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Abstract 
In this paper, we proposed a new attack against Hwang et al.’s 

cryptosystem. This cryptosystem uses a super-increasing 
sequence as private key and the authors investigate a new 
algorithm called permutation combination algorithm to enhance 
density of knapsack to avoid the low-density attack. Sattar J. 
Aboud [Aboud j. Sattar, “An improved knapsack public key 
cryptography system”, International Journal of Internet 
Technology and Secured Transactions, Vol.3 (3), pp.310-319, 
2011] used Shamir’s attack on the basic Merkle-Hellman 

cryptosystem to break this cryptosystem. Due to use of 
Lenstera’s integer programming, Lagarias showed that Shamir’s 
attack is inefficient in practice; So, Aboud’s attack is impractical 
too. 
 
In this paper, we introduce a direct attack against Hwang et al.’s 
cryptosystem based on Lattice basis reduction algorithms. By 
computing complexity of propose attack, we show that unlike 

Aboud’s cryptanalysis, our cryptanalysis is more efficient and 
practicable. 

Key words: Knapsack-type cryptosystem, LLL-lattice basis 

reduction algorithm, simultaneous Diophantine approximation, 

Cryptanalysis. 

1. Introduction 

The first knapsack-type public key cryptosystem (PKC) 

was introduced by Merkle and Hellman[12]. Since its 

proposal, knapsack-type PKC had been widely studied and 

many knapsack PKCs were developed. However, almost 

all knapsack cryptosystems were shown insecure in that 

they are vulnerable to some known attacks, such as low 

density attack [2,8], orthogonal lattice attack [15], ... . 

 

Nowadays, we reconsider knapsack public key 

cryptography because Shor [17] showed that integer 

factorization and discrete logarithm problems can be easily 
solved by using quantum computers. Therefore, traditional 

public key cryptosystem based on the two problems cannot 

be used to provide privacy protections any longer and 

public key cryptosystems secure in quantum computing 

environments are needed to be developed. The knapsack 

problem is NP-complete [14]. Hence, we can design 

cryptosystems based on the knapsack problem in order to 

resist quantum attacks. On the other hand, although the 

underlying problem is NP-complete, but some of the 
knapsack cryptosystems such as Merkle-Hellman [16], 

Chor-Rivest [18], was broken due to the special structure 

of the private key and the mathematical way that public 

key (public knapsack) was built from the private key. 

 

M. S. Hwang et al. [6] introduced a new knapsack type 

public key cryptosystem in 2009. This cryptosystem is 

based on basic Merkel-Hellman knapsack cryptosystem 

[12] and uses a super-increasing sequence as private key. 

They investigate a new algorithm called permutation 

combination algorithm. By exploiting this algorithm, the 
authors attempted to enhance density of knapsack to avoid 

the low-density attack. Hwang et al. knapsack-type 

cryptosystem was attacked by Aboud [1]. Aboud’s attack 

is based on Shamir’s attack [16] on the basic Merkle-

Hellman cryptosystem. Lagarias [9] showed due to use of 

Lenstera’s integer programming, Shamir’s attack is 

inefficient in practice, so, Aboud’s attack is not practicable. 

 

In this paper, we use LLL-lattice basis reduction algorithm 

for analysis Hwang et al.’s knapsack-type cryptosystem. 

The LLL-lattice basis reduction algorithm is a crucial 

component in many number-theoretic algorithms. It is 
useful for solving certain knapsack (subset sum) problems, 

and has been used for cryptanalyzeing public-key 

encryption schemes which are based on the subset sum 

problem. We show that because of the special structure in 

the key generation stage, we can use the LLL-lattice basis 

reduction algorithm for cryptanalyzeing Hwang et al.’s 

cryptosystem and obtain equivalent private keys (super-

increasing sequences). 

 

The rest of this paper is organized as follows: In the 

following section, we briefly explain some mathematical 
background. These concepts are useful for understanding 

the security analysis of the Hwang et al.’s cryptosystem. 

Then, in Section 3, we review Hwang et al.’s knapsack 

cryptosystem. New cryptanalysis of this cryptosystem will 

be discussed in Section 4 and in section 5, we compute the 

computational complexity of the proposed attack. 
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2. Mathematical Background 

In this section, we recall some concepts about the subset-

sum problem and lattice theory. These concepts are useful 

to understand the security analysis of the Hwang et al.’s 

cryptosystem. 

 

The subset sum problem is stated as follows: 

Definition1. (Subset sum problem (SSP)). A set of positive 

integers 1 2( , , , )na a a…
 

and positive integer s is given. 

