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Abstract 
 In this paper we study nonlinear Iterative Learning Control 
(ILC) schemes for nonlinear dynamic systems. The methods 
are proposed in this paper such as Newton-Type and Secant-
Type, for improve the convergence speed in nonlinear ILC 
schemes systems. In nonlinear Iterative Learning Control 
methods convergence speed is faster than the linear ILC 
schemes systems. The system taken into consideration is the 
one phase control of the switched reluctance motor (SRM) and 
simulation result show that the convergence speed of the 
Newton-Type ILC schemes is the fastest and the Secant-Type 
is faster than the linear-type but slower than the Newton-Type. 
On the other hand nonlinear ILC schemes require more prior 
knowledge about the system.  

 

Keywords: ILC, Newton-Type, Secant-Type, Convergence 
Speed. 

1. Introduction 

The convergence speed of the linear-type ILC 
scheme is approved by a positive steady ration (less 
than one) of tracking errors between two repeated 
iterations. This is due to the use of linear- type updating 
law with a constant learning gain which is iteration-
dependent. Some techniques in Numerical Analysis 
have been used in the learning control design [1, 2]. 
Recently the Newton-type ILC [3] and Quasi-Newton 
type ILC schemes [4] have been proposed and explored 
targeting at achieve a faster convergence speed. In this 
paper we extended the results to the general dynamic 
systems [5].  

In order to improve the convergence speed, the 
Newton-type ILC scheme is first presented in the area 
of iterative learning control to provide a corresponding 
method to linear-type ILC schemes [5, 6]. A nonlinear 
gain takes the place of constant gain and is proven to be 
able to speed up the learning convergence speed [7, 8]. 
However the faster convergence is achieved at the price 

of the need for more prior information. The linear-type 
ILC only used the system output signals, while the 
Newton-type ILC needs the biased derivative of the 
system input-output mapping. 

The Secant-type ILC scheme, on the other hand, 
approximates the Newton-type ILC scheme show that 
the convergence speed of the Secant-type ILC scheme is 
between the linear-type ILC scheme and the Newton-
type ILC scheme. As well known, both the Newton and 
Secant methods, in Numerical Analysis, can only 
guarantee a faster convergence speed around the 
stability, i.e., a restrictive convergence condition is 
required [9-11]. In practice, this condition can hardly be 
met. In order to extend the convergence range of 
learning, the linear-type ILC scheme is employed when 
the output of the dynamic system is outside a particular 
error bound [12, 13]. When inside the tracking error 
bound, the Newton-type ILC scheme or Secant-type 
ILC scheme will take over the learning, expedition the 
learning speed considerably while retaining the learning 
convergence property[14,15]. 

This paper is organized as follows: The problem is 
formulated in section 2. The Newton-type ILC scheme 
is presented in section3. In section 4, the Secant-type 
scheme is addressed. Section 5 provides an illustrative 
example for comparison. Then conclusion follows in 
section 6. 

2. Problem Statement 

Let us look at the following dynamic system 

0( ) ( ( ), ( ), )     x(0)=x

( ) ( ( ), ( ), ),

x t f X t u t t

y t g X t u t t







 

(1) 
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Where ,X u U  and [0, ]t T is a compact 

subset of nR and U a compact separation of R, The 
dynamic system (1) is repeatable over [0, T], and 
satisfies the following assumptions:[1] 
Assumption 1: The vector-valued f(x, u, t) and scalar 
g(x, u, t) are at least twice continuously differentiable in 
the compact set [0, ]U T    with respect to x, u 

and t correspondingly. 
Remark1. From the continuity of f and g in Assumption 
1, the following results can be obtained directly: 

1. Nonlinear function f(x, u, t) and its firsts 
derivatives with respect to x and u are bounded 
in the compact set Ω, therefore, there exists a 
constant 0f  such that: 

 1 1 2 2 0 1 2 1 2( , , ) ( , , )f x u t f x u t f x x u u     (2)

