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Abstract : 
In this paper, we propose an study that combines classical 
linearization method with the Routh Herwitz  criterion theory of 
complex nonlinear systems to compute local stability boundaries 
and visualize such bifurcation surfaces of nonlinear dynamical 
systems as function of parameters set (Analytical Search for 
Bifurcation Surfaces in Parameter Space). 
Therefore, we proposed a numerical method  for the bifurcation 
analyses , Our goal is to applied  the optimal derivative (based on 
the minimization in the least-square sense) as introduced by O. 
Arino and T. Benouaz. In order to gain some progress with this 
procedure in the  term of bifurcation analysis (detection of the 
local bifurcation in the neighborhood of the bifurcation 
parameters  with respect to an initial condition) . This application 
enables us to compare the results obtained with those found by 
the classical linearization (Fréchet derivative (jaccobian matrix) 
in the equilibriums points) . 
Keywords :Nonlinear ordinary differential equation- optimal 
derivative- Classical linearization (Freshet derivative in the 
equilibrium point) - asymptotic stability - bifurcation analysis. 

1. Introduction 

Nonlinear models arise for most systems and their 
presence in one form or another is generally the rule. The 
source of nonlinearity in structural and mechanical 
systems may a result of interaction with surrounding, 
forces can arise due to interacting media or fields. The 
resulting nonlinear models exhibit a rich variety of 
phenomena of interest to scientists and engineer. The 
presence of a bifurcation is of great importance in many 
physical, chemical and biological systems [1-2]. 

In the study of nonlinear ordinary differential equations, 
the linearization method plays an important rôle. In [3–7], 
Arino and Benouaz have introduced an alternative method 
termed as the optimal derivative method (see also [8–10]).  
 
 
 

 
This is an approximation procedure based on the 
minimization of a certain functional with respect  to a 
curve starting from an initial value ݔ଴ and going to zero as 
t goes to infinity. 
 
The localization of critical parameter sets called 
bifurcations point is often a central task of the analysis of a 
nonlinear dynamical system. Bifurcations of codimension 
1 that can be directly observed in nature and experiments 
form surfaces in three-dimensional parameter spaces. In 
this paper, we propose an application of the optimal 
derivative as introduced by O. Arino and T. Benouaz 
enables us to compare the results obtained with those 
found by the classical linearization (Fréchet derivative in 
the equilibrium point).   

in the 1960s and 1970s the mathematical theory of 
dynamical systems experienced much development, with 
the introduction of new ideas by Smale, Arnol′d, Lorenz, 
Yorke, and Feigenbaum, to name just a few of the 
contributors [8, 9, 10].  With these theoretical 
developments there came a renewed interest in the 
dynamics of electronic circuits in the early 1980s, when 
new ideas and methods were introduced to the study of 
(periodic or non-periodic) oscillations generated by 
nonlinear electronic circuits of low dimension. However, 
the theory usually only provides a framework for different 
phenomena that one may find in a given circuit. To 
perform an effective study of the actual dynamics it is 
necessary to resort to numerical methods. In order to 
obtain a global view of the dynamics in phase space and of 
the bifurcations in parameter space, one needs to employ 
numerical methods that go beyond mere numerical 
simulation. 
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In this paper we demonstrate how complicated dynamical  
behavior and bifurcations can be found and identify in 
ODE models of physical system. The combination of 
theoretical methods (Routh Hurwitz criterion and linear 
algebra) and numerical technique (optimal derivative)  
allows one to obtain a deep understanding of a wide range 
of dynamical phenomena. In particular, physical system 
provide concrete examples of unfolding of singularities 
that act as organizing centers of the dynamics. 
Our intention is to apply and make some progress with this 
procedure in the  term of bifurcation analysis (detection of 
the local bifurcation in the vicinity of the bifurcation 
parameters  with respect to an initial condition) . 

2. Optimal Derivative Review 

Consider a nonlinear ordinary differential problem of the 
form (see [3–7]) 

  
 









00 xx

txF
dt

dx
 

where 
•  nxxx ,,1   is the unknown function, 

•  nffF ,,1   is a given function on a open subset   of 

IR n, 
with the assumptions: 
H1)   00,0 F . 
H2) F is   Lipchitz continuous, 

H3) The spectrum   xDF  is contained in the set 

 0 Re: zz  for every 0x , in a neighborhood of 0, for 

which  xFD  exist. 

