# A Critical Comparative Study of Liver Patients from USA and INDIA: An Exploratory Analysis

Bendi Venkata Ramana<sup>1</sup>, Prof. M. Surendra Prasad Babu<sup>2</sup>, Prof. N. B. Venkateswarlu<sup>3</sup>

<sup>1</sup> Associate Professor, Dept.of IT, AITAM, Tekkali, Andhra Pradesh-532201, India.

<sup>2</sup> Dept. of CS&SE, AUCE, Visakhapatnam-530 003, A.P, India.,

<sup>3</sup> Dept. of CSE, AITAM, Tekkali, Andhra Pradesh-532201, India.

# Abstract

Recent research studies on liver diagnosis indicated difference in classification accuracy of various classifiers with different data sets. K-Nearest Neighbor classifier is observed to be giving best results with India liver patients' data set with all feature set combinations. Performance is better for the India Liver dataset compared to UCLA liver dataset with all the selected algorithms [1]. In order to envisage the reason for this difference, we propose to analyze the liver patients' populations of both USA and India. We have carried out extensive ANOVA, MANOVA analysis on these data sets to observe any significant difference among the groups. It has observed that liver patients of both the countries are having significant difference which is the reason for difference in classifiers performance. Results of this study are very important for the development of automatic medical diagnosis system and the need for its localization settings based on the geographical region.

**Keywords:** ANOVA, MANOVA, Classification, Liver diagnosis

# **1. Introduction**

Two data sets were evaluated using analysis of variance (ANOVA) and multivariate analysis of variance (MANOVA). First dataset is taken from University of California at Irvine (UCI) Machine Learning Repository [2], which contains 345 records with 6 attributes as shown in Table 1. Second dataset contains 583 liver patient records from north east, Andhra Pradesh, India with 10 attributes as shown in Table 2. Alkphos, SGPT and SGOT are the common attributes from the two data sets, they are taken for the purpose of comparison.

Group 1 indicates UCI data set and Group 2 indicates INDIA data set. In UCI data set, 145 patients are labelled as liver patients others are not. Similarly, in Indian data set 416 patients are labelled as liver patients and remaining as non-liver patients.

In this paper, Standard statistical methods One-way Analysis of Variance (ANOVA) and Multivariate Analysis of Variance (MANOVA) are applied to evaluate the significance between two populations for better classification [5]. One-way Analysis of Variance (ANOVA) is used to test the significant difference in a single dependent variable among two or more groups formed by a single independent or classification variable, whereas Multivariate Analysis of Variance (MANOVA) is used to test the significant difference in more than one dependent variable and several independent variables.

Two Liver patient datasets were used in this study, one is collected from Andhra Pradesh state of India and the second one is BUPA Liver Disorders datasets taken from University of California at Irvine (UCI) Machine Learning Repository [4]. The attributes of Indian data Gender, Total\_Bilirubin, set were Age, Direct Bilirubin, Alkphos, SGPT. SGOT. Total Protiens, Albumin and A/G ratio. The attributes of UCI data set were Mcv. Alkphos, SGPT, SGOT and Gammagt. The common liver functional tests from both the data sets were Alkphos, SGPT and SGOT [1][2][3].

# 2. Related work

Mireille Tohm´et al [7] proposed an alternative to usual multiclass multivariate group comparison tests such as



Hypothesis tests are used to compare and show the efficiency of drugs. Junning Li et al.[8] proposed a Dynamic Bayesian Networks (DBN)-based groupanalysis which combines the DBN approach and the multivariate analysis of variance (MANOVA). Neven Cukrov et al.[9] was applied multivariate statistical analysis to the measured physico-chemical parameters to estimate anthropogenic and natural influences to water system of the Krka River. Z. Haddi et al.[10] proposed Multivariate Analysis of Variance (MANOVA) to test the significance of the differences between cheeses groups. Z. A. Dastgheib et al. [11] applied multivariate analysis of variance (MANOVA) to select pairs of features showing the most significant differences between the groups to get more classifier accuracy. S. Dimitrova [12] conducted MANOVA to check the significance of the influence of three different factors namely 1 planetary geomagnetic activity level estimated by Ap-index and divided into five levels, 2. gender - males and females and 3. the presence of medication. Paulo Ricardo Galhanone et al. [13] applied MANOVA and Discriminate Analysis to Spectral analysis of the multichannel EEG of neonates is carried out with a view to determining differences in characteristics of High-Voltage-Slow, Low-Voltage-Irregular and Mixed EEG patterns. Diego Moitre, and Fernando Magnago [14] presented the application of the methodology of analysis of variance of multivariate data (MANOVA) to detect the impact of the fuel consumption on the market price. B.Surendiran et al. [15] proposed an Univariate Analysis of Variance (ANOVA) and Discriminate Analysis (DA) classifier for classifying the masses present in mammogram. Martha L. Zequera et al. [16] was designed to assess the effect of time on the repeatability of the LorAn pressure distribution measurement system, and evaluate the variability of plantar pressure and postural balance, during barefoot standing in diabetic and non-diabetic subjects, for future diabetic foot clinical evaluation. Benjamin F et al. [17] presented Directed canonical analysis as an extension of the general form of canonical analysis, which is a method for reducing the dimensionality of multivariate data sets with minimum loss of discriminatory variance. Aleksandar Jeremic et al. [18] developed a frequency-domain channel estimation algorithm for single-user multiantenna orthogonal frequency division multiplexing (OFDM) wireless systems in the presence of synchronous interference.

# 2. One way analysis of variance (ANOVA)

The F statistics obtained from ANOVA only tell us whether there is any significant difference in the mean values of the two groups. In this ALKPHOS, SGPT and SGOT were considered as dependent variables and Group was considered as factoring variable.

- 1. Between Groups:- Between groups indicates the variability due to the place of data (between  $(\overline{x}_i - \overline{x})^2$  groups variability)
- 2. Within Groups:-With in groups indicates variability due to random error  $(-)^2$
- variability due to random error  $(x_{ij} \overline{x}_i)^2$ 3. Total:- Indicates total variability

The ANOVA F-statistic is a ratio of the Between Group Variation divided by the Within Group Variation

# 3. Multivariate analysis of variance (MANOVA)

Multivariate analysis of variance is a way to test the hypothesis that one or more independent variables, or factors, have an effect on a set of two or more dependent variables. The goal of our analysis is to look for an effect of one or more IVs on several DVs at the same time. Four different multivariate tests were considered to identify the significant effect of the IVs on all of the DVs, as a group.

# 4. Results and Discussion

Our analysis includes population comparisons based on the common attributes, Alkphos, SGPT and SGOT and their combinations. Total we will have  $3C_1 + 3C_2 + 3C_3$ combinations totaling 7 for experiment 1, experiment 2 and experiment 3.

| Attribute | Туре        |
|-----------|-------------|
| Mcv       | Integer     |
| Alkphos   | Integer     |
| SGPT      | Integer     |
| SGOT      | Integer     |
| Gammagt   | Real number |
| Drinks    | Real number |

Table 1: UCA Liver dataset and attributes available

| Table 2: INDIA | dataset and | attributes |
|----------------|-------------|------------|
|----------------|-------------|------------|

| Attribute         | Туре        |
|-------------------|-------------|
| Gender            | Categorical |
| Age               | Real number |
| Total_bilirubin   | Real number |
| Direct_ bilirubin | Real number |
| Total_protiens    | Real number |
| Albumin           | Real number |
| A/G ratio         | Real number |
| SGPT              | Integer     |
| SGOT              | Integer     |
| Alkphos           | Integer     |

# **Experiment 1**

Experiment 1 includes the analysis of all Patients that means both liver and non liver patients of UCI and India



(Pooled analysis). UCI data set contains 345 patient records and INDIA data set contains 583 patient records. Total records are 928.

