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Abstract

This paper considers linear programming problem whose
objective function is fuzzy numbers vector. In order to solve this
problem, we first present a new definition of comparative
relation on the set of fuzzy numbers. Based on this definition, we
state a method to compare fuzzy numbers directly and then, by
the related theorems and lemmas, we build an algorithm to solve
fuzzy presented problem.
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1. Introduction

The problem of linear programming (LP) can be written
as:

Min/Max z=CX
st. AX <B
X eR!
in which:
- The vector of coefficients of the objective function:
C=(c,C,,...C,)eR";
- The vector of variables: X =(x,,X,,...X,) €R" i.e
X;eR, x;20, j=12,..n;
- The matrix Ais the mxn matrix of coefficients of the
left-hand sides of the equalities:

8, Qp . 3
A_|B B o B
a, a a

ml m2 mn

- The vector of right-hand sides of the equalities:
B=(b,b,,..b,) €R".

According to conventional approach, all the coefficients of
LP must be defined clearly. However, the data in practical
problem may only be uncertainly estimated so they are
possible to be characterized with fuzzy numbers. That LP,
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in which at least one coefficient is a fuzzy number, is
called fuzzy linear programming problem.

In this paper we consider a linear programming problem in
which the coefficients defining the objective functions are
given as fuzzy numbers. The aim of this paper is to
propose a new definition of comparative relation on the set
of fuzzy numbers. By a comparative relation and the
related theorems and lemmas, fuzzy problem is
transformed into crip linear programming problems and
then it will be settled by available tools such as Lingo or
Solver.

This paper is organized in 5 sections. In section 2, we first
repeat the basic definitions of fuzzy number, triangle fuzzy
number and fuzzy arithmetic operations. After that, we
build the definitions of comparative relation on the set of
fuzzy numbers. Based on this definition, we introduce a
method to compare the two fuzzy numbers.

In the section 3 of this paper, we present the model of
linear programming problem with the coefficients of
objective function that is represented by the triangular
fuzzy numbers and show the algorithm to transform
solving this problems into crip linear programming
problems based on the related theorems and lemmas.

In section 4, algorithm is illustrated by solving two
numerical examples and conclusions are drawn in section
5.

2. Preliminaries

Definition 2.1 ([3], [4], [5]):

We represent an arbitrary fuzzy number by an ordered pair

of functions (g(r), ﬁ(r)) , 0<r<1, which satisfy the

following requirements:

e u(r) is a bounded left continuous non-decreasing
function over [0,1];
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o G(r) is a bounded left continuous non-increasing
function over [0,1];

e u(r),u(r) are right continuous in 0;

e u(r)<u(r), 0<r<1.

A crip number  is simply represented by u(r) =u(r) =
, 0<r<1.
The set of all arbitrary fuzzy numbers is denoted by FN.

Definition 2.2 ([3], [4], [5]): For arbitrary fuzzy numbers
X =(x(r), x(r), ¥=(y(r), y(r)) and real numberk , we

may define the addition and the scalar multiplication of
fuzzy numbers by using the extension principle as:

o X+§=(X(r)+y(r), x(r)+y(r).
i _ (XX, k20
o kx=9 _
(kx(r),kx(r)), k<0.

o X=¥=(x(r)-y(r),x(r) - y(r)).

Definition 2.3 ([3], [4], [5], [6]): Two fuzzy numbers
X = (x(r), x(r)) , y = (y(r), y(r)) are equal, i.e, X=y if
and only if: x(r) :X(r) and >_((r) =§/(r), 0<r<1.

Lemma2.l: Let x,yeR,if x=ythen x=y.
Proof: Proof is clear.
Afterwards, if X =y then we write X =y , in brief.

Definition 2.4 ([4], [6]):

The fuzzy number a =(a—a+ar,a+ - pr); 0<r<1,
a,a,feR and «,B>0 is called Triangular Fuzzy
Number with core a, lower limit a—¢ and upper limit

a+p.

Symbolically, we write a = (a;«, ) where a and S are
called left and right spread of a , respectively.