Given nIRx 0 , we choose a first linear map 0A . For 

example, if F is differentiable in 0x , then we can take 

 00 xDFA   or the derivative value in a point in the 

vicinity of 0x  . This is always possible if F is locally 

Lipschitz. Now, let 0y  be the solution of the initial value 

problem 
    00 0, xytyAy     (1) 

Next, we minimize the functional 

       .
2

0 00 dttyAtyFAG 


    (2) 

This minimization problem is always uniquely solvable, 
and as the optimal linear map minimizing (2) we obtain 

       





 


dttytyFA T

00 01

       .
1

00 0








  dttyty T                         (3) 

Now we define 1y  to be the solution of Eq(1) with 0A

replaced by 1A  and we minimize Eq(2) with  0y replaced 

by 1y . Then we continue in this way. The optimal 

derivative A
~

 is the limit of the sequence build as such (for 
details, see [4–8]). 

3. Presentation of the illustrative example: 

The example derived from a Nonlinear mechanical system 
representing a forced nonlinear oscillator [11],[12] , in fact 
is a mechanical posistioning device with feed-back 
control. given by the system: 

ሷݔ ൅ ሶݔߜ ൅ ݔሻݔሺܭ ൌ െݖ ൅ ሻݐሺܨ
ሶݖ ൅ ݖߙ ൌ ݔሺߛߙ െ ሻݎ

 

x is defined as the displacement, ݔߜሶ  the linear damping 

with a damping constant  > 0, object of  negative feed-

back control (z) with time constant  
1 and the gain   ) ,

   12  xxK :   

We take  0)( tF ,  ݎ ൌ 0		representing  autonomous 
system, in which the governing equation have no explicit 
time dependence. Our goal that this type of dynamical 
systems can still exhibit complicated dynamics (complex 
bifurcations and transient to chaos)  with a regime in with 
two or more stables limit cycles exist : 

ሷݔ ൅ ሶݔߜ ൅ ଷݔ െ ݔ ൌ െݖ
ሶݖ ൅ ݖߙ ൌ ݔߛߙ

           (4) 

 the system  (4) with the dimensionless equation is given 
by  

ቐ
ሶݔ ൌ ݕ

ሶݕ ൌ ݔ െ ଷݔ െ ݕߜ െ ݖ
ሶݖ ൌ ݔߙߛ െ ݖߙ

                (5) 

ሺݔ, ,ݕ ሻݖ ∈ 	 ,ߜ ଷ with the parametersܴܫ ,ߙ ߛ ൐ 0 . 

4. Analytical Search for Bifurcation surfaces 
in Parameter Space 

To locate the bifurcations of a given system in parameter 
space is one of the main tasks of qualitative analysis. local 
bifurcations correspond to qualitative changes in the 
neighborhood of one steady state and can, therefore, be 
detected by monitoring the eigenvalues of the 
corresponding Jacobian matrix. 

4.1 Determination of the equilibrium points 

we can see that there exists an equilibrium in 3IR  if and 
only if the equations 
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ቐ
ሶݔ ൌ ݕ ൌ 0

ሶݕ ൌ ݔ െ ଷݔ െ ݕߜ െ ݖ ൌ 0
ሶݖ ൌ ݔߙߛ െ ݖߙ ൌ 0

 ቐ
ݔ ൌ 0

ݔ ൌ േඥ1 െ ߛ

ݖ ൌ ඥ1ߛ െ ߛ
   (6) 

The system  has one trivial steady state with the origin 
ሺݔ, ,ݕ ሻݖ ൌ ሺ0,0,0ሻ	 and two symmetric non-trivial steady 

states	ሺ ାܲ, ܲି ሻ  with ሺݔ, ,ݕ ሻݖ ൌ ൫േඥ1 െ ,ߛ 0, േߛඥ1 െ  ൯ . Inߛ
all steady states ݔ ൌ 0  and ݖ ൌ ሺ1ݔ െ  ଶሻ hold. We canݔ
conclude the following results : 

 Case 1: if 	ߛ ൒ 1 the system has one trivial 
steady state at the origin with ݔ ൌ 0 (for any 
values of the parameters). In fact for ߛ ൌ 1, the 
three equilibria coincide, and we therefore have 
pitchfork bifurcation at ߛ ൌ 1. 

 Case 2 : two steady states appear if  0 ൏ ߛ ൏ 1. 
The stability of  equilibrium states can be determined by 
evaluating the Jacobian matrix at this states and then 
examining its eigenvalues (for the case 1 and 2). 