The analysis reported from Table 3 to Table 16 for the UCI & INDIA data sets for the liver data with both liver patients and non liver patients, Table 17 to Table 30 for the UCI & INDIA data sets for the liver data with only liver patients and Table 31 to Table 44 for the UCI & INDIA data sets for the liver data with only non liver patients.

Table 3, Table 5 & Table 7 shows descriptive statistics that are no of records, mean standard deviation, standard error etc. for the individual attributes ALKPHOS, SGPT and SGOT respectively.

Table 4, Table 6 & Table 8 shows one way analysis of variance for the attributes ALKPHOS, SGPT and SGOT respectively. The results reported in Table 4, Table 6 & Table 8 indicates the significant difference between groups of data sets.

P-value (significance value) in table 4 Indicates the probability of getting a mean difference between the groups as high as what is observed by chance. The lower the p-value, the more significant the difference between the groups. The p-value in table 4 is less than 0.05 (p < 0.05) can safely reject the null hypothesis that indicates there is more significant difference between groups. Then we can say that populations differ a lot on ALKPHOS.

Significant value in table 6 is 0.000 which is less than 0.05 (p < 0.05) can safely reject the null hypothesis that indicates there is more significant difference between groups. Then we can say that populations differ a lot on SGPT.

Significant value in table 8 is 0.000 which is less than 0.05 (p < 0.05) can safely reject the null hypothesis that indicates there is more significant difference between groups. Then we can say that populations differ a lot on SGOT.

#### Table 3:Descriptive Statistics of ALKPHOS

| ALKPHOS 3 |     |        |           |        |                   |            |         |         |
|-----------|-----|--------|-----------|--------|-------------------|------------|---------|---------|
| Group     | Ν   | Mean   | Std.      | Std.   | 95%               | Confidence | Minimum | Maximum |
| -         |     |        | Deviation | Error  | Interval for Mean |            |         |         |
|           |     |        |           |        | Lower             | Upper      |         |         |
|           |     |        |           |        | Bound             | Bound      |         |         |
| 1         | 345 | 69.87  | 18.348    | .988   | 67.93             | 71.81      | 23      | 138     |
| 2         | 583 | 290.58 | 242.938   | 10.061 | 270.82            | 310.34     | 63      | 2110    |
| Total     | 928 | 208.52 | 220.381   | 7.234  | 194.33            | 222.72     | 23      | 2110    |

#### Table 4: One Way ANOVA on ALKPHOS between UCI & INDIA datasets

| ALKPHOS        |                |     |              |         |      |
|----------------|----------------|-----|--------------|---------|------|
|                | Sum of Squares | df  | Mean Square  | F       | Sig. |
| Between Groups | 10557739.946   | 1   | 10557739.946 | 283.665 | .000 |
| Within Groups  | 34464783.484   | 926 | 37218.989    |         |      |
| Total          | 45022523.430   | 927 |              |         |      |

#### **Table 5: Descriptive Statistics of SGPT**

| Group | Ν   | Mean  | Std.      | Std.  | 95%      | Confidence | Minimum | Maximum |
|-------|-----|-------|-----------|-------|----------|------------|---------|---------|
| _     |     |       | Deviation | Error | Interval | for Mean   |         |         |
|       |     |       |           |       | Lower    | Upper      |         |         |
|       |     |       |           |       | Bound    | Bound      |         |         |
| 1     | 345 | 30.41 | 19.512    | 1.051 | 28.34    | 32.47      | 4       | 155     |
| 2     | 583 | 80.71 | 182.620   | 7.563 | 65.86    | 95.57      | 10      | 2000    |
| Total | 928 | 62.01 | 147.212   | 4.832 | 52.53    | 71.49      | 4       | 2000    |

#### Table 6: ANOVA on SGPT between UCI & INDIA datasets

| SGPT           |                |     |             |        |      |
|----------------|----------------|-----|-------------|--------|------|
|                | Sum of Squares | df  | Mean Square | F      | Sig. |
| Between Groups | 548541.541     | 1   | 548541.541  | 25.994 | .000 |
| Within Groups  | 19540784.351   | 926 | 21102.359   |        |      |
| Total          | 20089325.892   | 927 |             |        |      |

#### Table 7:Descriptive Statistics of SGOT

| SGOT  |     |        |           |        |                   |         |         |         |
|-------|-----|--------|-----------|--------|-------------------|---------|---------|---------|
| Group | Ν   | Mean   | Standard  | Std.   | 95% Con           | fidence | Minimum | Maximum |
| _     |     |        | Deviation | Error  | Interval for Mean |         |         |         |
|       |     |        |           |        | Lower             | Upper   |         |         |
|       |     |        |           |        | Bound             | Bound   |         |         |
| 1     | 345 | 24.64  | 10.064    | .542   | 23.58             | 25.71   | 5       | 82      |
| 2     | 583 | 109.91 | 288.919   | 11.966 | 86.41             | 133.41  | 10      | 4929    |
| Total | 928 | 78.21  | 232.691   | 7.638  | 63.22             | 93.20   | 5       | 4929    |



#### Table 8: ANOVA on SGOT between UCA & INDIA datasets

| SGOT           |                |     |             |        |      |  |
|----------------|----------------|-----|-------------|--------|------|--|
|                | Sum of Squares | df  | Mean Square | F      | Sig. |  |
| Between Groups | 1575814.094    | 1   | 1575814.094 | 30.014 | .000 |  |
| Within Groups  | 48616664.510   | 926 | 52501.798   |        |      |  |
| Total          | 50192478.603   | 927 |             |        |      |  |

Table 9, Table 11, Table 13 & Table 15 shows the descriptive statistics for the combination of attributes <u>ALKPHOS, SGPT, ALKPHOS, SGOT, SGOT</u>, <u>SGOT</u>, <u>SGOT</u>, and <u>ALKPHOS, SGPT, SGOT</u> respectively.

The results reported in Table 10, Table 12, Table 14 & Table 16 are the four different multivariate tests and their significant values(p) for the combination of attributes <u>ALKPHOS, SGPT</u>, <u>ALKPHOS, SGOT</u>, <u>SGPT, SGOT</u> and <u>ALKPHOS, SGPT, SGOT</u> respectively.

#### Table 9:Descriptive Statistics of ALKPHOS & SGPT

|         | GROUP | Mean   | Std. Deviation | Ν   |
|---------|-------|--------|----------------|-----|
|         | 1     | 69.87  | 18.348         | 345 |
| ALKPHOS | 2     | 290.58 | 242.938        | 583 |
|         | Total | 208.52 | 220.381        | 928 |
|         | 1     | 30.41  | 19.512         | 345 |
| SGPT    | 2     | 80.71  | 182.620        | 583 |
|         | Total | 62.01  | 147.212        | 928 |

#### Table 10: Multivariate Tests<sup>a</sup> on ALKPHOS & SGPT between UCA & INDIA datasets

| Effect    |                    | Value | F        | Hypothesis | Error df | Sig. | Partial Eta | Noncent.  | Observed Power |
|-----------|--------------------|-------|----------|------------|----------|------|-------------|-----------|----------------|
|           |                    |       |          | df         |          |      | Squared     | Parameter |                |
|           | Pillai's Trace     | .469  | 408.849b | 2.000      | 925.000  | .000 | .469        | 817.698b  | 1.000          |
| Intercent | Wilks' Lambda      | .531  | 408.849b | 2.000      | 925.000  | .000 | .469        | 817.698b  | 1.000          |
| intercept | Hotelling's Trace  | .884  | 408.849b | 2.000      | 925.000  | .000 | .469        | 817.698b  | 1.000          |
|           | Roy's Largest Root | .884  | 408.849b | 2.000      | 925.000  | .000 | .469        | 817.698b  | 1.000          |
|           | Pillai's Trace     | .240  | 146.205b | 2.000      | 925.000  | .000 | .240        | 292.410b  | 1.000          |
| CROUD     | Wilks' Lambda      | .760  | 146.205b | 2.000      | 925.000  | .000 | .240        | 292.410b  | 1.000          |
| GROUP     | Hotelling's Trace  | .316  | 146.205b | 2.000      | 925.000  | .000 | .240        | 292.410b  | 1.000          |
|           | Roy's Largest Root | .316  | 146.205b | 2.000      | 925.000  | .000 | .240        | 292.410b  | 1.000          |

Significant value in table 10 is 0.000 which is less than 0.05 (p < 0.05) can safely reject the null hypothesis that indicates there is more significant difference between groups. Then we can say that populations differ a lot on ALKPHOS and SGPT.

