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Abstract

In this paper we study nonlinear Iterative Learning Control
(ILC) schemes for nonlinear dynamic systems. The methods
are proposed in this paper such as Newton-Type and Secant-
Type, for improve the convergence speed in nonlinear ILC
schemes systems. In nonlinear Iterative Learning Control
methods convergence speed is faster than the linear ILC
schemes systems. The system taken into consideration is the
one phase control of the switched reluctance motor (SRM) and
simulation result show that the convergence speed of the
Newton-Type ILC schemes is the fastest and the Secant-Type
is faster than the linear-type but slower than the Newton-Type.
On the other hand nonlinear ILC schemes require more prior
knowledge about the system.

Keywords: ILC, Newton-Type, Secant-Type, Convergence
Speed.

1. Introduction

The convergence speed of the linear-type ILC
scheme is approved by a positive steady ration (less
than one) of tracking errors between two repeated
iterations. This is due to the use of linear- type updating
law with a constant learning gain which is iteration-
dependent. Some techniques in Numerical Analysis
have been used in the learning control design [1, 2].
Recently the Newton-type ILC [3] and Quasi-Newton
type ILC schemes [4] have been proposed and explored
targeting at achieve a faster convergence speed. In this
paper we extended the results to the general dynamic
systems [5].

In order to improve the convergence speed, the
Newton-type ILC scheme is first presented in the area
of iterative learning control to provide a corresponding
method to linear-type ILC schemes [5, 6]. A nonlinear
gain takes the place of constant gain and is proven to be
able to speed up the learning convergence speed [7, 8].
However the faster convergence is achieved at the price

of the need for more prior information. The linear-type
ILC only used the system output signals, while the
Newton-type ILC needs the biased derivative of the
system input-output mapping.

The Secant-type ILC scheme, on the other hand,
approximates the Newton-type ILC scheme show that
the convergence speed of the Secant-type ILC scheme is
between the linear-type ILC scheme and the Newton-
type ILC scheme. As well known, both the Newton and
Secant methods, in Numerical Analysis, can only
guarantee a faster convergence speed around the
stability, i.e., a restrictive convergence condition is
required [9-11]. In practice, this condition can hardly be
met. In order to extend the convergence range of
learning, the linear-type ILC scheme is employed when
the output of the dynamic system is outside a particular
error bound [12, 13]. When inside the tracking error
bound, the Newton-type ILC scheme or Secant-type
ILC scheme will take over the learning, expedition the
learning speed considerably while retaining the learning
convergence property[14,15].

This paper is organized as follows: The problem is
formulated in section 2. The Newton-type ILC scheme
is presented in section3. In section 4, the Secant-type
scheme is addressed. Section 5 provides an illustrative
example for comparison. Then conclusion follows in
section 6.

2. Problem Statement

Let us look at the following dynamic system

()= f(X@),u),t)  x(0)=x, M
y(t) = g(X (1), u(t),t),
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Where X € y,ueU and te[0,T]is a

subset of R"and U a compact separation of R, The
dynamic system (1) is repeatable over [0, T], and
satisfies the following assumptions:[1]

Assumption 1: The vector-valued f(x, u, t) and scalar
g(x, u, t) are at least twice continuously differentiable in
the compact set Q) = y xU %[0, T] with respect to x, u

and t correspondingly.

compact

Remark1. From the continuity of f and g in Assumption
1, the following results can be obtained directly:

1. Nonlinear function f(x, u, t) and its firsts
derivatives with respect to x and u are bounded
in the compact set Q, therefore, there exists a
constant f, such that:

[ u D= £ 00,0 <y (% =% +u ) @)

2. Nonlinear function g(x, u, t) and its first
derivatives with respect to x and u are bounded
in the compact set Q, therefore, there exists a

constant J, such that:

l9(x.u,H) = (%, U D] < gy (% =%, [+ —u,[) @)

Theoreml. For the dynamic system (1), associated
with the desired out-put Y4(t) and the linear-type ILC
scheme, the monotonic convergence of with the time-
weighted norm is strictly guaranteed in the iteration
domain if (2) is satisfied
Pr oof:

Denote

Aixé X _K:Aiuéum -U,q é()g +VA X, U +VAU,T)

where 0 < V<1,
Applying Taylor’s theorem, Vt € [0, T ], we have

g()ﬁwumat) = g()ﬁ +Aixa U +Aiunt)

=2(x U0+ GAY 8, (E) +AX G (E):

=y, (1) + Ay g, (&) +AX g, (&)

The tracking error at the (i+1)" iteration is:

AY, =AY, + Y = Vi
=AY, ~GAY 9,(5)~AX g, (&) 5)
=[1-,8,(5)IAY, +[% — X, 1" 9,(£)

According to Assumption 1 and Assumption 3, it
follows that:

3. Denote
2 FgR,UD.Y 2 FgD, bt _t
gxx(t):T> gm(t)zw, X — X _J.[f()ﬁ7ui7t)_ f (X, U, 0)]dr

A=

Where”gx Ju gxu” and ”gxx", are bounded by
some finite constants M ,M ,, M, and M, respectively
in the compact set Q.