4.2 Behaviour of the system around O(0,0,0) ߛ ൒ 1 

Jacobian matrix DF(x) at the steady state ࢞ ൌ ૙ is given 
by (7) 

     




























0

10

010

00
x

g
DFJ   






















0

11

010

     (27) 

with  డ௚
డ௫
ሺݔሻ ൌ 1 െ  ଶݔ3

By  ݀݁ݐሺܫߣ െ ሻܬ ൌ 0 , we get the characteristic equation 
corresponding to (7) 

ܲሺߣሻ ൌ ଷߣ ൅ ሺߙ ൅ ଶߣሻߜ െ ሺ1 െ ߣሻߜߙ െ ሺ1ߙ െ ሻߛ ൌ 0 
     (8) 
In order to compute local stability boundaries for which 
the equilibrium exchange stability, then we detect such 
bifurcation surfaces of nonlinear dynamical systems  as 
function of system parameters ߜ, ,ߙ -we use the Routh , ߛ
Herwitz  criterion theory [10],[11]. 
we note that in this range of ߛ ൒ 1, we have two stability 
boundaries function of the parameters set, 
the first one is ߛ ൌ 1. the second can be determined by 
applying Routh–Hurwitz criterion as follow : 

From the coefficients of the polynomial characteristic 
equation (8 ) we can construct the Routh matrix given by :  


















000

0

0

20

31

aa

aa

H  with ܽ଴ ൌ 1, ܽଵ ൌ ሺߙ ൅ ,ሻߜ ܽଶ ൌ

െሺ1 െ ,ሻߜߙ ܽଷ ൌ െߙሺ1 െ  .ሻߛ
The polynomial P is asymptotically uniformemlly stable if 

	ܽ଴ ൐ 0, ܽଶ ൐ 0, ܽଵܽଶ ൐ 	ܽଷ	 and the principal 
determinants of  the matrix H are strictly positive i.e 
Δଵ ൌ ܽଵ ൐ 0, Δଶ ൌ ܽଵܽଶ െ ܽଷܽ଴ ൐ 0 

we imply that for ߛ ൐ 1 and 	ߜߙ ൐ 1	, the second local 
stability boundary is given by  

ࢽ ൌ ࡴࢽ ൌ
ఋ

ఈ
ሺߙଶ ൅ ߜߙ െ 1ሻ  (9) 

using this boundary values  characterized by a critical 
value of the bifurcation parameter, we can compute the 
eigenvalues of the associated linear system function of the 
parameters set ߜ, ,ߙ  .ߛ
Note: The advantage of this criterion that  we can 
analyzed the stability of a system by locating the stability 
boundaries without information on eigenvectors of the 
equivalent linear system.  

 case where  ߛ ൌ 1 
the characteristic equation (7) became : 

ଷߣ ൅ ሺߙ ൅ ଶߣሻߚ െ ሺ1 െ ߣሻߜߙ ൌ 0.  (10) 
the roots of this equation are given by: 

ቊ
ଵߣ ൌ 0

ଶ,ଷߣ ൌ െ
ଵ

ଶ
ሺߙ ൅ ሻߜ േ

ଵ

ଶ
ඥሺߙ െ ሻଶߜ ൅ 4

            (11) 

Note that the term ሺߙ െ ሻଶߜ ൅ 4 is always positive, 
therefore the eigenvalues ߣଶ,ଷ are real and one  become 
zero  ߣଵ ൌ 0. 
The origin is always an equilibrium. A pitchfork 
bifurcation of equilibria occurs on the plane, which creates 
two symmetry-related equilibria. This situation is 
characterized  by the bifurcation surface ࢽ ൌ ૚ (see Fig 2 
later).  

 Case where ߛ ൌ ுߛ ൌ
ఋ

ఈ
ሺߙଶ ൅ ߜߙ െ 1ሻ for  

ߛ ) ൐ 1 and 	ߜߙ ൐ 1) 
the equation (8) become : 

ܲሺߣሻ ൌ ଷߣ ൅ ሺߙ ൅ ଶߣሻߜ െ ሺ1 െ ߣሻߜߙ

െ ߙ ൭1 െ
δ
α
ሺαଶ ൅ αδ െ 1ሻ൱ ൌ 0 

the roots of this equation are given by: 

ቊ
ଵߣ ൌ െߙ െ ߜ

ଶ,ଷߣ ൌ േඥሺ1 െ ሻߜߙ
   (12) 

for ߜߙ ൐ 1 we have : ሺ1 െ ሻߜߙ ൏ 0. We can rewrite  Eq 
(12) in the following form  

ቊ
ଵߣ ൌ െߙ െ ߜ

ଶ,ଷߣ ൌ 0.0 േ ݅ඥሺ1 െ ሻߜߙ
 

In this case  the jacobian matrix have a pair of complex 
conjugate eigenvalues crosses the imaginary axis. If the 
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system was in a stable steady state before the bifurcation, 
the steady state loses it’s stability at the bifurcation point. 
Furthermore, a stable or unstable limit cycle emerges or 
vanishes. This type  of  elementary bifurcation is called the 
Complex Hopf bifurcation. 
we can conclude that there exists a Hopf bifurcation 
emerging from its equilibrium at origin when ࢽ , passes 
through the critical value ߛ ൌ ுߛ ൐ 1.	and the surface 
described by Eq. (9) is a Hopf bifurcation (HB) surface. 
Furthermore, when the delay τ>τ0, the positive 
equilibrium at origin loses its stability and the system goes 
into oscillations. The system undergoes a Hopf bifurcation 
at ߛ ൌ ுߛ ൐ 1.	  