#### Table 11:Descriptive Statistics of ALKPHOS & SGOT

|         | GROUP | Mean   | Std. Deviation | Ν   |
|---------|-------|--------|----------------|-----|
|         | 1     | 69.87  | 18.348         | 345 |
| ALKPHOS | 2     | 290.58 | 242.938        | 583 |
|         | Total | 208.52 | 220.381        | 928 |
|         | 1     | 24.64  | 10.064         | 345 |
| SGOT    | 2     | 109.91 | 288.919        | 583 |
|         | Total | 78.21  | 232.691        | 928 |

#### Table 12: Multivariate Tests<sup>a</sup> on ALKPHOS & SGOT between UCA & INDIA datasets

| Effect    |                    | Value | F        | Hypothesis | Error df | Sig. | Partial Eta | Noncent.  | Observed |
|-----------|--------------------|-------|----------|------------|----------|------|-------------|-----------|----------|
|           |                    |       |          | df         |          |      | Squared     | Parameter | Power    |
| Intercept | Pillai's Trace     | .455  | 386.308b | 2.000      | 925.000  | .000 | .455        | 772.615b  | 1.000    |
|           | Wilks' Lambda      | .545  | 386.308b | 2.000      | 925.000  | .000 | .455        | 772.615b  | 1.000    |
|           | Hotelling's Trace  | .835  | 386.308b | 2.000      | 925.000  | .000 | .455        | 772.615b  | 1.000    |
|           | Roy's Largest Root | .835  | 386.308b | 2.000      | 925.000  | .000 | .455        | 772.615b  | 1.000    |
|           | Pillai's Trace     | .239  | 145.327b | 2.000      | 925.000  | .000 | .239        | 290.655b  | 1.000    |
| CROUD     | Wilks' Lambda      | .761  | 145.327b | 2.000      | 925.000  | .000 | .239        | 290.655b  | 1.000    |
| GROUP     | Hotelling's Trace  | .314  | 145.327b | 2.000      | 925.000  | .000 | .239        | 290.655b  | 1.000    |
|           | Roy's Largest Root | .314  | 145.327b | 2.000      | 925.000  | .000 | .239        | 290.655b  | 1.000    |

Significant value in table 12 is 0.000 which is less than 0.05 (p < 0.05) can safely reject the null hypothesis that indicates there is more significant difference between groups. Then we can say that populations differ a lot on ALKPHOS and SGOT.

Significant value in table 14 is 0.000 which is less than 0.05 (p < 0.05) can safely reject the null hypothesis that indicates there is more significant difference between groups. Then we can say that populations differ a lot on SGOT and SGPT.

#### Table 13:Descriptive Statistics of SGPT & SGOT

|      | GROUP | Mean   | Std. Deviation | Ν   |
|------|-------|--------|----------------|-----|
| SGOT | 1     | 24.64  | 10.064         | 345 |
|      | 2     | 109.91 | 288.919        | 583 |
|      | Total | 78.21  | 232.691        | 928 |
|      | 1     | 30.41  | 19.512         | 345 |
| SGPT | 2     | 80.71  | 182.620        | 583 |
|      | Total | 62.01  | 147.212        | 928 |

| Effect    |                    | Value | F       | Hypothesis | Error df | Sig. | Partial Eta | Noncent.  | Observed |
|-----------|--------------------|-------|---------|------------|----------|------|-------------|-----------|----------|
|           |                    |       |         | df         |          |      | Squared     | Parameter | Power    |
| Intercept | Pillai's Trace     | .121  | 63.431b | 2.000      | 925.000  | .000 | .121        | 126.861b  | 1.000    |
|           | Wilks' Lambda      | .879  | 63.431b | 2.000      | 925.000  | .000 | .121        | 126.861b  | 1.000    |
|           | Hotelling's Trace  | .137  | 63.431b | 2.000      | 925.000  | .000 | .121        | 126.861b  | 1.000    |
|           | Roy's Largest Root | .137  | 63.431b | 2.000      | 925.000  | .000 | .121        | 126.861b  | 1.000    |
|           | Pillai's Trace     | .033  | 15.775b | 2.000      | 925.000  | .000 | .033        | 31.549b   | 1.000    |
| GROUP     | Wilks' Lambda      | .967  | 15.775b | 2.000      | 925.000  | .000 | .033        | 31.549b   | 1.000    |
|           | Hotelling's Trace  | .034  | 15.775b | 2.000      | 925.000  | .000 | .033        | 31.549b   | 1.000    |
|           | Roy's Largest Root | .034  | 15.775b | 2.000      | 925.000  | .000 | .033        | 31.549b   | 1.000    |

Table 15:Descriptive Statistics of ALKPHOS, SGPT & SGOT

|         | GROUP | Mean   | Std. Deviation | N   |
|---------|-------|--------|----------------|-----|
|         | 1     | 24.64  | 10.064         | 345 |
| SGOT    | 2     | 109.91 | 288.919        | 583 |
|         | Total | 78.21  | 232.691        | 928 |
|         | 1     | 30.41  | 19.512         | 345 |
| SGPT    | 2     | 80.71  | 182.620        | 583 |
|         | Total | 62.01  | 147.212        | 928 |
|         | 1     | 69.87  | 18.348         | 345 |
| ALKPHOS | 2     | 290.58 | 242.938        | 583 |
|         | Total | 208.52 | 220.381        | 928 |

Significant value in table 16 that is multivariate analysis on ALKPHOS, SGPT and SGOT is 0.000 which is less than 0.05 (p < 0.05) can safely reject the null hypothesis that indicates there is more significant difference between groups. Then we can say that populations differ a lot on ALKPHOS, SGPT and SGOT.

The significant values are less than 0.05 (p < 0.05) for four different multivariate tests for all the combination of attributes. This indicates that there is a significant effect of the independent variables on all of the dependent variables considered as a group.

Table 16: Multivariate Tests<sup>a</sup> on ALKPHOS, SGPT & SGOT between UCA & INDIA datasets

| Effect    |                    | Value | F        | Hypothesis | Error df | Sig. | Partial Eta | Noncent.  | Observed |
|-----------|--------------------|-------|----------|------------|----------|------|-------------|-----------|----------|
|           |                    |       |          | df         |          |      | Squared     | Parameter | Power    |
| Intercept | Pillai's Trace     | .473  | 276.082b | 3.000      | 924.000  | .000 | .473        | 828.245b  | 1.000    |
|           | Wilks' Lambda      | .527  | 276.082b | 3.000      | 924.000  | .000 | .473        | 828.245b  | 1.000    |
|           | Hotelling's Trace  | .896  | 276.082b | 3.000      | 924.000  | .000 | .473        | 828.245b  | 1.000    |
|           | Roy's Largest Root | .896  | 276.082b | 3.000      | 924.000  | .000 | .473        | 828.245b  | 1.000    |
|           | Pillai's Trace     | .240  | 97.462b  | 3.000      | 924.000  | .000 | .240        | 292.386b  | 1.000    |
| GROUP     | Wilks' Lambda      | .760  | 97.462b  | 3.000      | 924.000  | .000 | .240        | 292.386b  | 1.000    |
|           | Hotelling's Trace  | .316  | 97.462b  | 3.000      | 924.000  | .000 | .240        | 292.386b  | 1.000    |
|           | Roy's Largest Root | .316  | 97.462b  | 3.000      | 924.000  | .000 | .473        | 828.245b  | 1.000    |

## **Experiment 2**

Experiment 2 includes the analysis of liver Patients of UCI and India. UCI data set contains 145 liver patient records and INDIA data set contains 416 liver patient records. Total records are 561.