A crip number b is simply represented by (b;0,0).

Let TFN be the set of all Triangular Fuzzy Number.

Let a=(a;a,B), b=(;y,4)eTFN and keR . Then,
the result of applying the definitions 2.2 and 2.3 on TFN
as shown in the following:

- Addition: 3+b =(a+b;a+y,B+1).
- Scalar Multiplication:
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- {(ka; ka,kB), k=0,
(ka,~kB,—ka), k <O0.
-Imageof a: —-a=(-a4,a).
- Subtraction: 3 —b =4 + (—5) .
- Equality: a=b if and only if a=band a=y and
B=A.

A key question that may be encountered in solving LP
with fuzzy number in the objective function is that how to
find the optimal value. The answer is related to the
problem of ranking fuzzy numbers.

A simple approach to ordering of the elements of FN is to
use a ranking function g(.): FN — R which maps each

fuzzy number into the real line, where a natural order
exists, and defining order on FN by:

e g@)< 9(5)35 is less than b :
e g(a)> g(B) = a is greater than b:
e g(@)=g(b)=3isequaltob .

Many ranking functions have been proposed so far. For
any arbitrary fuzzy number a = (a(r),a(r)), L. Alizadeh,

T.Allahviranloo, F. Hosseinzadeh Lotfi, M. Kh. Kiasary
and N. A. Kiani [4] use ranking function:

9@ =1/2] @m)+[ ().
For triangular fuzzy number a = (a;«, ), this is reduced
to g@@)=a+1/4(a+p).

In [6], Behrouz Kheirfam presented:

9(@@) = (a—a)+2a+(a+p) :a+'B_a .

4 4

In spite of being expressed in many different formulas,
these ranking functions are in contradiction with the
definition about equality of fuzzy numbers (def. 2.3). For
example, with two triangular fuzzy numbers X = (15;1,5)

and y=(1419) we have X=Yy by using ranking
functions not only presented in [4] but also in [6]. This
result contradicts the definition 2.3, in which if X =y if

and only if x(r) = y(r) and x(r) =y(r).

In this article, we want to find a way to compare fuzzy
numbers directly too. It should be noted that, if discovered
then FN becomes a total ordered set. In the case of crip
sets, that means for every pair x and y has a total ordered
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relation. In the case of fuzzy number set, we think, it has a
comparative relation. So we build the following definition:

Definition 2.5: Comparative Relation
A binary relation W on FN is a comparative relation if it
satisfies the following requirements:

a. vé{,Ee FN we have the usual trichotomy condition
that exactly one of: 555 OR 556 OR &=b holds; in

which é‘éﬁ means that (& is smaller than b ) OR (b

is greater than a ) in structure (FN,¥) . (totality)

b. Let 555 if and only if 5$5 OR d=b . We have
va e FN ,5%5 : (reflexivity)

c. Va,beFN, 5%5 and 5%5 imply that & =b i.e.
a(r)=b(r)and a(r)=b(r), 0<r<1;
(antisymmetry)

d. va,band CeFN, a<b and b% imply that 5%6;
(transitivity)

e. Va,beR, if a®b then a@bwhere 0={<,<=>2>}

(compatibility with order relatlon on the set of real
number).

l:~)=(b;7,/1) are triangular fuzzy
numbers (5,5 eTFN). Let®R is binary relation on TFN (
R < TFN?) where 5§6 will be defined by :

1. a<b

or
2.a=band p<A

or
3.a=band g=1and a<y

Suppose a = (a;a, ) ,

Theorem 2.1: R is a comparative relation on TFN.
Proof: The theorem will be demonstrated by the
following lemmas:

Lemma 22: For any a=(aa,p), b= (b;7,A) e TEN
exactly one of the three statements a<b d=b,a>b

RN
holds.
Proof: See figure 1:
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Input: a,«, B,b, 7,4
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Fig. 1 The totality of ‘R .
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Lemma 2.3:
- If(é‘gb)then a<b.