2. Nonlinear function g(x, u, t) and its first 
derivatives with respect to x and u are bounded 
in the compact set Ω, therefore, there exists a 

constant 0g  such that: 

 1 1 2 2 0 1 2 1 2( , , ) ( , , )g x u t g x u t g x x u u      (3) 

3. Denote  
2 2

2

2

2

( ( ), ( ), ) ( ( ), ( ),
( ) ,     g ( ) ,

( ( ), ( ), )
( )

xx xu

uu

g x t u t t g x t u t t
g t t

x x u

g x t u t t
g t

u

 
  




 


 

Where , ,  and x uu xu xxg g g g , are bounded by 
some finite constants , ,  and Mx uu xu xxM M M respectively 
in the compact set Ω. 
Remark2.Consider Assumption 1, is more restrictive as 
it requires not only Lipschitz continuity condition for 
both f (0) and g (0) but also the boundedness of the 
second derivatives for both f (0) and g (0). It can be 
seen later that, such a restrictive requirementis needed 
in order to achieve a faster convergence speed. 
Assumption2. It is assumed that:  

1 20 , ( , , ) .
g

x u t
u

 
    


 

Remark3. ug Represents the system gain, which could 

be nonlinear in Ω. 
Assumption3.The identical initialization condition 

holds for all iterations, i.e. 0(0) ,i i Zx x    

3. Convergence Analysis for Linear-Type 
ILC Scheme 

The convergence analysis for linear-type ILC scheme 
given with assumptions i.e. the uniqueness of ( )du t , in 
the following we show that, without the requirement of 
such an assumption, the linear-type ILC scheme still 
works [8]. 

Theorem1. For the dynamic system (1), associated 
with the desired out-put ( )dy t   and the linear-type ILC 
scheme, the monotonic convergence of   with the time-
weighted norm is strictly guaranteed in the iteration 
domain if (2) is satisfied 
Proof: 
Denote

1 1, , ( , , )i i i i i i i i i i ix x x u u u x v x u v u t          
 where 0 1.v   
Applying Taylor’s theorem, [0, ]t T  , we have  

1 1

1

1

( , , ) ( , , )

                    =g(x , , ) ( ) ( ).

                     =y ( ) ( ) ( )

i i i i i i

T
i i i u i i x i

T
i i u i i x i

g x u t g x x u u t

u t q y g x g

t q y g x g

 

 

      

  

  
 

(4) 

The tracking error at the (i+1)th iteration is: 

1 1

1

1 1

         = y ( ) ( )

        =[1-q ( )] [ ] ( )

i i i i

T
i i u i i x i

T
u i i i i x i

y y y y

q y g x g

g y x x g

 

 

 



    

   

  

 (5) 

According to Assumption 1 and Assumption 3, it 
follows that: 

1 1 1

0

[ ( , , ) ( , , )]
t

i i i i i ix x f x u t f x u t d    
 

Taking norm to both sides of the above equation, 
noticing the Lipschitz continuity condition of f(x (t), u 
(t), t), it follows that: 

 

 

1 0 1 1

0

0 1 1

0

0 1 1

0

( )

               

              

t

i i i i i i

t

i i i i

t

i i i

x x f x x u u d

f x x u u d

f x x q y d







  

 



    

   

   







 (6) 

Applying Gronwall Lemma: 

0

0

0

1 0 1

0

0 1

0

0 1

              

1
               = 

t
f t

i i i

t
f t

i

t
f t

i

x x f e q y d

f e q e d y

e
f e q y














  

 






  (7) 

Hence  
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0

0

1 1
[0, ]

0 1
[0, ]

0 1

max

1
                 max

1
                 =

t
i i i i

t T

t
f t

i
t T

T
f T

i

x x e x x

e
f e q y

e
f e q y

















 







  


 




 (8) 

Taking norm of (5) yields: 

1 1 11 ( ) .i u i i x i iy q g y M x x        
Taking the time-weighted norm of the above inequality, 
according to Assumption 2 and (8), we have: 

0
1 1 1 0

1
1 ( )

T
f T

i u i x is

e
y q g M q f e y



 








