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Abstract 
In this paper, robot tracking of a moving target in cluttered 
environments by using an improved potential field controller is 
proposed. Genetic algorithms are used to improve the potential 
field controller by optimizing the forces applied to the robot. 
This improvement makes the robot path much more smoother 
during the tracking. A measure of smoothness is used to guide 
the genetic algorithm during the optimization. Of course more 
smoothing gives less distance and more speed to reach the goal. 
The optimized controller is simulated with different cases on 
Windows Vista using Matlab Software. These cases include 
environments with single obstacle up to three obstacles and 
multi-knee corridor. Results are compared to previous work, 
illustrating the superiority of the proposed work. Tracking of a 
moving target in the same cases are also simulated. 
Keywords: Obstacle avoidance, Relative distance, Virtual 
sensor, Genetic Algorithm, Artificial potential field. 

1. Introduction 

Through the advance in mobile robots from path guidance 
methods to autonomous mobility, resulting on obstacle 
avoidance of robots have emerged steadily over the years 
including directional command methods, such as artificial 
potential fields [1-5], and speed-space commands, such as 
the curvature foundation system [6-9]. However, most 
previous results remain a challenging problem as most 
existing methods have not considered the mobility of 
robots and obstacles. If a robot moves very slowly, most 
of the established algorithms can be applied to avoid 
obstacles. These algorithms cause a robot to move very 
slowly for obstacle avoidance. As it moves faster and 
faster, avoidance control is more difficult and the robot 
tends to collide more frequently with obstacles. The 
virtual sensor concept was introduced in [10] is used in 
our work. This concept is similar to that of the Doppler 
Effect. When a robot heads to an obstacle, the distance on  

 
 
the robot sensor is longer than the virtual sensor. Likewise, 
the physical distance on the robot sensor is shorter than 
the virtual one when it goes away from an obstacle. 
 
The philosophy of the artificial potential field approach 
which is used in the current work can be schematically 
described as: the robot moves in a field of forces. The 
position to be reached is an attractive pole for the robot 
and obstacles are repulsive surfaces for the manipulator 
parts. The net force determines the behaviour of the robot 
against the objects in its environment. 
 
In this paper, optimization of the potential field controller 
forces applied on the robot making the robot path much 
smoother, shorter and with high speed will be 
demonstrated. Efficiency of robot obstacle avoidance will 
be regarded too. The Genetic Algorithm (GA) is used to 
select the optimum factors of the repulsive and the 
attractive forces in the offline state which can be then 
applied on the robot in the online state. The optimum 
factors are those who make the robot motion more 
smoother. Simulation on Matlab is executed for testing 
the performance of the improved potential field controller 
in the task of robot obstacle avoidance. The simulation 
results are then used to compare the performance of the 
proposed system and the established system in [10] to 
evaluate the proposed system effectiveness. Tracking a 
moving target in cluttered environments by using the 
improved potential field controller is also simulated on 
Matlab.  
 
This paper is organized as follows. In Section 2, 
Avoidability Measure and Odometry will be discussed 
briefly. Section 3 illustrates the Artificial Potential Field 
theory. Section 4 explains the determination of the 
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(a) 

 

(b) 

 

(c) 

 

(d) 

Fig. 11 Robo1 tracks robo2 in (a)case 1, (b) case 2, (c) case 3, (d) case 4. 

Table 2: The Comparison of Smoothness between the Proposed Method 
Using GA and the Previous Work 

Position  Case 1 Case 2 Case 3 Case 4 

Robo1 (0, 0) (0, 0) (0, 0) (0.5, 0) 

Robo2 (3.5, 0.5) (3, -0.5) (3, 1) (2.5, 1) 

End-Point (4, 2) (4, 3) (5, 2) (6.5, 6.5) 

6. Conclusions 

In this paper, computation of odometry is used to reflect 
the mobility of moving robot. GA optimizer is used in 
different robot environments to select the optimum factors 
of the forces to reach the goal while avoiding obstacles. 
The optimized parameters are tested in four different 
environments. The results show the superiority of the 
optimized controller generally and inclusively compared 
to the work in [10]. The average of the computed factors 
by GA optimizer for the four cases is applied again onto 
the same cases, while the smoothness in our work remains 
better than the results in [10]. Graceful optimization 
regarding the path motion is achieved. Another 
application for the improved potential field controller is 
introduced, in which a moving goal is tracked by a robot. 
The moving goal is controlled by the improved potential 
field controller. The potential fields controlling the 
tracking robot are: attractive one (from the moving goal), 
and repulsive one from the obstacles. Again we use the 
improved potential field controller with its average values 
of Ka and Kr for applying the forces on the tracking robot. 
Tracking a moving target is also simulated in the same 
four given environments. Simulation results shows how 
the tracking robot succeeds in tracking the moving goal 
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smoothly. The real implementation of the proposed work 
can be done as a future work. 
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