-|f(a§6and a=b)then f<A.
—If(é‘gﬁand a=band f=1)then a<y.

Proof: Proof is clear.

Lemma 2.4: The relation %satisfies three properties

reflexivity, antisymmetry and transitivity.
Proof:
- Itisclearthat a<a (reflexivity).

- Consider any pair a,b eTFN where §§5and 5%5

+ Based on lemma 2.3, we have: Eéﬁzasb and
5%5 = b < a. This establishes that a =b .

+ From 5%5 and a=b= <A . Similarly, with
Biaand b=a= A< pB.Thisimpliesthat 1=2.

+ From 5%5 and a=band f=1= a<y. On the

other hand, from 5%5 and b=a and A=f=>y<a.

Thenwe havey = .
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Thus, from assumption a<b and b <a we have shown
R R

that a=band a=yand B=A.Consequently, a = b
(antisymmetry).

- Suppose that 5%5 and 5%5 where ¢ =(c;w,&) e TFN .

By using the lemma 2.3, we have the inequality a<b<c.
This implies that a<c¢ or a=b =cholds.
+ Case 1: If a<c then EéE.

+ Case 2: If a=b=c. Based on the lemma 2.3, we
have g<A<& . We also consider separately the

following two cases: (2.1) S <& and (22) f=1=¢&.

* Case 2.1: If B<£&. From a=cand f<¢& we
have 5§E.

* Case 2.2: If p=A1=¢&. According to the lemma
2.3, we have f<A<¢&, so that B<& or B=A=¢.
Hence 5%6.

And so we would say, in summary, if 5%5 and B%Ethen

5%6 (transitivity). Proof is completed.

Lemma 2.5: R is compatible with the order relation on
set of real numbers.
Proof: Proof is clear.

From lemmas 2.2, 2.4 and 2.5 we have R that is a
comparative relation on TFN (Q.E.D).

3. Fuzzy linear programming problem

In this section, we present an application of comparative
relation to solve linear programming problem where C is
the vector of triangular fuzzy numbers. Based on the
properties of comparative relation R , fuzzy problem is
transformed into crip problems. After that, they will be
settled by available tools such as Lingo or Solver.

Definition 3.1: A linear programming problem where the
objective function is represented by triangular fuzzy
numbers and maximum in accordance with R is defined
as follows:

Max 7= CX
st. AX{<,=2B () (FLP)
XeR" (2

which C = (&,..&,) eTFN"; €, = (c;;a;. 5,)
j=12,...n
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Lemma3.1: LetC =(c,,...¢,) e R", ® =(cy,...,) €eR"
and Q=(4,,...,3,)eR" is core, left spread and right

spread vector of C respectiverly. We have:
Z =CX = (CX;®X,QX).
Proof:

- n
7=CX =)CX; =CX +CpX, +..+C,X,

j=1

= (Cl' al!ﬂl)xl +..+ (Cn;an!ﬂn)xn

= (Clxl;alxll ﬁlxl) +..+ (Cnxn;anxnlﬂnxn)

=(CX +..HC XX + .+ o X, S .+ BX)

=(Zn‘,0,-xj;Zn‘,a,-xj,Zn:ﬂ,—xj) = (CX; DX, 0X) (Q.E.D).

Definition 3.2: We say that vector X = (X, X,,....x,)" is a

feasible solution to (FLP) if X satisfies the constraints (1)
and (2) of the problem (FLP).

Definition 3.3: A feasible solution X~ = (X, X;,...X,)" is
an optimal solution for (FLP), if for all feasible solutions
X', we have 7, =CX% Z,.=CX".

Z,-is called the optimal value for (FLP) and also written
as Zyp -

Definition 3.4: The following are core, right spread and

left spread problems of (FLP), called (1), (I1) and (I1I) for
short:

Max z, =CX
st. AX{<,=>B () 0
XeR" (2
and
Max z, =0X
st.  AX{g,=>|B (@) n
XeR" (2
CX=z (3
where z; is the optimal value of (I) and
Max z, =0X
st. AX{,=>|B (1) -~
XeR" (2
CX=z, (3
QX =z, (4)

where z, is the optimal value of (11).
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Let Sq;.S,,S,,S; be the set of feasible solutions;
E--,E, E,, E; be the set of optimal solutions for (FLP),
(D), (1) and (111) respectiverly.