4.3 Behaviour of the system around two equilibrium 
points ሺ ାܲ, ܲି ሻ 

The equations of the system Eq (5) are invariant to the 
transformation ሺ࢞, ,࢟ ሻࢠ ൌ ሺ࢞ െ  ሻࢠെ,࢟െ,࢞
so we note that due to this symmetry any asymmetric limit 
set coexist with another one which topologically similar. 
In this range 0 ൏ ߛ ൏ 1 , the fixed point at the origin is no 
longer stable, and two additional fixed points 
ሺ ାܲ, ܲି ሻ	appear in the phase space of the nonlinear system. 
The  coordinates of these fixed points are given by 
ሺݔ, ,ݕ ሻݖ ൌ ൫േඥ1 െ ,ߛ 0,േߛඥ1 െ  ൯. The Jacobian matrix ofߛ

system Eq (5) for ሺ ାܲ, ܲି ሻ	 is given by :

   






















0

1131

010
2

PDF

  (13)

 

by  ݀݁ݐሺܫߣ െ ሻܬ ൌ 0 , we get the characteristic equation 
corresponding to Eq (13) 

ܲሺߣሻ ൌ ଷߣ ൅ ሺߙ ൅ ଶߣሻߜ െ ሺߜߙ ൅ 2 െ ߣሻߛ3 െ ሺ1ߙ2 െ ሻߛ ൌ 0.
   (14) 

 
Applying Routh–Hurwitz criterion using the coefficients 
of the equation (14) , we can compute a new stability 
boundary (ࡴࢽ) in the range 0 ൏ ߛ ൏ 1 given by: 

 2
3

2
1 


 


 H  with ߜߙ ൏ 1      (15) 

an new bifurcation surface characterized by the equation 
(15) have been found. an examination of the eigenvalues 
reveal  later that is  Hopf  bifurcation surface. 
Replacing ߛ by the equation (15) in the jacobian matrix 
given by (13) we obtain :  

ቐ
ଵߣ ൌ െߙ െ ߜ

ଶ,ଷߣ ൌ േ
1

െߙ െ ߜ3
√2ሺߙ ൅ ߙሻටെ൫ሺߜ ൅ ߜߙሺߙሻߜ3 െ 1ሻ൯

 

for ߜߙ ൏ 1, we have  

ቐ
ଵߣ ൌ െߙ െ ߜ

ଶ,ଷߣ ൌ 0.00 േ ቈ
ଵ

ିఈିଷఋ
√2ሺߙ ൅ ߙሻටെ൫ሺߜ ൅ ߜߙሺߙሻߜ3 െ 1ሻ൯቉ ݅

   (16) 
In this case  the jacobian matrix have a pair of complex 
conjugate eigenvalues Eq (16) crosses the imaginary axis. 
hence the nonlinear system undergoes a other  Hopf  
bifurcation.  
While as ࢽ is increased to pass ࡴࢽ , Hopf bifurcation 
occurs, i.e. a family of periodic solutions bifurcate 
(bifurcating periodic solutions) , small values of the  the 
damping constant (ߜߙ ൏ 1) . 
An analytical approach yielding the bifurcation as a 
function of all system parameters. this reveals     The 
analysis reveals a Hopf bifurcation surface (Fig. 1);  
characterized by the equations	ࢽ ൌ ૚, ࢽ ൌ ૚ࡴࢽ ൌ
ఋ

ఈ
ሺߙଶ ൅ ߜߙ െ 1ሻ with 		ߜߙ ൐ 1 and 

 2
3

2
1 


 


 H  with ߜߙ ൏ 1 

 
 
 
 
 

 

 

 

 

 

 

 

 

Fig 1: The Hopf bifurcation surface (HB) (green grey) and the Hopf  
bifurcation (HB1) (blue grey) surface of PB (red grey)(pitchfork 

bifurcation)  depending on the three parameters  ,0,,    

The two green and blue surfaces correspond to Hopf 
bifurcations while the red surface will in general be a 
pitchfork bifurcation these bifurcation occur if an 
eigenvalue of the Jacobian becomes zero (see Eq (11)). A 
double Hopf (DH) bifurcation line is formed at the 
intersection of the two Hopf surface 
surfaces. we can see that the line of this intersection is 
characterized by the following condition: 






HB1 (=H1,  <1) 

HB (=H,  >1)PB (=1) 
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1
1
 HH    

This  yield  
 

















.11)2(
3

111

2
1

2













H

H
 

 we obtain 1  and 


 1
 , this line is visible in the 

following figure 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

  

Fig 2: the inversion of the fig 2  (the view of the intersection of the three 
bifurcation surfaces)  

using the condition of intersection we can summarize that: 
‐  ,1 There is an equilibrium at the origin O(0,0,0), for 
any values of parameters. A Hopf bifurcation occur 
characterized by HB (ࡴࢽ)  for the  choose of the parameter 

 , such 1   i.e  (above the line  1  and 


 1
 ). 