Table 17, Table 19 & Table 21 shows descriptive statistics that are no of records, mean standard deviation, standard error etc. for the individual attributes ALKPHOS, SGPT and SGOT respectively.

Table 18, Table 20 & Table 22 shows one way analysis of variance for the attributes ALKPHOS, SGPT and SGOT respectively. The results reported in Table 18,

Table 20 & Table 22 indicates the significant difference between groups of data sets.

Significant value in table 18 is 0.000 which is less than 0.05 (p < 0.05) can safely reject the null hypothesis that indicates there is more significant difference between groups. Then we can say that populations differ a lot on ALKPHOS.

Significant value in table 20 is 0.000 which is less than 0.05 (p < 0.05) can safely reject the null hypothesis that indicates there is more significant difference between groups. Then we can say that populations differ a lot on SGPT.

 Table 17:Descriptive Statistics of ALKPHOS

| ALKPHOS |     |        |           |            |                   |            |         |         |
|---------|-----|--------|-----------|------------|-------------------|------------|---------|---------|
| Group   | Ν   | Mean   | Std.      | Std. Error | 95%               | Confidence | Minimum | Maximum |
|         |     |        | Deviation |            | Interval for Mean |            |         |         |
|         |     |        |           |            | Lower             | Upper      |         |         |
|         |     |        |           |            | Bound             | Bound      |         |         |
| 1       | 145 | 71.98  | 18.591    | 1.544      | 68.93             | 75.03      | 23      | 138     |
| 2       | 416 | 319.01 | 268.308   | 13.155     | 293.15            | 344.87     | 63      | 2110    |
| Total   | 561 | 255.16 | 255.254   | 10.777     | 233.99            | 276.33     | 23      | 2110    |



#### Table 18: ANOVA on ALKPHOS between UCI & INDIA datasets

| ALKPHOS        |                |     |             |         |      |  |  |  |
|----------------|----------------|-----|-------------|---------|------|--|--|--|
|                | Sum of Squares | df  | Mean Square | F       | Sig. |  |  |  |
| Between Groups | 6561308.964    | 1   | 6561308.964 | 122.564 | .000 |  |  |  |
| Within Groups  | 29925259.916   | 559 | 53533.560   |         |      |  |  |  |
| Total          | 36486568.881   | 560 |             |         |      |  |  |  |

#### **Table 19:Descriptive Statistics of SGPT**

SGPT

| SULL  |     |       |           |        |              |           |         |         |
|-------|-----|-------|-----------|--------|--------------|-----------|---------|---------|
|       | Ν   | Mean  | Std.      | Std.   | 95% C        | onfidence | Minimum | Maximum |
|       |     |       | Deviation | Error  | Interval for | or Mean   |         |         |
|       |     |       |           |        | Lower        | Upper     |         |         |
|       |     |       |           |        | Bound        | Bound     |         |         |
| 1     | 145 | 31.21 | 15.778    | 1.310  | 28.62        | 33.80     | 10      | 103     |
| 2     | 416 | 99.61 | 212.768   | 10.432 | 79.10        | 120.11    | 12      | 2000    |
| Total | 561 | 81.93 | 185.771   | 7.843  | 66.52        | 97.33     | 10      | 2000    |

# Table 20: ANOVA on SGPT between UCI & INDIA datasets

| SGPT           |                |     |             |        |      |  |  |  |  |
|----------------|----------------|-----|-------------|--------|------|--|--|--|--|
|                | Sum of Squares | df  | Mean Square | F      | Sig. |  |  |  |  |
| Between Groups | 503032.864     | 1   | 503032.864  | 14.939 | .000 |  |  |  |  |
| Within Groups  | 18823073.139   | 559 | 33672.761   |        |      |  |  |  |  |
| Total          | 19326106.004   | 560 |             |        |      |  |  |  |  |

#### Table 21:Descriptive Statistics of SGOT

| SGOT  |     |        |           |            |              |                 |         |         |
|-------|-----|--------|-----------|------------|--------------|-----------------|---------|---------|
| Group | Ν   | Mean   | Std.      | Std. Error | 95% Confiden | ce Interval for | Minimum | Maximum |
|       |     |        | Deviation |            | Mean         |                 |         |         |
|       |     |        |           |            | Lower Bound  | Upper Bound     |         |         |
| 1     | 145 | 22.79  | 7.738     | .643       | 21.52        | 24.06           | 5       | 57      |
| 2     | 416 | 137.70 | 337.390   | 16.542     | 105.18       | 170.22          | 11      | 4929    |
| Total | 561 | 108.00 | 294.802   | 12.447     | 83.55        | 132.45          | 5       | 4929    |

# Table 22: ANOVA on SGOT between UCI & INDIA datasets

| SGOT           |                |     |             |        |      |
|----------------|----------------|-----|-------------|--------|------|
|                | Sum of Squares | df  | Mean Square | F      | Sig. |
| Between Groups | 1419839.186    | 1   | 1419839.186 | 16.798 | .000 |
| Within Groups  | 47248901.812   | 559 | 84523.975   |        |      |
| Total          | 48668740.998   | 560 |             |        |      |

Significant value in table 22 is 0.000 which is less than 0.05 (p < 0.05) can safely reject the null hypothesis that indicates there is more significant difference between groups. Then we can say that population differ a lot on on SGOT.

Table 23, Table 25, Table 27 & Table 29 shows the descriptive statistics for the combination of attributes <u>ALKPHOS, SGPT</u>, <u>ALKPHOS, SGOT</u>, <u>SGPT, SGOT</u> and <u>ALKPHOS, SGPT</u>, <u>SGOT</u> respectively. The results reported in Table 24, Table 26, Table 28 & Table 30 are the four different multivariate tests and their significant

values (p) for the combination of attributes <u>ALKPHOS</u>, <u>SGPT</u>, <u>ALKPHOS</u>, <u>SGOT</u>, <u>SGPT</u>, <u>SGOT</u> and <u>ALKPHOS</u>, <u>SGPT</u>, <u>SGOT</u> respectively.