Remark 3.1: The inclusive relation between the set of
feasible solutions and the set of optimal solutions:

- Brp S Spip

-E cS;.

-E,cS,.

- E cS;.

Lemma 3.2::
- Sep =9
-S,=E.
-S,=E,.
Proof: Proof is clear.

Theorem 3.1:
a. Egp cE.

b. Efr cE,.
Proof:

a. In order to prove E.,, < E, we consider the following
two cases separately:
-Case 1. E;, = . Itisclear that E;, c E,.

-Case 2: Eqp, #0.Since Eqp = Spp = Spp 29D

+ Let X;p,e€Eqp and Xqp,€Sg, . By using
definition 3.3 and lemma 3.1 we have Z, %ZX* That

means (CXFLP;q)xFLP7QXFLP)%(CX;LP;Q)X;LP'QX;LP) -

Based on lemma 2.3, we have CX, <CX/» (i)

+ On the other hand, by remark 3.1 and lemma 3.2 we
have X p €Epp CSep=S,; Xpp €Spp =S, . That
means both X/ ,va X, are feasible solutions for (1) (ii)

+ From (i) and (ii) we have X/, is an optimal solution

for (1), thus X;, € E, which implies that E., cE, .
(QED)

b. Similarly, in order to prove E., < E,, we have to show

that WX/, € E., then X/, €E, .

following cases:
-If Efp =9 =Eq, cE,.

-If Epp #@=3Xpp €Egpp .

Consider the two

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

+ As shown above, we have X;, € Eq, cE, =S,,s0
Xip €S,and S, =@, (iii).

+ Consider a feasible solution to (lI): X, eS,, we
have CX, =z, .

+ By remark 3.1 and lemma 3.2 we have:
X,€S,=E S, =Sg, S0 X, €S . Besides, X is
an optimal solution for (FLP) therefore Z,_ %Zx;w which
means that:

(CXZ;CDXZ’QXZ)%(CX;LP;QX;LP'QX;LP)

or

(2110 ) S K Oy ).

Thus QX, <QX; ., (iv) by using lemma 2.2.
+ By (iii) and (iv) we have X, is an optimal solution
for (1), that is, X/, € E, (Q.E.D).

Corollary 1:
-If E, =Othen E., =C.

-If E,=Jthen B, =O.

Theorem 3.2: E., =E;.
Proof: This theorem will be proved by showing that
Erp cEsand By c Eppp

a. Proof E;», c E,
-If E;p, =. Obviously E;, c E,
-If Eqp 2D Let X7 p €Eppp -

+ By theorem 3.1 and lemma 3.2, we have
Xewp € Epp € E; =85,50 Xppp €55 (V)

+ Now if X, €S, then X, have to satisfy constraints
(3) and (4) so that CX, =z, and QX, =z, .

because Xr,, €S, s0 CXp =2, and QX7 =12,.

+ On the other hand, by lemma 3.2 and remark 3.1, we
have: X,e€S,=E,<S,=E S, =S, . That means
X, is a feasible solution of (FLP). Hence ZX3§EX* or

Similarly,

(CX3;®X3,QX3)§(CXELP;QDX,*:LP,QX’F“LP) which means
(zl*;CDX3,z;)§(zf;(DX,’ZLP,z;). So dX, <DX;, (Vi) by
lemma 2.2

+ From (v) and (vi), we have X/, is an optimal

solution of (I11), so that X7, € E, hence E,  E, and
proof is completed.
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b. Proof E, ¢ Eq»

-If E, =0 = E; cEqp.