Remark?2.Consider Assumption 1, is more restrictive as
it requires not only Lipschitz continuity condition for
both f (0) and g (0) but also the boundedness of the
second derivatives for both f (0) and g (0). It can be
seen later that, such a restrictive requirementis needed
in order to achieve a faster convergence speed.

Assumption2. It is assumed that:

2 OGO, Ut)Y)
ar

2 3

uu?

0<e Sg—gﬁaz,V(x,u,t)eQ.
u

Remark3. 9, Represents the system gain, which could

be nonlinear in Q.

Assumption3.The identical initialization condition

holds for all iterations, i.e. X (0)= X, VieZ

3. Convergence Analysisfor Linear-Type
ILC Scheme

The convergence analysis for linear-type ILC scheme
given with assumptions i.e. the uniqueness of Uy (t), in
the following we show that, without the requirement of
such an assumption, the linear-type ILC scheme still
works [8].

0

Taking norm to both sides of the above equation,
noticing the Lipschitz continuity condition of f(x (t), u
(1), t), it follows that:

t
[ =% < fo [ (1% =% +[u —u, dz
0
t
< foj(Hx — X+ U —Um\)dr (6)
0

t
< foJ-(H)ﬁ _)§+1H+q1 ‘Ayi ‘)dr
0

Applying Gronwall Lemma:

t
")ﬂ _)&1” < foefotj.ql |Ayi|d7
0

! o

t
< foefﬂtqu.e“ddAyi
0

At
-1
—f el eT' Ay,

Hence
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”)ﬂ _>§+1|| = max e ”)ﬂ _)ﬁﬂ” applications. A smaller Q-factor implies a faster
tef0,T] convergence rate. The Newton-type approach is well
known in Numerical Analysis as it guarantees a fast
< n?gi%(] f el q1 | Ay, | ®) convergence speed for memory-less iterative process.
te

The Newton-type ILC approach, originated from the

l—e™” same idea, is introduced in the design of iterative
f,T

=f,e |q1|| Ay|| learning control law for nonlinear non-affine dynamic

systems, aiming at improving the convergence speed of

Taking norm of (5) y1elds; the learning process in the neighbourhood of the desired
trajectory. In the static iterative process, the Newton-

|Ayi+1| < |1 —q0, (gu )”Ayu | + I\/Ix ")ﬂ - )§+1||' type scheme guarantees a fast convergence speed [3].

Taking the time-weighted norm of the above inequality, For the dynamic iterative process, since a nonlinear

according to Assumption 2 and (8), we have: learning factor 0}, is used, Newton-type ILC can also
P achieve a much faster convergence speed than that of

‘Ayiﬂ‘a < {1 ~69.(5 )‘s +M, ‘ql‘ fe /I}Ayi ‘1 ) the linear-type ILC scheme in the sense of Q-factor [4].
Note that Q-factor of convergence is a local concept. In
order to widen the convergence range of learning, the
linear-type ILC scheme is employed when the output of

We define y, = |1—qlgu & )|S, the corresponding O, the dynamic system is outside a specified error bound.
T When inside the tracking error bound, the Newton-type
equals to M ‘q ‘ f fT 1-e , (9) can be written as: ILC scheme will take over the learning job, improve the
P learning speed significantly while retaining the learning
| Ay 1| <(y, + 51)| Ay.| (10) convergence property [5].
i+l = il

Suppose 9, (t) is known. From Assumption 2
O0<a <g,()<a, V(Xut)e€dThe Newton-

type ILC scheme is constructed as

With a sufficiently large 4 > 4,, the linear-type ILC

scheme convergence and the convergence speed is:

Q(L, 0)—11msupH Yial, =y, +6 <1 (11)

. 20a
i lay, U (D) +qAy; (1) if Ay, > ==
This concludes the proof. Ly U, (D= Ay (1) "2
Remark4. It is obvious that the input sequence and u(t)+———= else )
output sequence have the same convergence speed. wi(®

Therefore, the fastest convergence speed can be

achieved in the presence of uncertainty g, , by solving Where LN stands for the Newton-type iterative process,

the min-max problem. The optimal gain ; is _2 2

a+a q = is the robust optimal learning gain for

. a, +a,
with the fastest convergence speed J, = 6+ c(4). a —a
xta the linear-type ILC, § = —2——L and
Remark5. The fastest convergence speed depends on a, +a
two parameters ¢, and ¥, . Even the optimal technique Ay (t) = Y, t) -y (1)
I I

18 . employed, .lfa2 >y, J >lle the Theorem2. For the dynamic system (1), the control
learningconvergence will be extremely slow. On the updating law (12) will make the tracking error
other hand, if g, is available, according to (9) we can HAyi HS —0 as i—>o0. Newton-type ILC is Q-faster
choose than linear-type ILC scheme in the sense that
q, =L, which can bring J, to the lowest level. This Q(Ly,0) < Q(L,,0)

simple observation motivates us to develop the Newton-
type ILC scheme which can considerably improve the _
convergence speed.[1] X= Ax+bu