 
     

 
 

(9) 

 

We define 1 11 ( )u i s
q g   , the corresponding 1  

equals to 0
1 0

1 T
f T

x

e
M q f e





 , (9) can be written as: 

1 1 1( )i iy y
 

      (10) 

With a sufficiently large 1  , the linear-type ILC 

scheme convergence and the convergence speed is: 

  1
1 1 1,0 lim  sup 1i

i
i

y
Q L

y




 




   


 (11) 

This concludes the proof.  
Remark4. It is obvious that the input sequence and 
output sequence have the same convergence speed. 
Therefore, the fastest convergence speed can be 

achieved in the presence of uncertainty ug , by solving 

the min-max problem. The optimal gain 1q  is 
2 1

2

 

with the fastest convergence speed 1
2 1

2
( )J c 

 
 


. 

Remark5. The fastest convergence speed depends on 

two parameters 1 and 2 . Even the optimal technique 

is employed, if 2 1  ,
1 1J  i.e. the 

learningconvergence will be extremely slow. On the 

other hand, if ug is available, according to (9) we can 

choose 

1

1

u

q
g

 , which can bring 
1J  to the lowest level. This 

simple observation motivates us to develop the Newton-
type ILC scheme which can considerably improve the 
convergence speed.[1] 

4. The Newton-Type ILC Scheme 
A fixed learning gain 1q  is utilized in the linear-type 

ILC approach, which limits the learning convergence 
rate. A fast convergence is always preferred in real 

applications. A smaller Q-factor implies a faster 
convergence rate. The Newton-type approach is well 
known in Numerical Analysis as it guarantees a fast 
convergence speed for memory-less iterative process. 
The Newton-type ILC approach, originated from the 
same idea, is introduced in the design of iterative 
learning control law for nonlinear non-affine dynamic 
systems, aiming at improving the convergence speed of 
the learning process in the neighbourhood of the desired 
trajectory. In the static iterative process, the Newton-
type scheme guarantees a fast convergence speed [3]. 
For the dynamic iterative process, since a nonlinear 

learning factor 1q  is used, Newton-type ILC can also 

achieve a much faster convergence speed than that of 
the linear-type ILC scheme in the sense of Q-factor [4]. 
Note that Q-factor of convergence is a local concept. In 
order to widen the convergence range of learning, the 
linear-type ILC scheme is employed when the output of 
the dynamic system is outside a specified error bound. 
When inside the tracking error bound, the Newton-type 
ILC scheme will take over the learning job, improve the 
learning speed significantly while retaining the learning 
convergence property [5]. 

Suppose ( )ug t  is known. From Assumption 2 

1 20 ( )    (x,u,t)ug t      .The Newton-

type ILC scheme is constructed as  
2
1

1

1

,

2
( ) ( ) if 

: ( )
( )

( )     else
( )

i i i s
uu

N i
i

i
u i

u t q y t y
M

L u t
y t

u t
g t






   

   


 

(12
) 

Where NL  stands for the Newton-type iterative process, 

1
1 2

2
q

 


  is the robust optimal learning gain for 

the linear-type ILC, 2 1

2 1

 
 





 and  

( ) ( ) ( )i d iy t y t y t    
Theorem2. For the dynamic system (1), the control 
updating law (12) will make the tracking error

0  as  ii s
y   . Newton-type ILC is Q-faster 

than linear-type ILC scheme in the sense that  

1( ,0) ( ,0)NQ L Q L  
Remark6. Let us explain the Newton-type ILC scheme 
further by a linear time-invariant system 

x Ax bu

y cx du

 
 


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Where ug d  is constant. If 1
,

1 1

u i

q
g d

  , which 

leads to 1 21 0q q  , the convergence speed is the 

fastest. 