- There is two equilibrium points ሺࡼା,  ሻ . A Hopfିࡼ
bifurcation occur characterized by HB (

1H )  for the  

choose of the parameter  , such 1   i.e  ( below the 

line  1  and 


 1
 ). 

At the Hopf bifurcation point the involved equilibrium 
becomes unstable when it was 
stable (supercritical) or stable. . Also, a periodic solution, a 
limit cycle, is born that inherits the stability properties that 
the equilibrium had before the occurrence of the 
bifurcation. 

5. Numerical analysis of system using the 
optimal derivative 

In this section, we perform numerical simulation of system 
Eq (5) using the optimal derivative cited in section 2. the 
stability on either side of the surface can be found by 
running a simulation or calculating the eigenvalues of the 
optimal linear matrix numerically at a points in the 
neighborhood of the equilibrium points on each side of the 
surfaces.  

5.1 Linearization around equilibrium state O (0, 0, 0)  
for ߛ ൒ 1 : 

5.1.1 Linearization around equilibrium state ܱሺ0,0,0ሻ  for 
ߛ ൒ 1 

In this range there is a critical value of the  bifurcation 

parameter  12  

H   , we distinguish two range 

of  parameter variation delimited  by H  as follow: 














). instable ispoint  mequilibriu (the 1

)n bifurcatio Hopf a undergoes system The ( 

stable)ally asymptotic is mequilibriu (the 1

H

H

H





  (17) 

We Carry out  a numerical simulations using the optimal 
derivation in this ranges . For our application we choose 
the values of the parameter 0,  ,we take 

.1with 2;3    

First  we investigate : 
 The case 1   :  We choose an initial condition near the 
origin    04.0,02.0,001.0,, 000 zyx  

The optimal derivative procedure gives (with the accuracy 
610 ) : 

,

303

19999.1000.1

010
~


















A     (18) 

which has the eigenvalues   













 

. 6180.3

3819.1

10537.1

3

2

6
1





  (19) 

Figures 3 show, the phase space of the optimal linear 
system (18), compared to the nonlinear system Eq (5) 

 

 

 






 (=1,  =1/) 
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Fig 3: The phase space of (18) and (5) when

   04.0,02.0,001.0,, 000 zyx
 
 

one of the eigenvalues of the  the jacobian matrix becomes 
zero Eq (11). The origin is always an equilibrium. A 
pitchfork bifurcation of equilibria occurs, which creates 
two symmetry-related equilibria. This situation is 
characterized  by the bifurcation surface ࢽ ൌ ૚. The 
solution of optimal linear system and nonlinear one are 
identical (see figure 3) same dynamical behavior . In term 

of eigenvalues (  6
1 10 O )  is very close to zero,thus 

indicating the same conclusion . 
The case H 1  

The origin is always  the equilibrium point in this range. 

We take ,2   

  we choose the values of the parameter 0,  ,  we 

take 1with 2;3   and initial value 

   4.0,2.0,1.0,, 000 zyx . The optimal derivative procedure 

gives (with 610 ) : 

,

000.30000.6

000.1000.296.0

010
~


















A      (20) 

which has the eigenvalues 

  







69505.054599.0

91329.3

3,2

1

i


               (21) 

To illustrate graphically the results obtained above, we 
have plotted in Figure 4 the solution x(t) verus of the 
nonlinear system (5) compared to the solution given by the 
optimal linear system (20).  Figure 5, show the phase 
space of the optimal linear system (20), compared to the 
nonlinear system (5), for the initial conditions (x0, y0,z0)= 
(0.1, 0.2, 0.4 ). 

 

 

 

 

 

 

 

Fig 4 : The variation of x as a function of time when (x0, y0,z0)= (0.1, 
0.2, 0.4) 

 

Figure  5: The  solution  (x(t),y(t),z(t))  in the  phase  space. 

We examine the stability near this equilibrium point, The 
real parts of  both eigenvalues λ2,3 (determine the stability 
) are negative   explain the damped oscillation, λ1 real and 
strictly negative determine the attractive comportment 
(fast dynamic) . Thus the optimal linearization is 
asymptotically  stable and shows the origin as a focus (Fig 
5). Therefore the origin is asymptotically stable (Fig 4). 
therefore the qualitative analysis show that  the optimal 
linear system is identical-equivalent- (describe the same 
dynamical behaviour)  and lead to the same conclusion as 
the classical linearization, showing the origin as a focus, 
hence being asymptotically stable. 