Whether there is a subset of the ia ’s that their sum equal to

s . That is equivalent to determine whether there are 

variables {0,1}, 1ix i n∈ ≤ ≤  such that 

 
1

.
n

i i
i

x a s
=

=∑  

The Subset sum problem is a particular case of the 0-1 

knapsack problem. The subset sum problem has been 

proven to be NP-complete. The computational version of 

the subset sum problem is NP-hard [13]. 

Definition2. (super-increasing sequence). ) The sequence

1 2( , , , )na a a… of positive integers is a super-increasing 

sequence, if 1
1

i
ji ja a−

=
> ∑ for all 2i ≥ . 

There is an efficient greedy algorithm to solve the subset 

sum problem if the ia  are a super-increasing sequence: Just 

subtract the largest possible value from s and repeat. 

Algorithm1 efficiently solves the subset sum problem for 

super-increasing sequences in the polynomial time. 

  

Algorithm1:Solving a super-increasing subset sum 

problem 

INPUT: super-increasing sequence 1 2( , , , )na a a…
 
and an 

integer s  which is the sum of a subset of the ia s. 

OUTPUT: 1 2( , , , )nx x x…  where {0,1}ix ∈ , such that

1 .n
i i is a x
=

= ∑ . 

1. i n←  

2. While 1i ≥  do the following: 

2.2. If  is a≥ then 1ix ←  and is s a← −   Otherwise  

               0ix ← .  

2.3. 1i i← −  

3. Return( 1 2( , , , )nx x x… ). 

 

Knapsack public-key encryption schemes are based on the 

subset sum problem, which is NP-complete. The basic idea 

is to select an instance of the subset sum problem that is 

easy to solve, and then to disguise it as an instance of the 

general subset sum problem which is hopefully difficult to 

solve. The original knapsack set can serve as the private 

key, while the transformed knapsack set serves as the 

public key. 

Definition3. Let � = (��, �� , . . . , ��)  and 
 = (
� , 
� , . . . , 
�) 
be two vectors in ℝ�. The inner product of � and 
 is the 
real number  

< �, 
 >	= ��
�+	��
�+	. . . +��
� 

Definition4. Let 
 = (
� , 
� , . . . , 
�) be a vector in ℝ�. The ℓ� norm (or Euclid norm) of 
 is the real number 

2 2 2

1 2
, .

n
y y y y y y= < > = + + +⋯  

The sup norm, maximum norm or ℓ� norm is: 

‖
‖� = max���,�,…,�|
�| 
We can show that  

‖
‖� ≤ ‖
‖ 

Definition5. Let {��, �� ,… , ��}  be a set of linearly 

independent vectors in ℝ� (� ≤  ). The set ! of all integer 

linear combinations of �� , �� ,… , ��  is called a lattice of 

dimension�; that is 

1

: .
m

i i i

i

L l f l
=

 
= ∈ 
 
∑ ℤ    

The vectors �� , ��, … , �� are called a basis for the lattice !. 

Definition6. (Gram-Schmidt orthogonalization).  

Let {��, �� ,… , ��} be an arbitrary basis of ℝ�. Define the 

vectors 	��∗, 1 ≤ $ ≤   inductively by 

��∗ = �� −&'�,(�(∗�)�
(��

			 
Where 	'�,( = *+,,+-∗.*+-∗,+-∗.	 for 1 ≤ $ ≤  . In particular ��∗ = ��.  

We will call ��∗, ��∗,… , ��∗ the Gram-Schmidt orthogonal 

basis of  {�� , �� ,… , ��} and the ��∗ together '�,( form the 

Gram-Schmidt orthogonalization of  {�� , �� ,… , ��}. 
A lattice can have many different bases. A basis consisting 

of vectors of relatively small lengths is called reduced. 

The following definition provides a useful notion of a 

reduced basis, and is based on the Gram-Schmidt 

orthogonalization procedure.  
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Definition7. Let �� , �� ,… , �� ∈ ℝ� be linearly independent 

and ��∗, ��∗, … , ��∗ the corresponding Gram-Schmidt 

orthogonal basis. Then {�� ,�� ,… , ��} is reduced if ‖��∗‖ ≤2‖��1�∗ ‖ for 1 ≤ $ <  . So we have 

‖��‖� = ‖��∗‖� ≤ 2‖��∗‖� ≤ 2�‖�2∗‖� ≤ ⋯ ≤ 2�)�‖��∗‖�. 
The basis {�� , �� ,… , ��}  is said to be reduced (more 

precisely, Lovász-reduced) if 

4'�,(4 ≤ 12 , �56			1 ≤ 7 < $ ≤  			 
(where 4'�,(4  denotes the absolute value of '�,( ), and 

‖��∗‖� ≥ 92: 	−	'�,�)��;‖��)�∗ ‖�						�56		1 < $ <  . 