#### Table 23:Descriptive Statistics of ALKPHOS & SGPT

|         | GROUP | Mean   | Std. Deviation | Ν   |
|---------|-------|--------|----------------|-----|
|         | 1     | 71.98  | 18.591         | 145 |
| ALKPHOS | 2     | 319.01 | 268.308        | 416 |
|         | Total | 255.16 | 255.254        | 561 |
|         | 1     | 31.21  | 15.778         | 145 |
| SGPT    | 2     | 99.61  | 212.768        | 416 |
|         | Total | 81.93  | 185.771        | 561 |

#### Table 24: Multivariate Tests<sup>a</sup> on ALKPHOS & SGPT between UCA & INDIA datasets

| Effect    |                    | Value | F        | Hypothesis | Error df | Sig. | Partial Eta | Noncent   | Observed Power |
|-----------|--------------------|-------|----------|------------|----------|------|-------------|-----------|----------------|
|           |                    |       |          | df         |          |      | Squared     | Parameter |                |
|           | Pillai's Trace     | .378  | 169.812b | 2.000      | 558.000  | .000 | .378        | 339.623b  | 1.000          |
| Intercent | Wilks' Lambda      | .622  | 169.812b | 2.000      | 558.000  | .000 | .378        | 339.623b  | 1.000          |
| mercept   | Hotelling's Trace  | .609  | 169.812b | 2.000      | 558.000  | .000 | .378        | 339.623b  | 1.000          |
|           | Roy's Largest Root | .609  | 169.812b | 2.000      | 558.000  | .000 | .378        | 339.623b  | 1.000          |
|           | Pillai's Trace     | .189  | 65.173b  | 2.000      | 558.000  | .000 | .189        | 130.346b  | 1.000          |
| CROUR     | Wilks' Lambda      | .811  | 65.173b  | 2.000      | 558.000  | .000 |             |           |                |
| UKUUF     | Hotelling's Trace  | .234  | 65.173b  | 2.000      | 558.000  | .000 |             |           |                |
|           | Roy's Largest Root | .234  | 65.173b  | 2.000      | 558.000  | .000 |             |           |                |

Significant value in table 24 is 0.000 which is less than 0.05 (p < 0.05) can safely reject the null hypothesis that indicates there is more significant difference between groups. Then we can say that populations differ a lot on ALKPHOS and SGPT.

#### Table 25:Descriptive Statistics of ALKPHOS & SGOT

|         | GROUP | Mean   | Std. Deviation | Ν   |
|---------|-------|--------|----------------|-----|
|         | 1     | 71.98  | 18.591         | 145 |
| ALKPHOS | 2     | 319.01 | 268.308        | 416 |
|         | Total | 255.16 | 255.254        | 561 |
|         | 1     | 22.79  | 7.738          | 145 |
| SGOT    | 2     | 137.70 | 337.390        | 416 |
|         | Total | 108.00 | 294.802        | 561 |

#### Table 26: Multivariate Tests<sup>a</sup> on ALKPHOS & SGOT between UCA & INDIA datasets

| Effect    | Effect             |      | F        | Hypothesis | Error df | Sig. | Partial Eta | Noncent.  | Observed Power |
|-----------|--------------------|------|----------|------------|----------|------|-------------|-----------|----------------|
|           |                    |      |          | df         |          |      | Squared     | Parameter |                |
|           | Pillai's Trace     | .362 | 158.401b | 2.000      | 558.000  | .000 | .362        | 316.802b  | 1.000          |
| Intercent | Wilks' Lambda      | .638 | 158.401b | 2.000      | 558.000  | .000 | .362        | 316.802b  | 1.000          |
| Intercept | Hotelling's Trace  | .568 | 158.401b | 2.000      | 558.000  | .000 | .362        | 316.802b  | 1.000          |
|           | Roy's Largest Root | .568 | 158.401b | 2.000      | 558.000  | .000 | .362        | 316.802b  | 1.000          |
|           | Pillai's Trace     | .187 | 64.337b  | 2.000      | 558.000  | .000 | .187        | 128.673b  | 1.000          |
| CROUD     | Wilks' Lambda      | .813 | 64.337b  | 2.000      | 558.000  | .000 | .187        | 128.673b  | 1.000          |
| GROUP     | Hotelling's Trace  | .231 | 64.337b  | 2.000      | 558.000  | .000 | .187        | 128.673b  | 1.000          |
|           | Roy's Largest Root | .231 | 64.337b  | 2.000      | 558.000  | .000 | .187        | 128.673b  | 1.000          |

Significant value in table 26 is 0.000 which is less than 0.05 (p < 0.05) can safely reject the null hypothesis that indicates there is more significant difference between groups. Then we can say that populations differ a lot on ALKPHOS and SGOT.

# Table 27: Descriptive Statistics of SGOT & SGPT

|      | GROUP | Mean   | Std. Deviation | Ν   |
|------|-------|--------|----------------|-----|
|      | 1     | 22.79  | 7.738          | 145 |
| SGOT | 2     | 137.70 | 337.390        | 416 |
|      | Total | 108.00 | 294.802        | 561 |
|      | 1     | 31.21  | 15.778         | 145 |
| SGPT | 2     | 99.61  | 212.768        | 416 |
|      | Total | 81.93  | 185.771        | 561 |

#### Table 28: Multivariate Tests<sup>a</sup> on SGOT & SGPT between UCA & INDIA datasets

| Effect    |                    | Value | F       | Hypothe | Error df | Sig. | Partial Eta | Noncent.  | Observed |
|-----------|--------------------|-------|---------|---------|----------|------|-------------|-----------|----------|
|           |                    |       |         | sis df  |          |      | Squared     | Parameter | Power    |
|           | Pillai's Trace     | .089  | 27.283b | 2.000   | 558.000  | .000 | .089        | 54.566b   | 1.000    |
| Intercent | Wilks' Lambda      | .911  | 27.283b | 2.000   | 558.000  | .000 | .089        | 54.566b   | 1.000    |
| mercept   | Hotelling's Trace  | .098  | 27.283b | 2.000   | 558.000  | .000 | .089        | 54.566b   | 1.000    |
|           | Roy's Largest Root | .098  | 27.283b | 2.000   | 558.000  | .000 | .089        | 54.566b   | 1.000    |
|           | Pillai's Trace     | .031  | 8.921b  | 2.000   | 558.000  | .000 | .031        | 17.841b   | .973     |
| CROUD     | Wilks' Lambda      | .969  | 8.921b  | 2.000   | 558.000  | .000 | .031        | 17.841b   | .973     |
| UNUUP     | Hotelling's Trace  | .032  | 8.921b  | 2.000   | 558.000  | .000 | .031        | 17.841b   | .973     |
|           | Roy's Largest Root | .032  | 8.921b  | 2.000   | 558.000  | .000 | .031        | 17.841b   | .973     |

Significant value in table 28 is 0.000 which is less than 0.05 (p < 0.05) can safely reject the null hypothesis that indicates there is more significant difference between groups. Then we can say that populations differ a lot on SGPT and SGOT.

Significant value is 0.000 in table 30 that is multivariate analysis on ALKPHOS, SGPT and SGOT is which is less than 0.05 (p < 0.05) can safely reject the null hypothesis that indicates there is more significant difference between groups. Then we can say that populations differ a lot on ALKPHOS, SGPT and SGOT.

Table 29:Descriptive Statistics of ALKPHOS, SGPT & SGOT

|         | GROUP | Mean   | Std. Deviation | Ν   |
|---------|-------|--------|----------------|-----|
|         | 1     | 22.79  | 7.738          | 145 |
| SGOT    | 2     | 137.70 | 337.390        | 416 |
|         | Total | 108.00 | 294.802        | 561 |
|         | 1     | 31.21  | 15.778         | 145 |
| SGPT    | 2     | 99.61  | 212.768        | 416 |
|         | Total | 81.93  | 185.771        | 561 |
|         | 1     | 71.98  | 18.591         | 145 |
| ALKPHOS | 2     | 319.01 | 268.308        | 416 |
|         | Total | 255.16 | 255.254        | 561 |

#### Table 30: Multivariate Tests<sup>a</sup> on ALKPHOS, SGPT & SGOT between UCA & INDIA datasets

| Effect 30 |                    | Value | F        | Hypothesis | Error df | Sig. | Partial Eta | Noncent.  | Observed |
|-----------|--------------------|-------|----------|------------|----------|------|-------------|-----------|----------|
|           |                    |       |          | df         |          |      | Squared     | Parameter | Power    |
|           | Pillai's Trace     | .381  | 114.487b | 3.000      | 557.000  | .000 | .381        | 343.461b  | 1.000    |
| Intercent | Wilks' Lambda      | .619  | 114.487b | 3.000      | 557.000  | .000 | .381        | 343.461b  | 1.000    |
| Intercept | Hotelling's Trace  | .617  | 114.487b | 3.000      | 557.000  | .000 | .381        | 343.461b  | 1.000    |
|           | Roy's Largest Root | .617  | 114.487b | 3.000      | 557.000  | .000 | .381        | 343.461b  | 1.000    |
|           | Pillai's Trace     | .190  | 43.446b  | 3.000      | 557.000  | .000 | .190        | 130.339b  | 1.000    |
| GROUP     | Wilks' Lambda      | .810  | 43.446b  | 3.000      | 557.000  | .000 | .190        | 130.339b  | 1.000    |
|           | Hotelling's Trace  | .234  | 43.446b  | 3.000      | 557.000  | .000 | .190        | 130.339b  | 1.000    |
|           | Roy's Largest Root | .234  | 43.446b  | 3.000      | 557.000  | .000 | .190        | 130.339b  | 1.000    |



# **Experiment 3**

Experiment 3 includes the analysis of non liver Patients of UCI and India. UCI data set contains 200 non liver patient records and INDIA data set contains 167 non liver patient records. Total records are 367.