The case  12  



H  with 1 : 

the jacobian matrix has a pair of complex eigeinvalues 
with purely imaginer part a Hopf bifurcation occur. We 
applied the optimal derivative in order to detect this 
bifurcation. For the same parameter values 

Time (s) 

––  nonlinear solution 
*   Optimal linear system 

        Nonlinear system  
*            Optimal linear system (18) 
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 ,1et  3333.9,2,3   H  and initial value  

   04.0,02.0,01.0,, 000 zyx . The optimal derivative 

 procedure after 2  iterations gives (with 610 ) : 

,

3028

1299988.0

010
~


















A         (22) 

which has the eigenvalues 







 i2360.21008.2

9999.4
5

3,2

1




 

The eigenvalues is approching zero as we approche the 
bifurcation parameter and for initial condition condition 
very close to zero    5

3,2 10Re  O . 
we have plotted in Figure 6 the solutions  x (t) versus time 
of the nonlinear system Eq (1) compared to the solution 
given by the optimal linear system (22).  Figure 7, show 
the phase space of the optimal linear system Eq (22), 
compared to the nonlinear system Eq(5), for 

3333.9 H   and the initial conditions (x0, y0,z0) = 

(0.01, 0.02, 0.04 ). 

 

Fig 6 : The variation of x as a function of time when  3333.9 H  

and  (x0, y0,z0) = (0.01, 0.02, 0.04 ). 

 
 
 
 
 
 
 
 
 
 

Figure  7: The  the  phase  space for 3333.9 H   

 

the linear optimal system for an initial condition near the 
origin, appearance of oscillatory behavior in the system as 

 increases from 1 (see Fig 6), therefore we have shown in 
Fig 7 that a limit cycle appears at the Hopf bifurcation 
when crossing the parameter boundary 3333.9 H  . 

This bifurcation  involved equilibrium becomes unstable 
when it was stable (supercritical) or stable when it was 
unstable (subcritical). Also, a periodic solution, a limit 
cycle, is born that inherits the stability properties that the 
equilibrium had before the occurrence of the bifurcation.  
See Figure 7 for a phase plot where a limit cycle is 
depicted. The both Figures shows already that we have a 
good approximation. 

The case H  : the critical value 3333.9 H , define 

a stability boundary for this range the unique equilibrium 
point exchange his stability and become instable. in order 
to verify  this result using the  numerical proposed method. 
We take 3333.910  H

. 

The optimal derivative procedure gives (with 610 )  

,

3030

005.101.202.1

010
~


















A                  (23) 

which has the eigenvalues 








309864.2032468.0

.075825.5

3,2

1

i


 

The real parts of  both λ2,3 are positive. Thus the optimal 
linearization is unstable and shows the origin as a focus. 
Therefore the origin is instable. So proposed numerical 
methods can detect this instability.  
The Pitchfork Bifurcation at   = 1 :   for  > 1, there is one 
real equilibrium.  For  < 1 (decreasing ) , there are three 
the origin and  ሺ ାܲ, ܲି ሻ.  At   = 1, the three equilibria are 
all at the origin, so we have a pitchfork bifurcation. For    
near 1, the new equilibria are close to the origin. 

5.2 Behaviour of the system around the new 
equilibria ሺ ାܲ, ܲି ሻ 

5.2.1 Linearization around the two equilibrium ሺ ାܲ, ܲି ሻ in 
the range 0 ൏ ߛ ൏ 1 

To examine the stability using the proposed method 
(optimal derivative) around this point .We translate this  

points ሺ ାܲ, ܲି ሻ  = )1,0,1(    to the origin in 

order to satisfy the Assumption 0)0()1( FH  (see section 
2) , using the change of variables 
   111 ,,,, zzyyxxZYX  , 

  )1,0,1(,, 111  zyx . This gives the system 

 

––  nonlinear solution 
*   Optimal linear system 

Time (s) 
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












).()(

)()()()(

)(

11

11
3

11

1

zZxXZ

zZyYxXxXY

yYX










      (24) 

In this range 0 ൏ ߛ ൏ 1	the classical linearization show that 
there is a critical value of the  bifurcation parameter 

 2
3

2
1




 


H   , we distinguish two range of  

parameter variation delimited  by 1H  as follow: 


















). instable are pointsP ,(P 1

)n bifurcatio Hopf ( 

stable)ally asymptotic areP ,(P 1

 -1

1

 -1

H

H

H





    (25) 

The case 1
1H : 

We applied  the proposed numerical simulation in this 
ranges . For our application we choose the values of the 
parameter 0,  ,we take 

,10 and ,1 with ,2.0 ,4.0    

The optimal derivative procedure gives (with 610 ) : 

,

9.0027.0

78085.016834.01990.1

010
~


















A  (26) 

 which has the eigenvalues  








134068.1032716.0

00565.1

3,2

1

i


   (27) 

Figure 8 the solutions  x (t) versus time of the nonlinear 
system Eq ( 1) compared to the solution given by the 
optimal linear system Eq (26).  Figure 9, show the phase 
space of the optimal linear system Eq(26), compared to the 
nonlinear system Eq (5), for 3.0   and the initial 
inditions (x0, y0,z0)= (0.1, 0.2, 0.4 ). 
 
