively compared

ittty e e to the work in [10] The average of the computed factors
by GA optimizer for the four cases is applied again onto

| I annnRRe oRRRE T A S the same cases, while the smoothness in our work remains
better than the results in [10]. Graceful optimization
| I .............................. regarding the path motion is achieved. Another
: : application for the improved potential field controller is
introduced, in which a moving goal is tracked by a robot.
The moving goal is controlled by the improved potential
field controller. The potential fields controlling the
tracking robot are: attractive one (from the moving goal),
and repulsive one from the obstacles. Again we use the
improved potential field controller with its average values
: ‘ . ‘ ‘ ‘ of Ka and Kr for applying the forces on the tracking robot.
- D 1 2 3 4 5 Tracking a moving target is also simulated in the same
four given environments. Simulation results shows how

the tracking robot succeeds in tracking the moving goal

©
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smoothly. The real implementation of the proposed work
can be done as a future work.
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