Table 31 Table 33 & Table 35 shows descriptive statistics that are no of records, mean standard

deviation, standard error etc. for the individual attributes ALKPHOS, SGPT and SGOT respectively.

Table 32, Table 34 & Table 36 shows one way analysis of variance for the attributes ALKPHOS, SGPT and SGOT respectively. The results reported in Table 32, Table 34 & Table 36 indicates the significant difference between groups of data sets.

#### Table 31:Descriptive Statistics of ALKPHOS

| ALKPHUS |     |        |                |            |                |              |         |         |
|---------|-----|--------|----------------|------------|----------------|--------------|---------|---------|
| Group   | Ν   | Mean   | Std. Deviation | Std. Error | 95% Confidence | Interval for | Minimum | Maximum |
|         |     |        |                |            | Mean           |              |         |         |
|         |     |        |                |            | Lower Bound    | Upper Bound  |         |         |
| 1       | 200 | 68.34  | 18.062         | 1.277      | 65.82          | 70.86        | 37      | 134     |
| 2       | 167 | 219.75 | 140.986        | 10.910     | 198.21         | 241.29       | 90      | 1580    |
| Total   | 367 | 137.24 | 122.039        | 6.370      | 124.71         | 149.77       | 37      | 1580    |
|         |     |        |                |            |                |              |         |         |

#### Table 32: One Way ANOVA on ALKPHOS between UCI & INDIA datasets

| ALKPHOS        |                |     |             |         |      |  |  |  |  |
|----------------|----------------|-----|-------------|---------|------|--|--|--|--|
|                | Sum of Squares | df  | Mean Square | F       | Sig. |  |  |  |  |
| Between Groups | 2086485.085    | 1   | 2086485.085 | 226.352 | .000 |  |  |  |  |
| Within Groups  | 3364523.814    | 365 | 9217.873    |         |      |  |  |  |  |
| Total          | 5451008.899    | 366 |             |         |      |  |  |  |  |

| Table 33:De | scriptive Stat | istics of SGPT |                |            |     |
|-------------|----------------|----------------|----------------|------------|-----|
| SGPT        |                |                |                |            |     |
| Group       | Ν              | Mean           | Std. Deviation | Std. Error | 959 |

| Gr | oup | Ν   | Mean  | Std. Deviation | Std. Error | 95% Confidence | e Interval for | Minimum | Maximum |
|----|-----|-----|-------|----------------|------------|----------------|----------------|---------|---------|
|    |     |     |       |                |            | Mean           |                |         |         |
|    |     |     |       |                |            | Lower Bound    | Upper Bound    |         |         |
| 1  |     | 200 | 29.83 | 21.845         | 1.545      | 26.78          | 32.87          | 4       | 155     |
| 2  |     | 167 | 33.65 | 25.060         | 1.939      | 29.82          | 37.48          | 10      | 181     |
| To | tal | 367 | 31.57 | 23.408         | 1.222      | 29.16          | 33.97          | 4       | 181     |

|--|

| SGPT           |                |     |             |       |      |
|----------------|----------------|-----|-------------|-------|------|
|                | Sum of Squares | Df  | Mean Square | F     | Sig. |
| Between Groups | 1333.383       | 1   | 1333.383    | 2.443 | .119 |
| Within Groups  | 199214.731     | 365 | 545.794     |       |      |
| Total          | 200548.114     | 366 |             |       |      |

Significant value in table 32 is 0.000 which is less than 0.05 (p < 0.05) can safely reject the null hypothesis that indicates there is more significant difference between groups. Then we can say that populations differ a lot on ALKPHOS.

Significant value in table 34 is 0.000 which is greater than 0.119 (p > 0.05) can accept the null hypothesis that indicates there is no significant difference between groups. Then we can say that there is no populations differ on SGPT.

Significant value in table 36 is 0.000 which is less than 0.05 (p < 0.05) can safely reject the null hypothesis that indicates there is more significant difference between groups. Then we can say that populations differ a lot on SGOT.

Table 37, Table 39, Table 41 & Table 43 shows the descriptive statistics for the combination of attributes ALKPHOS, SGPT, ALKPHOS, SGOT, SGPT, SGOT and ALKPHOS, SGPT ,SGOT respectively.



Table 35:Descriptive Statistics of SGOT

| 2001  |     |       |                |            |                                  |             |         |         |
|-------|-----|-------|----------------|------------|----------------------------------|-------------|---------|---------|
| Group | Ν   | Mean  | Std. Deviation | Std. Error | 95% Confidence Interval for Mean |             | Minimum | Maximum |
|       |     |       |                |            | Lower Bound                      | Upper Bound |         |         |
| 1     | 200 | 25.99 | 11.289         | .798       | 24.42                            | 27.56       | 8       | 82      |
| 2     | 167 | 40.69 | 36.412         | 2.818      | 35.13                            | 46.25       | 10      | 285     |
| Total | 367 | 32.68 | 26.913         | 1.405      | 29.92                            | 35.44       | 8       | 285     |

Table 36: One Way ANOVA on SGOT between UCI & INDIA datasets

| SGO1 36        |                |     |             |        |      |
|----------------|----------------|-----|-------------|--------|------|
|                | Sum of Squares | df  | Mean Square | F      | Sig. |
| Between Groups | 19662.272      | 1   | 19662.272   | 29.240 | .000 |
| Within Groups  | 245443.788     | 365 | 672.449     |        |      |
| Total          | 265106.060     | 366 |             |        |      |

Table 37:Descriptive Statistics of ALKPHOS & SGPT

|         | GROUP | Mean   | Std. Deviation | Ν   |
|---------|-------|--------|----------------|-----|
|         | 1     | 68.34  | 18.062         | 200 |
| ALKPHOS | 2     | 219.75 | 140.986        | 167 |
|         | Total | 137.24 | 122.039        | 367 |
|         | 1     | 29.82  | 21.845         | 200 |
| SGPT    | 2     | 33.65  | 25.060         | 167 |
|         | Total | 31.57  | 23.408         | 367 |

The results reported in Table 38, Table 40, Table 42 and Table 44 are the four different multivariate tests and their significant values(p) for the combination of attributes <u>ALKPHOS, SGPT</u>, <u>ALKPHOS, SGOT</u>, <u>SGPT, SGOT</u> and <u>ALKPHOS, SGPT</u>,<u>SGOT</u> respectively.