-If E, #Q. Let X, € E;. We know that X; e E, =S, s0

CX; =12z and QX; =z,.
+ By lemma 3.2 and remark 3.1 we have:
X,eE,cS,=E,cS,=E S, =S.5-
So X, is a feasible solution of (FLP) .  (vii)
+ Now if X, €Sq . We have:
ZXRP = (CX o OX o, X i)
Z,. = (CX3;®X;,QX3) = (z;;®X;,2;) -
Consider the following two cases separately:

* Case 1! Xpp &Epp =CXpp<z . By the
definition about %, we have 7, <'z'X;. From (vii) and
definition 3.3, we have X, is an optimal solution of (FLP),
S0 X; € Epp-

* Case 2: Xgp €Eqp . Using theorem 3.1 and
lemma 3.2 E.,cE , we also have X ,€E , so
CXpp =2, =CX; . Now X, €E =S, then X is a
feasible solution of (I1). We continue to divide into two
cases when X, isorisn't an optimal solution of (I1).

.Case 2.1: If X;p, e E, = QX p =27,. By lemma
3.2 Xpp €E, =S;,50 X, is a feasible solution of (I11).

Hence, ®X, <®X, and

E~><FU, = (CXe1p; DX o, QX )

= (Z]T;(DXFLP’Z;)%((ZI;CDX;’Z;) =Z,.

Because X, is a feasible solution of (FLP) (by vii),
from the above inequality, we have X is an optimal value
of (FLP), that means X, € Eq 5 .

Case 2.2: If Xpp 2E, >OXpp <2z, . By the
definition about % ,we have Z, <Zx; Since, by (vii)
X, is a feasible solution of (FLP), so X, is an optimal

solution of (FLP), that means X, e E., and proof is
completed.

By theorems 3.1 and 3.2, we build the following algorithm
to solve the problem (FLP):

Input: A,B,C~:
Output: Egp\ Zpip
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Algorithm

Stepl: Solving the problem (1) to find out the set of
optimal solution E,

-If E, = then E, = and jump to step 4.

- If E, # @ then saving the optimal value z,
Step 2: Solving the problem (I1) to find out the set of
optimal solution E,

-If E, =D then Eg, =< and jump to step 4.

- If E, # @ then saving the optimal value z,
Step 3: Solving the problem (111) to find out the set of
optimal solution E,

-If E; =Y then E., =& and jump to step 4.

- If E;#@ then saving the optimal value z; and
Erp =E;.
Step 4:

- If E, =9 then conclude (FLP) has no optimal
solution.

-Else: Eqp =E, and 7" =(2,;2;,2,)

Remark 3.3:
- The above algorithm can be finished at step 1 as soon as
we determine that the problem (I) has only one optimal

solution: E; =X, and X, is the optimal solution of

(FLP)
- Similarly, when the problem (11) has only one optimal
solution then we can finish the above algorithm at step 2.

Remark 3.4: The above proofs for the case minimization
analogues.

4. lllustrative examples
Example 4.1: Production Planning

The Quality Furniture Corporation produces benches and
picnic tables. The firm has two main resources: its labor
force and a supply of redwood for use in the furniture.
During the next production period, 1200 labor hours are
available under a union agreement. The firm also has a
stock of 5000 pounds of quality redwood. Each bench that
Quality Furniture produces requires 4 labor hours and 10
pounds of redwood; each picnic table takes 7 labor hours
and 35 pounds of redwood.

The profit of each completed product is predicted in 3
situations: Most Optimistic (MO), Most Likely (ML) and
Most Pesimistic (MP) and shown below. How many of
benches and tables should be produced to maximize the
total profit?
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Profit ($) and we have z; = 756
MP ML MO
Bench 6 9 11 .
- Step 4:
Table 16 20 22 °p

Let x, be the number of benches and x, is the number of

tables to produce. We use triangular fuzzy numbers to
represent the profit of each product where ML, MP, MO
are core, lower limit and upper limit, respectively. For

example, the profit of bench (C~:1) in ML, MP, MO is 9, 6,
11 then core (61) =9; lower limit (61) =6, upper limit (61)
=11 so left spread (61) = 3 and right spread (51) =2. Thus
C,=(932).