 

 
 

 

 

 
 
 
 
 
 
 
 
 
 

Fig 8 : The variation of x as a function of time when  3.0  

 

 
 
 
 
 
 
 
 
 
 
 

Fige  9: The  solution  (x(t),y(t),z(t))  in the  phase  space for 3.0 . 

The real parts of  both eigenvalues λ2,3 (determine the 
stability ) are negative. Such terms represent exponentially 
decaying oscillations (damped oscillation), λ1 real and 
strictly negative determine the attractive comportment 
(fast dynamic) . Thus the optimal linearization is 
asymptotically  stable and shows the equilibrium points 
(P+,P-) as a focus stable spiral) (Fig 9). Therefore the new 
equilibrium points (P+,P-) are asymptotically stable (Fig 8). 
therefore the qualitative analysis show that  the optimal 
linear system is identical-equivalent- (describe the same 
dynamical behaviour)  and lead to the same conclusion as 
the classical linearization. 
the solution leaving the origin spirals into the nearest 
equilibrium (P+ or P-) (makes one loop around this). the 
optimal linearized system predicts a a spiral, then the fixed 
points really is a spiral for the original nonlinear system.  

The case 
1H  :  

the jacobian matrix has a pair of complex eigeinvalues 
with purely imaginer part a Hopf bifurcation occur. We 
applied the optimal derivative in order to detect this 
bifurcation. We take the parameters values: 

.1 and 3987.0)2(
3

hence 

,2.0,9.0

2
1















H
 

The optimal derivative procedure after 3 iterations  gives 

(with 610 ) : 

,

9.0035879.0

98185.01963.080793.0

010
~


















A   (28) 

 which has the eigenvalues  








 99251.0107886.6

0963.1
5

3,2

1

i


          (29) 

––  nonlinear solution 
*   Optimal linear system 

Time (s) 
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Fig 10: the solutions  x (t) versus time of the nonlinear system Eq( 5) 
compared to the solution given by the optimal linear system Eq (28). 

 

 

 

 

 

 

 

Fig 11: show the phase space of the optimal linear system (28), compared 

to the nonlinear system (5), for 3987.01  H  and the initial 

conditions (x0, y0,z0) = (0.01, 0.02, 0.04 ). 

First  eigenvalue in Eq (29)   is  negative because (ߙ ൐
0, ߜ ൐ 0),  so  that  the  associated  eigendirection  is 
attractive  and the flow is directed  towards  the  basin  of  
attraction  of  the equilibrium points . 
The above calculations  verify that the equilibria  (P+,P-) 
are stable spirals until we reach 3987.01  H  , at which  

point  they  become  unstable  spirals.    Although  the  
calculations  of  unstable  limit  cycles  are  beyond  our 
capabilities here, it can be shown that in fact 

3987.01  H  is a subcritical Hopf bifurcation in which, 

as  is decreased, the unstable limit cycles are absorbed by 
the equilibria which then become unstable themselves. so 
The one large negative real eigenvalues Eq (27) (

13406.103271.03,2 i ) tells us that the solutions 

rapidly approach the plane of the spiral, after which they 
slowly spiral in (see Fig 11).  Let's try to observe at least 
part of the spiral by integrating forward in time. 
The case  

1H  : 

Crossing the critical value  3987.01  H  , Thus the 

new equilibrium points (P+,P-)  goes from stable to 

unstable as   increases through 
1H .  

using the  numerical proposed method. We take 
3987.06.0 1  H  

The optimal derivative procedure after 2 iterations gives 

(with 610 ) : 

,

9.0054.0

82834.01966.029003.0

010
~


















A          (30) 

which has the eigenvalues 








76820.006261.0

.19490.1

3,2

1

i


                        (31) 

The real parts of  both λ2,3 are positive. Thus the optimal 
linearization is unstable and shows the new equilibrium 
points (P+,P-)   instable focus (instable spiral). Therefore 
the origin is instable. So proposed numerical methods can 
detect this instability.  
We can note, the above calculations  verify that the 
equilibria  (P+,P-) are stable spirals until we reach 

3987.01  H  , at which  point  they  become  unstable  

spirals.  Although  the  calculations  of  unstable  limit  
cycles  are  beyond  our capabilities here, it can be shown 
that in fact 3987.01  H   is a subcritical Hopf 

bifurcation in which, as  is decreased, the unstable limit 
cycles are absorbed by the equilibria which then become 
unstable themselves. 