Table 38: Multivariate Tests<sup>a</sup> on ALKPHOS & SGPT between UCA & INDIA datasets

| Effect    |                    | Value | F        | Hypothesis | Error df | Sig. | Partial Eta | Noncent.  | Observed |
|-----------|--------------------|-------|----------|------------|----------|------|-------------|-----------|----------|
|           |                    |       |          | df         |          |      | Squared     | Parameter | Power    |
|           | Pillai's Trace     | .762  | 581.503b | 2.000      | 364.000  | .000 | .762        | 1163.006b | 1.000    |
| Intercent | Wilks' Lambda      | .238  | 581.503b | 2.000      | 364.000  | .000 | .762        | 1163.006b | 1.000    |
| Intercept | Hotelling's Trace  | 3.195 | 581.503b | 2.000      | 364.000  | .000 | .762        | 1163.006b | 1.000    |
|           | Roy's Largest Root | 3.195 | 581.503b | 2.000      | 364.000  | .000 | .762        | 1163.006b | 1.000    |
| GROUP     | Pillai's Trace     | .391  | 116.721b | 2.000      | 364.000  | .000 | .391        | 233.442b  | 1.000    |
|           | Wilks' Lambda      | .609  | 116.721b | 2.000      | 364.000  | .000 | .391        | 233.442b  | 1.000    |
|           | Hotelling's Trace  | .641  | 116.721b | 2.000      | 364.000  | .000 | .391        | 233.442b  | 1.000    |
|           | Roy's Largest Root | .641  | 116.721b | 2.000      | 364.000  | .000 | .391        | 233.442b  | 1.000    |

Significant value in table 38 is 0.000 that is multivariate analysis on ALKPHOS and SGPT which is less than 0.05 (p < 0.05) can safely reject the null hypothesis that indicates there is more significant difference between groups. Then we can say that populations differ a lot on ALKPHOS and SGPT.

Significant value in table 40 is 0.000 that is multivariate analysis on ALKPHOS and SGOT which is less than 0.05 (p < 0.05) can safely reject the null

hypothesis that indicates there is more significant difference between groups. Then we can say that populations differ a lot on ALKPHOS and SGOT.

|  | Table 39:Descriptive | Statistics | of ALKPHOS & SGOT |
|--|----------------------|------------|-------------------|
|--|----------------------|------------|-------------------|

|         | GROUP | Mean   | Std.      | N   |
|---------|-------|--------|-----------|-----|
|         |       |        | Deviation |     |
|         | 1     | 68.34  | 18.062    | 200 |
| ALKPHOS | 2     | 219.75 | 140.986   | 167 |
|         | Total | 137.24 | 122.039   | 367 |
|         | 1     | 25.99  | 11.289    | 200 |
| SGOT    | 2     | 40.69  | 36.412    | 167 |
|         | Total | 32.68  | 26.913    | 367 |

| Effect    |                    | Value | F        | Hypothesis | Error df | Sig. | Partial I | Eta | Noncent.  | Observed Power |
|-----------|--------------------|-------|----------|------------|----------|------|-----------|-----|-----------|----------------|
|           |                    |       |          | df         |          |      | Squared   |     | Parameter |                |
|           | Pillai's Trace     | .757  | 566.093b | 2.000      | 364.000  | .000 | .757      |     | 1132.186b | 1.000          |
| Intercent | Wilks' Lambda      | .243  | 566.093b | 2.000      | 364.000  | .000 | .757      |     | 1132.186b | 1.000          |
| intercept | Hotelling's Trace  | 3.110 | 566.093b | 2.000      | 364.000  | .000 | .757      |     | 1132.186b | 1.000          |
|           | Roy's Largest Root | 3.110 | 566.093b | 2.000      | 364.000  | .000 | .757      |     | 1132.186b | 1.000          |
|           | Pillai's Trace     | .385  | 114.136b | 2.000      | 364.000  | .000 | .385      |     | 228.271b  | 1.000          |
| CDOUD     | Wilks' Lambda      | .615  | 114.136b | 2.000      | 364.000  | .000 | .385      |     | 228.271b  | 1.000          |
| GROUP     | Hotelling's Trace  | .627  | 114.136b | 2.000      | 364.000  | .000 | .385      |     | 228.271b  | 1.000          |
|           | Roy's Largest Root | .627  | 114.136b | 2.000      | 364.000  | .000 | .385      |     | 228.271b  | 1.000          |

Significant value in table 42 is 0.000 that is multivariate analysis on SGPT and SGOT which is less than 0.05 (p < 0.05) can safely reject the null hypothesis that indicates there is more significant difference between groups. Then we can say that populations differ a lot on SGPT and SGOT.

Significant value in table 44 is 0.000 that is multivariate analysis on ALKPHOS, SGPT and SGOT which is less than 0.05 (p < 0.05) can safely reject the null hypothesis that indicates there is more significant difference between groups. Then we can say that populations differ a lot on ALKPHOS, SGPT and SGOT.

Table 41:Descriptive Statistics of SGPT& SGOT

|      | GROUP | Mean  | Std. Deviation | Ν   |
|------|-------|-------|----------------|-----|
|      | 1     | 25.99 | 11.289         | 200 |
| SGOT | 2     | 40.69 | 36.412         | 167 |
|      | Total | 32.68 | 26.913         | 367 |
|      | 1     | 29.82 | 21.845         | 200 |
| SGPT | 2     | 33.65 | 25.060         | 167 |
|      | Total | 31.57 | 23.408         | 367 |

All of our tables are related to 95 % significant levels. We did investigate with 99 % and 90 % significant levels also. They also supports the groups are different in all the three experiments.

Table 42: Multivariate Tests<sup>a</sup> on SGPT & SGOT between UCA & INDIA datasets

| Effect    |                    | Value | F        | Hypothesis | Error df | Sig. | Partial Eta | Noncent.  | Observed |
|-----------|--------------------|-------|----------|------------|----------|------|-------------|-----------|----------|
|           |                    |       |          | df         |          |      | Squared     | Parameter | Power    |
|           | Pillai's Trace     | .682  | 391.098b | 2.000      | 364.000  | .000 | .682        | 782.195b  | 1.000    |
| Intercont | Wilks' Lambda      | .318  | 391.098b | 2.000      | 364.000  | .000 | .682        | 782.195b  | 1.000    |
| intercept | Hotelling's Trace  | 2.149 | 391.098b | 2.000      | 364.000  | .000 | .682        | 782.195b  | 1.000    |
|           | Roy's Largest Root | 2.149 | 391.098b | 2.000      | 364.000  | .000 | .682        | 782.195b  | 1.000    |
|           | Pillai's Trace     | .087  | 17.344b  | 2.000      | 364.000  | .000 | .087        | 34.689b   | 1.000    |
| CROUD     | Wilks' Lambda      | .913  | 17.344b  | 2.000      | 364.000  | .000 | .087        | 34.689b   | 1.000    |
| GROUP     | Hotelling's Trace  | .095  | 17.344b  | 2.000      | 364.000  | .000 | .087        | 34.689b   | 1.000    |
|           | Roy's Largest Root | .095  | 17.344b  | 2.000      | 364.000  | .000 | .087        | 34.689b   | 1.000    |

This study confirms the difference in liver patients of USA and India. Results of this study is very important while developing automatic medical diagnosis systems as it corroborates the necessity of localization of the software based on the geographical region. Also, liver specialists to be aware about these geographical differences among liver patients and prescribe any drugs accordingly.