Then we have the following problem:

Maximize Profit Z = (9;3,2)x, + (20;4,2)x,
subject to:
Labor: 4x, + 7x, <1200 hours

Wood: 10x, +35x, <5000 pounds
X, X, 20, interger

- Step 1: Consider the core problem (problem (1)):
Max  z; =9x, +20x,

4x,+ 7x, < 1200
st. 10x, + 35x, < 5000
X, X, =20, interger

Using the Excel Solver, we find z, = 3180

- Step 2: Consider the right spread problem (problem (I1)):
Max  z, =2X +2X,
4x, + 7x, < 1200
10x, + 35x, < 5000
X, X, 20, integer
9x, + 20x, = 3180

Solving the above problem, we get z, = 428.

- Step 3: Now we consider left spread problem:
Max  z, =3x +4X,
4x, + 7x, < 1200
10x, + 35x, < 5000
st. X, X, 20, integer
9x, +20x, = 3180
2%, + 2X, =428

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

+ Optimal value: (3180;756,428)
+ Optimal solution: x, =100,x, =114

Example 4.2: Blending problem

Consider the example of a manufacturer of animal feed
who is producing feed mix for dairy cattle. In our simple
example, the feed mix contains two active ingredients and
a filler to provide bulk. One kg of feed mix must contain a
minimum quantity of each of four nutrients as below:

Nutrient| A B C D

gam | 90 50 20 2

The ingredients have the following nutrient values and
cost, where cost is estimated in 3 situations: MO, ML, MP:

Ingredient Cost/kg
gramkg) | A B C D |MO ML MP

1 100 80 40 10]35 40 50

2 200 150 20 - |50 60 65

What should be the amounts of active ingredients and filler
in one kg of feed mix?

In order to solve this problem it is best to think in terms of
one kilogram of feed mix. That kilogram is made up of
three parts - ingredient 1, ingredient 2 and filler so let:

X, = amount (kg) of ingredient 1 in one kg of feed mix
X, =amount (kg) of ingredient 2 in one kg of feed mix
X, = amount (kg) of filler in one kg of feed mix

where X, X,, %, =0

As shown above, we use triangular fuzzy number to
represent the cost of each ingredient, so this problem is
formulated to the following FLP:

Min 7., =(40;5,10)x, + (60;10,5)x,
100x, + 200x, = 90

80x, + 150x, = 50

40x, + 20x, > 20

10x; > 2

st

X+ X, + X =1

Xy Xy, Xg >0

- Step 1: Solve the core problem:

1JCSI
www.lJCSl.org



IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 4, No 2, July 2012
ISSN (Online): 1694-0814
www.lJCSl.org 174

Min  z, = 40x, +60x,

100x, + 200x, = 90
80x, + 150x, = 50
40x, + 20x, > 20
st 10x, > 2
X + X, + X =1
X;, Xy, X3 >0

we have z, =30.667

- Step 2: Solve the right spread problem:
Min  z, =10x, +5x%,

100x, + 200x,

[\

90

80x, + 150x, = 50
40x, + 20x, = 20
st. 10x, > 2

X + X, + X =1
Xy Xpy X3 > 0
40x, +60x, = 30.667
with an additional constraint: 40x, +60x, = 30.667 and the

objective function: Min z, =10x, +5x, we find z, =5

- Step 3: Solve the left spread problem:
Min  z, =5x, +10x,

100x, + 200x, > 90
80x, + 150x, = 50
40x, + 20x, = 20
10x, > 2

s.t.

X+ X, +X =1

Xis Xy, X3 >0

40x, +60x, = 30.667

10x, +5x, =5

we have z; =5.167
- Step 4:
+ Optimal value: (30.667; 5.167,5)
+ Optimal solution: x, =0.322,x, = 0.356

5. Conclusion

In this article, we present a new definition about
comparative relation on the set of fuzzy numbers. By a
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suitable comparative relation, we build an algorithm to
solve the linear programming problem where the objective
function is represented by triangular fuzzy numbers. The
algorithm has been proved by related theorems and
lemmas.
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