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Abstract 

In this paper a rigorous analysis of the Transverse Operator 
Method (TOM) followed by the application of the Galerkin 
method, is developed for studying the propagation in a 
rectangular metal waveguide filled with anisotropic metamaterial. 
The wave equation and the dispersion relations for guided and 
evanescent modes in the guide are obtained and analyzed. The 
higher order modes are exploited. The numerical results are 
obtained and compared to theoretical predictions. Numerical 
examples show the validity of this method. Anisotropic 
metamaterials found important industrial applications such as 
circulators, isolators, phase shifters and antennas. 
Keywords: Galerkin method, Higher order modes, Rectangular 
waveguide with anisotropic metamaterial, Transverse operator 
method. 

1. Introduction 

Double negative materials (DNG) with negative 
permittivity and permeability, enjoy a growing interest, 
especially because of their physical properties that are 
different from those of conventional double positive 
materials (DPS). Veselago [1] was the first to study 
theoretically the DNG materials. Different aspects of this 
class of metamaterials have been studied eg in [2-3]. 
Interesting features of the guided modes in waveguide 
filled with two parallel planes materials DPS and DNG 
have been studied in [4-8]. [9] and [10] have studied the 
propagation in waveguides to metamaterials. 
In this paper, we present an analysis of the propagation in 
rectangular metal waveguides completions filled with 
anisotropic metamaterial (Fig. 1) using the TOM followed 
by the Galerkin method. Numerical examples are given by 
exploiting the higher order modes in these types of 
structure. The results are compared to those of 
conventional double positive materials (DPS). 
MOT [11] takes into account the spatial distribution of the 
permittivity and permeability of media and therefore, 
discontinuities of the latter which is applied to the 
transversal field. This method is applicable to various 

structures, homogeneous or inhomogeneous isotropic or 
anisotropic. The convergence of constant propagation of 
the studied structure is fast. It is obtained for N = 15 
modes. 

2. Analysis 

2.1 The transverse operator method 

In a rectangular coordinate system, we consider a metallic 
rectangular waveguide of width a and high b as shown in 
figure 1, comprising an anisotropic medium characterized 
by a permittivity and relative permeability tensor given by 
the equation (1) and (2). 
 

 
Fig. 1 Configuration of the rectangular waveguide completely filled with 

anisotropic metamaterial 
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Maxwell's equations are written: 

rjErot µωµ0 −= . H                                         (3) 

rjHrot εωε 0 = . E                                              (4) 

Considering a propagation along Oz, we have: 

( , , ) ( , ).exp( )t zx y z x y jk zΦ = Φ −                     (5) 

with 
'[    ]t

t t tE HΦ = , HjH ./ 00
' εµ=                 (6) 

tΦ : Represents the transverse components of the 

electromagnetic fields, ω  is the angular frequency, 0k  

and 0Z  are respectively; the propagation constant and the 

characteristic impedance of free space. 
By eliminating the longitudinal components of 
electromagnetic fields, (3) and (4) can be written [11]: 

ˆ
t z tL jηΦ = ∂ Φ                                                        (7) 

L̂  is the transverse operator defined by: 
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t∂  is the transversal operator and t
+∂  is its adjoin 

operator. 
The longitudinal components are related to the transverse 
fields by: 

0
'' /// kEHH zzttzztztz µµµ +∂+−=               (14) 

0
' /// kHEE zzttzztztz εεε +∂+−=                 (15) 

The above mentioned relations are valid for solving 
problems in inhomogeneous media guide with, isotropic or 
anisotropic and dissipative. 
Analyzing the case of anisotropic metamaterials diagonals 
such as: 
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These conditions lead to that 0ˆˆ
2112 == LL . As a result 

the equation (7) becomes 
'

220
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ttz ELjH 110
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That L̂  is independent of z, by deriving the system (18) 
and (19) with respect to z, we obtain two decoupled 

equations in tE  and '
tH .  
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In these expressions: 
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The decoupled equation  with tE  becomes: 
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Equation (24) is an eigenvalue equation. 

The decomposition of the fields TE
ur

 on a complete system 

provides an eigenvalue. The terms of transverse fields, 

satisfying the boundary conditions ( 0TE = , for 0x =  

or a , 0y =  or b ) can be written in the following forms 
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We note: 
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2.2 Application of the Galerkin method 
 
We have: ax ≤≤0    ; by ≤≤0 . 

One can choose the following test functions 
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they can be written in the following matrix form 
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The system (38) can be written 

TT EIkEH ⋅⋅=⋅ 2                           (40) 

I is the identity matrix. H is a square matrix of order 
2( 1)N −  with N = mn: number of modes; m and n are 

natural numbers, such as: ( , ) (0, 0)m n ≠ . 

 
The eigenvalues and the proper vectors of H are 
respectively the propagation constant and the coefficients 
of development of the field of the guide. 
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3. Simulation Results 

3.1 Waveguide No. 1 

Consider No. 1 a metal square waveguide: side a = b = 12 
mm [2] completely filled with metamaterial. 
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Fig. 2 Dispersion curves of the guide No. 1:  

(a) empty guide;  
(b) guide filled with isotropic metamaterial where, 

1rx ry rzε ε ε= = −= , 1rx ry rzµ µ µ= = −= ,  

(c) guide filled with anisotropic metamaterial where 

1rx ry rzε ε ε= = −= , 1rx ryµ µ == , 1rzµ = − . 

3.2 Waveguide No. 2 

Consider No. 2 a metal rectangular waveguide: a = 35 mm 
and b = 15mm [2] completely filled with metamaterial. 
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 (c) 

Fig. 3 Dispersion curves Guide No.2: 
(a) empty guide, 

(b) guide filled with isotropic metamaterial where 

1rx ry rzε ε ε= = −= , 1rx ry rzµ µ µ= = −= , 

(c) guide filled with anisotropic metamaterial where 

1rx ry rzε ε ε= = −= , 1rx ryµ µ == , 1rzµ = − . 
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On the one hand we notice that there is a spread in the 
guides completely filled with metamaterial (DNG) 
isotropic. On the other hand, the cutoff frequencies of 
isotropic metamaterial guides change over the same guide 
vacuum. 
 
Among the particularities of this anisotropic material, the 
backward and forward waves can both propagate below the 
cutoff frequency in the guide. The numerical results 
obtained in this paper are agree with the references [2] and 
[5] which validates our numerical calculations. 

4. Conclusions 

With the formalism of the TOM, we presented a rigorous 
study of propagation in homogeneous anisotropic media 
using the tensor character of the permeability and 
permittivity. With the application of the Galerkin method 
we have studied the evanescent and propagating modes in 
rectangular guides filled with isotropic or anisotropic 
metamaterial. Comparisons to guides containing a 
conventional dielectric are exploited. 
 
The advantages of the techniques used in this paper lies in 
the proper analytical formulation of the problem studied on 
the one hand and the speed of convergence on the other. 
This type of materials known as metamaterial is widely 
used and needed by industries and information technology, 
especially in microwave and RF devices such as patch 
antennas, the antennas waveguides, resonators, circulators, 
isolators, phase shifters ... 
 
TOM offers a fast convergence of the propagation 
constant. This shows the effectiveness of our numerical 
model. As such, the formulation of the transverse operator 
could be a useful tool for microwave engineers. 
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