5. The Secant-Type ILC Scheme 
Secant algorithm in Numerical Analysis provides a 
good approximation to Newton algorithm, which 
motivates the introduction of the Secant-type ILC 
schemes.  
It should be noted that Secant method in Numerical 
Analysis is also a local concept, the tracking error 
converge only when the output of the system at first 
iteration is near the desired trajectory. In this section, 
the Secant-type ILC approach is constructed for the 
non-linear non-affine dynamic system in the sense of 
global convergence: when the output of the dynamic 
system is far away from the desired trajectory, the 
linear-type ILC approach is employed to guarantee the 
convergence of the desired trajectory, the Secant-type 
ILC approach is employed to enhance the convergence 
rate.[1] 
The Secant-type ILC scheme is constructed as: 
 

sL : 
1

2
1 1

1 1

1
1

1 1

( ) ( )

2( )
( ) ( )( ( ) ( )

( )
( , , ) ( , , )

& ,

i i

ii si i i
uui

i i i i
i i

uu

u t q y t else

k
if yu t y t u t u t

Mu t
g x u t g x u t

u u t

k

M

 





 




 
         



 

(13) 

Where sL  stands for the Secant-type iterative process, 

and 1k   is a finite constant. 

Remark7. It can be seen that Secant-type ILC is a 
second order scheme, but nonlinear in nature. 
Theorem3. For the dynamic system (1), the control 
updating law will make the tracking error

0 as ii s
y   . The Secant-type ILC is Q-

faster than linear-type ILC scheme, however slower 
than the Newton-type ILC scheme in the sense that 

1( ,0) ( ,0) ( ,0)N sQ L Q L Q L  
This shows that the convergence speed of the Secant-
type ILC scheme is in between the Newton-type ILC 
and the linear-type ILC schemes. 
Remark8. In above comparison of the learning 
convergence speed, it is necessary to choose the 
maximum   satisfying all requirements from the 

linear-type, Newton-type and Secant-type schemes. 
Under such time-weighted norm, the convergence 
speeds are compared. 

6. Illustrative Example 
Consider one phase control of the Switched Reluctance 
Motor model as follow: 
 

 
 

1

1
2

2
2

1
1

( )1
1 12

1 1

1 1

( , )

( )
( , ) 1 1 ( )

( )

( ) sin ( 1)2 / 4

j j

r

j j
j

u h xjr s
j j j j

j

j a u

dx
N x

dt
dx

J T x u
dt

dh xN
T x u u h x e

h x dx

h x L L x j 









     

  





 

(14) 

 
That is, only one phase torque is generated to follow the 
desired 0.044dy  Nm. 

 

6.1. Linear-type ILC Scheme 
First we choose the linear-type ILC scheme to track the 

desired output dy . Choose 0( ) 1u t  . To guarantee the 

convergence of the scheme, we choose

1
1 2

2
13.92,  =0.4175q and 

 
 


.Moreover

0 0.0495, ( , )uug x u     

The simulation result is shown in Fig 1(solid line). From 
the figure it can be seen that the linear-type ILC scheme 
generates a monotonous convergence. 

The relative error 
[0,1]

max i

t
d

y

y


  drops from 61 to 10   

within 5 iterations. Further more, the curve of the error 
is very close to a straight line which indicates that the 
linear-type ILC scheme has the linear convergence 
order (geometric convergence in the log scale). 

6.2. Newton-type ILC Scheme 
For the dynamic system (14), The simulation result of 
the Newton-type ILC scheme is also shown in Fig1 
(dotted line).When the tracking error is outside the error 

bound  
2
12

uuM

  , the convergence of Newton-type is the 

same as the linear-type ILC. When the tracking error 
enters the error bound, the tracking error converges in a 
much faster. After 6 iterations, the relative tracking 
error drops from 4 1210  to 10  . From Fig1, it can be 
seen that the tracking error of the linear-type ILC 
scheme takes 17 iterations to reach the same precision 
level. Due to the computation precision such as 
quantization or finite word length, convergence speed 
ceases after the tracking error reaches 1110 . 

6.3. Secant-type ILC Scheme 
For the dynamic system (14), the simulation result of 
Secant-type ILC scheme is also shown in Fig1 (dash-
dotted line). Let

1 0.25k   , where the tracking error 
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