#### Table 43:Descriptive Statistics of ALKPHOS, SGPT & SGOT

|         | GROUP | Mean   | Std. Deviation | Ν   |
|---------|-------|--------|----------------|-----|
| SGOT    | 1     | 25.99  | 11.289         | 200 |
|         | 2     | 40.69  | 36.412         | 167 |
|         | Total | 32.68  | 26.913         | 367 |
| SGPT    | 1     | 29.82  | 21.845         | 200 |
|         | 2     | 33.65  | 25.060         | 167 |
|         | Total | 31.57  | 23.408         | 367 |
| ALKPHOS | 1     | 68.34  | 18.062         | 200 |
|         | 2     | 219.75 | 140.986        | 167 |
|         | Total | 137.24 | 122.039        | 367 |

#### Table 44: Multivariate Tests<sup>a</sup> on ALKPHOS, SGPT & SGOT between UCA & INDIA datasets

| Effect    |                    | Value | F        | Hypothesis | Error df | Sig. | Partial Eta | Noncent.  | Observed |
|-----------|--------------------|-------|----------|------------|----------|------|-------------|-----------|----------|
|           |                    |       |          | df         |          |      | Squared     | Parameter | Power    |
| Intercept | Pillai's Trace     | .772  | 409.233b | 3.000      | 363.000  | .000 | .772        | 1227.699b | 1.000    |
|           | Wilks' Lambda      | .228  | 409.233b | 3.000      | 363.000  | .000 | .772        | 1227.699b | 1.000    |
|           | Hotelling's Trace  | 3.382 | 409.233b | 3.000      | 363.000  | .000 | .772        | 1227.699b | 1.000    |
|           | Roy's Largest Root | 3.382 | 409.233b | 3.000      | 363.000  | .000 | .772        | 1227.699b | 1.000    |
| GROUP     | Pillai's Trace     | .407  | 83.103b  | 3.000      | 363.000  | .000 | .407        | 249.308b  | 1.000    |
|           | Wilks' Lambda      | .593  | 83.103b  | 3.000      | 363.000  | .000 | .407        | 249.308b  | 1.000    |
|           | Hotelling's Trace  | .687  | 83.103b  | 3.000      | 363.000  | .000 | .407        | 249.308b  | 1.000    |
|           | Roy's Largest Root | .687  | 83.103b  | 3.000      | 363.000  | .000 | .407        | 249.308b  | 1.000    |

# 5. Conclusions

In this study, the common attributes of the two data sets ALKPHOS, SGPT and SGOT are taken for Oneway Analysis of Variance (ANOVA) and Multivariate Analysis of Variance (MANOVA). The analysis on data sets are in three ways. Experiment 1 shows that there exists more significant difference in the groups with all the possible attribute combinations. Experiment 2 also shows that there exists more significant difference in the groups with all the possible attribute combinations. Experiment 3 shows

www.IJCSI.org

that there exists more significant difference in the groups with all the possible attribute combinations except analysis on SGPT between non liver patients of UCI and INDIA data sets that indicates there is no significance difference between groups on SGPT for non liver patients of USA and INDIA.

#### 6. Acknowledgements

The authors would like to thank Dr. S. Sridhar, Dr. Bevera Lakshmana Rao, K. Ravi Kanth and B. Sai Prasad for providing the data.

#### 7. References

[1].Bendi Venkata Ramana, Prof. M.Surendra Prasad Babu and Prof. N. B. Venkateswarlu:" A Critical Study of Selected Classification Algorithms for Liver Disease Diagnosis". In Proceedings of the International Journal of Database Management Systems (IJDMS), Vol.3, No.2, pages 101-114, May 2011.

[2]. Bendi Venkata Ramana, Prof. M.Surendra Prasad Babu and Prof. N. B. Venkateswarlu:" "A Critical Evaluation of Bayesian Classifier For Liver Diagnosis Using Bagging and Boosting Methods", International Journal of Engineering Science and Technology (IJEST), Vol.3, No.4, pages 3422-3426, April 2011.

[3]. Bendi Venkata Ramana, Prof. M. S. Prasad Babu and B. R. Sarath Kumar: "New Automatic Diagnosis of Liver Status Using Bayesian Classification", IEEE International Conference on Intelligent Network and Computing (ICINC 2010), pages V2-385-V2-388, Kuala Lumpur, Malaysia, 26-29 Nov 2010.

[4]. BUPA Liver Disorders Dataset. UCI repository of machine learning databases. Available from ftp://ftp.ics.uci.edu/pub/machine-learningdatabases/ liverdisorders/bupa.data, last accessed: 07 October 2010.

[5].  $2^{nd}$  edition "Statistical Methods for Practice and Research" A guide to data analysis using SPSS by Ajai S Gaur

[6].16th Edition HARRISON'S PRINCIPLES of Internal Medicine

[7]. Mireille Tohm'e, R'egis Lengell'e and Virginie Freytag:" A multi class multivariate Mireille group comparison test: Application to drug safety". In Proceedings of the 32nd IEEE International Conference on EMBS, 2006, pages 4711-4714, September 4, 2011.

[8]. Junning Li, Z. Jane Wang and Martin J. McKeown: "A Framework for Group Analysis of fMRI Data using Dynamic Bayesian Networks". In Proceedings of the 29th IEEE International Conference on EMBS pages 5991-5994, August 2007. [3].

[9]. Neven Cukrov, Nataša Tepi, Dario Omanovi, Sonja Lojen, Elvira Bura-Naki,Vjerocka Vojvodi and Ivanka Pižeta : "Anthropogenic and Natural Influences on the Krka River (Croatia) Evaluated by Multivariate Statistical Analysis". In Proceedings of the 31st IEEE International Conference on Information Technology Interfaces pages 219-224, June 2009. [11]. Z. A. Dastgheib, B. Lithgowand Z. Moussavi: "Application of Fractal Dimension on Vestibular Response Signals for Diagnosis of Parkinson's Disease". In Proceedings of the 33rd IEEE International Conference on EMBS, pages 7892-7895, September 2011.

Conference on Sensors, pages 771-774, 2010.

[12]. S. Dimitrova: "Investigations of Some Human Physiological Parameters in Relation to Geomagnetic Variations of Solar Origin and Meteorological Factors". In Proceedings of the 2nd IEEE International Conference on Recent Advances in Space Technologies, pages 728-733, 2005.

[13]. Paulo Ricardo Galhanone, David Martin Simpson, Antonio Fernando C. Infantosi Eduardo Faveret, Maria Alice Genofre, Helio Bello and Leonard de Azevedo : "Multivariate Analysis of Neonatal EEG in Different Sleep Stages:Methods and Preliminary Results". In Proceedings of the 17th IEEE International Conference on Engineering in Medicine and Biology Society, vol 2, pages 1021-1022, 1995.

[14]. Diego Moitre, and Fernando Magnago : "Multivariate Analysis of Variance Applied to Competitive Electricity Markets: The Fixed Effects Model ". In Proceedings of the IEEE International Conference on Power Engineering Society General Meeting, pages 1-7, 2007.

[15]. B.Surendiran, Y.Sundaraiah, A.Vadivel: "Classifying Digital Mammogram Masses using Univariate ANOVA Discriminant Analysis". In Proceedings of the IEEE International Conference on Advances in Recent Technologies in Communication and Computing , pages 175-177, 2009.

[16]. Martha L. Zequera, Leonardo Garavito, William Sandham, Jorge A. Alvarado, Ángela odríguez, Carlos A. Wilches, Ana C. Villa, Shirley V. Quintero and Juan C. Bernal: "Assessment of the effect of time in the repeatability of the stabilometric parameters in diabetic and non-diabetic subjects during bipedal standing using the LorAn pressure distribution measurement system". In Proceedings of the 33rd IEEE International Conference on EMBS, pages 8531-8534, September 2011.

[17]. Benjamin F. Merembeck and Brian J. Turner: "Directed Canonical Analysis and the Performance of Classifiers Under Its Associated Linear Transformation". In Proceedings of the IEEE Transactions on Geoscience and Remote Sensing, Vol. Ge-18, No. 2, pages 190-196, April 1980.

[18]. IBM Statistical Package for the Social Sciences (SPSS) 20.00: IBM® SPSS® Statistics.

[19]. Aleksandar Jeremic, Timothy A. Thomas, and Arye Nehorai: "OFDM Channel Estimation in the Presence of Interference". In Proceedings of the IEEE Transactions on Signal Processing, vol 52, pages 3429-3439, 2004.