4. TheNewton-TypelLC Scheme y=cx+du

A fixed learning gain ¢ is utilized in the linear-type

Remark®. Let us explain the Newton-type ILC scheme
further by a linear time-invariant system

ILC approach, which limits the learning convergence
rate. A fast convergence is always preferred in real
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Where 9, = d is constant. If(, =——=

u.,i

! hich
—, whic
d

leads t0|1—q1q2| =0, the convergence speed is the

6. lllustrative Example

Consider one phase control of the Switched Reluctance
Motor model as follow:

fastest. % SNx, (14)
5. The Secant-TypelLC Scheme dx, —iT )

Secant algorithm in Numerical Analysis provides a dt &

good approximation to Newton algorithm, which T _ N, dhy(x) —T1+uh (%)
motivates the introduction of the Secant-type ILC i(1) h?(x) dx { [+u’ ‘(X')]e }

schemes.

It should be noted that Secant method in Numerical
Analysis is also a local concept, the tracking error
converge only when the output of the system at first
iteration is near the desired trajectory. In this section,
the Secant-type ILC approach is constructed for the
non-linear non-affine dynamic system in the sense of
global convergence: when the output of the dynamic
system is far away from the desired trajectory, the
linear-type ILC approach is employed to guarantee the
convergence of the desired trajectory, the Secant-type

hy(x) =L, +L,sin[x —(j-127z /4]

That is, only one phase torque is generated to follow the
desired y, =0.044 Nm.

6.1. Linear-type ILC Scheme
First we choose the linear-type ILC scheme to track the

desired output Yy . Chooseu,(t)=1. To guarantee the

ILC approach is employed to enhance the convergence convergeznce of the scheme, we choose
rate.[1] q, = =13.92,and 6=0.4175 -Moreover
The Secant-type ILC scheme is constructed as: a +a,

u (0 +qAy; () dse

_ 20-k)a?

B f Jay], < 22D
u‘(t)+w ity <=2

g(X,Uw )_g(x’u'fl’ ) &‘un_UH’t

Where L. stands for the Secant-type iterative process,

S
and K <8 is a finite constant.

Remark?. It can be seen that Secant-type ILC is a
second order scheme, but nonlinear in nature.

Theorem3. For the dynamic system (1), the control
updating law will make the tracking error

||Ay| "S —>0asi—>0, The Secant-type ILC is Q-

faster than linear-type ILC scheme, however slower
than the Newton-type ILC scheme in the sense that

Q(Ly,0) < Q(L;,0) <Q(L;,0)

This shows that the convergence speed of the Secant-
type ILC scheme is in between the Newton-type ILC
and the linear-type ILC schemes.

Remark8. In above comparison of the learning
convergence speed, it is necessary to choose the
maximum /] satisfying all requirements from the
linear-type, Newton-type and Secant-type schemes.
Under such time-weighted norm, the convergence
speeds are compared.

<a (13)

0<|g,|=0.0495,V(x,u) e

The simulation result is shown in Fig 1(solid line). From
the figure it can be seen that the linear-type ILC scheme
generates a monotonous convergence.

_ Y,
The relative error MaX|——| drops from 1to 10~

tel0.1]] y,
within 5 iterations. Further more, the curve of the error
is very close to a straight line which indicates that the
linear-type ILC scheme has the linear convergence
order (geometric convergence in the log scale).

6.2. Newton-type ILC Scheme

For the dynamic system (14), The simulation result of
the Newton-type ILC scheme is also shown in Figl
(dotted line).When the tracking error is outside the error

bound 26e7 | the convergence of Newton-type is the
M

uu

same as the linear-type ILC. When the tracking error
enters the error bound, the tracking error converges in a
much faster. After 6 iterations, the relative tracking
error drops from10™ to 107", From Figl, it can be
seen that the tracking error of the linear-type ILC
scheme takes 17 iterations to reach the same precision
level. Due to the computation precision such as
quantization or finite word length, convergence speed
ceases after the tracking error reaches10™"'.

6.3. Secant-type ILC Scheme

For the dynamic system (14), the simulation result of
Secant-type ILC scheme is also shown in Figl (dash-
dotted line). Letk, =0.25<@, where the tracking error
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2(0-k)a
M

uu

of the Secant-type is the same as the linear-type ILC.
When the tracking error enters the error bound, the
convergence speed of the tracking error is in between
the linear-type ILC and Newton-type ILC schemes.
From Figl, it can be seen that the tracking error of the
Secant-type ILC scheme takes 12 iterations to reach the
precision level of 107"

is outside the error bound , the convergence

Error

1044

J 5 10 15 20 25 30
Number of Iteration

Fig.1 Convergence speed of the three ILC schemes for SRM

7. Conclusion

In this paper we studied nonlinear-type ILC schemes for
nonlinear dynamic systems. The proposed nonlinear
methods such as Newton-type and Secant-type ILC
scheme improve the learning convergence speed. The
convergence order of nonlinear ILC schemes is
evaluated in an systematic method. It is concluded that
the convergence speed of Newton-type ILC scheme is
the fastest. The Secant-type is faster than that of the
linear-type but slower than the Newton-type.
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