6. RESULTS AND DISCUSSION  

The stability of the equilibria, and the local bifurcation 
analysis of the model, are described . We will discuss 
some of the basic results. We now summarize and 
compare the results obtained the analytical analysis  in 
order to confirm and validate the results obtained using the 
optimal derivative.  
we can deduce from the determination of the bifurcation 
surfaces that the higher codimension bifurcations can 
easily be spotted, once the full parameter dependence of 
the bifurcation surfaces is known. In the three-parameter 
bifurcation diagram codimension two bifurcations appear 

as lines ( 1  and the time constant  1 ) at which 

codimension one surfaces intersect (see Figure 1 and 2 
(HB, HB1) and PB each other. 
We now summarize the local bifurcations of the nonlinear 
system (5) in dependence on the parameters  γ. The origin 
is always an equilibrium. A pitchfork bifurcation of  
equilibria occurs at  =1 , which creates two symmetry-
related equilibria that exist for 1

1H . The origin as 

well as the trivial equilibria undergo a Hopf bifurcation in 

––  nonlinear solution 
*   Optimal linear system 
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the range H 1 . The main event in this parameter 

range is the increasingly oscillatory nature of the solution 
as  increases . crossing the critical value H   there 

exists a small amplitude repelling periodic orbit enclosing 
a stable equilibrium. The main event in this parameter 
range is the increasingly oscillatory nature of the solution 
as  increases the gain . 
For    > 1, there are three equilibrium points.  At    = 1, 
the three equilibria are all at the origin, so we have a 
pitchfork bifurcation.   
The  next  event  along  the  -trail  is a  change  in  the  
character  of the  equilibria   equilibria  (P+,P-)    from  
stable  to instable spirals.  As shown below, this occurs at 
about r = 1.346.  This is correspond  to appearance of 
oscillatory behavior in the system as  increases from 1 . 
The other event in this range is the shrinking of the 
unstable limit cycles around (P+,P).  The cycles are 
heading for a Hopf bifurcation which occurs at = H1. 
Finally, The results show good agreement between the 
theoretical study and numerical analysis  carried out from 
the procedure of optimal derivative (see Figure 6-7-8-9-
10-11). the qualitative analysis show that  the optimal 
linear system is identical-equivalent- (describe the same 
dynamical behaviour)  and lead to the same conclusion. 
What happens immediately after the hopf  bifurcations?   
This requires this simple-looking deterministic system 
could have extremely erratic dynamics: over a wide range 
of parameters, the solutions oscillate irregularly, never 
exactly repeating but always remaining in a bounded 
region of phase space the trajectories in three dimensions, 
settled onto a complicated set, now called a strange 
attractor. So hopf bifurcations cascade transient the 
nonlinear system to chaotic attractor. 

7. Conclusions 

the well-known criteria for local and bifurcation conditions 
of equilibria were applied using The Routh–Hurwitz 
stability criterion and linear system matrix were applied to 
determine the Equation for the bifurcation surfaces in the 
parameter space as homogeneous polynomials of the 
system parameters. Compute numerically  and visualize 
such bifurcation surfaces in a very efficient way. The 
visualization can enhance the qualitative understanding of 
a system. Moreover, it can help to quickly locate more 
complex bifurcation situations corresponding to 
bifurcations of higher codimension at the intersections of 
bifurcation surfaces. 
an interesting local bifurcation phenomenon is described 
using the linear optimal system  associated with the 
original nonlinear system . The bifurcation and stability 
analysis using this new numerical method confirms   the 

results obtained by symbolic analysis using the linear 
system matrix and the Routh–Hurwitz criteria. It also 
shows its potential to be a tool for analyzing the stability 
of this type nonlinear ordinary differential equations. 
the method is applicable to many bifurcation situations, of 
which Hopf, is the most important ones. They are known 
to occur in many physical systems and often play an 
important role for the systems longterm behavior. 
We can note that the proposed method may be more 
efficient in term of approximation the nonlinear function is 
no regular or the equilibrium point is no regular. In this 
case, one cannot derive the nonlinear function and 
consequently one cannot study the linearized equation see 
[13-14]. In contrast to common analytical techniques 
based on eigenvalue computation (which can only be 
applied to systems of size dimension N ≤ 4), the method is 
applicable for systems of intermediate size because it is 
possible to compute numerically the optimal linear matrix 
and the roots of their characteristic equation (eigenvalues). 
the proposed  linearization representing also a numerical 
confirmations of the prediction behaviour. Therefore it 
represent a good approximation to the initial nonlinear 
system.  
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