The LLL-lattice basis reduction algorithm is a crucial 

component in many number-theoretic algorithms such as 

simultaneous Diophantine approximation Problem. It is 

useful for solving certain subset sum problems, and has 

been used for cryptanalyzeing public-key encryption 

schemes which are based on the subset sum problem. 

Algorithm2[13]: LLL-lattice basis reduction algorithm  

INPUT: a basis{�� , ��,… , ��} for a lattice	! in ℝ� ,� ≥  . 

OUTPUT: a reduced basis for !. 

1. ��∗ ← �� , =� ←	< ��∗, ��∗ >. 

2. For $ from 2 to   do the following: 

2.1 ��∗ ← ��. 
2.2 For 7  from 1  to $ − 1 , set '�,( ←	< �� , �(∗ >/=(  and 

��∗ ← ��∗ − '�,(�(∗. 
2.3 =� ←	< ��∗, ��∗ > . 

3. ? ← 2. 

4. Execute subroutine @AB(?, ? − 1) to possibly 

update some '�,(. 
5. If =C < (2:− 'C,C)�� )=C)� then do the following: 

5.1 Set μ ← μE,E)�, = ← =C + '�=C)� , 

              'C,C)� ← '=C)�/=,  =C ← =C)�=C/= and 

            =C)� ← =. 

5.2 Exchange �C and �C)�. 
5.3 If ? > 2 then exchange 'C,( and 'C)�,( for  

       7 = 1, 2,… , ? − 2. 

5.4 For $ = ? + 1, ? + 2,… , : 

             Set  F ← '�,(, '�,C ← '�,C)� − 'F, and 

             '�,C)� ← t + μE,E)� − μH,E. 
5.5 ? ← �I�	(2, ? − 1). 
5.6 Go to step 4. 

         Otherwise, for J = ? − 2, ? − 3,… ,1, execute 

         @AB(?, J), and finally set ? ← ? + 1. 

6. If ? ≤   then go to step 4. Otherwise, return {�� , �� ,… , ��}. 
@AB(?, J): If 4'C,L4 > 1/2 then do the following: 

1. 6 ← M0.5 + 'C,LP	, �C ← �C − 6�L. 
2. For 7 from 1 to J − 1, set  'C,( ← 'C,( − 6'L,(. 
3. 'C,L ← 'C,L − 6. 

 

The LLL-lattice basis reduction algorithm is a polynomial-

time algorithm for finding a reduced basis, given a basis 

for a lattice. 

Theorem1. Let ! ⊂ ℤ� be a lattice with basis {��, �� , … , ��}, and let S ∈ ℝ, S ≥ 2 be such that	‖��‖� ≤S for $ = 1, 2, . . . ,  . Then the number of arithmetic 

operations needed by Algorithm2 is T( :	J5US), on 

integers of size T( 	J5U	S) bits, which is polynomial time. 

Proof: see [11]. 

Lemma 1. Let �� , �� ,… , �� be a LLL reduced basis of a 

rational lattice ! ⊂ ℚ� and ��∗, ��∗,… , ��∗ be its Gram-

Schmidt orthogonalization. Then 

                             WXF(!) = ∏ |��∗|���� . 

Proof: see [5].  

Definition8. (Simultaneous Diophantine Approximation 

Problem). Let I�, I�, … , I� ∈ ℝ and let Z > 0. Let [ ∈ ℕ 

be an integer such that [ ≥ Z)� . The simultaneous 

diophantine approximation problem is to find (], ^�, … , ^�) ∈ ℤ such that 0 < ] ≤ [ and 

|I� − ^�/]| 	≤ Z/] 

 for all 1 ≤ $ ≤  . 

A major application of algorithm2 is to give an algorithm 

to compute the integers (], ^�, … , ^�) in Definition8. In 

practice, the real numbers I�, I�, … , I� are given to some 

decimal precision (and so are rational numbers with 

coefficients of some size). The size of an instance of the 

simultaneous Diophantine approximation is the sum of the 

bit lengths of the numerator and denominator of the given 

approximations to the I�, together with the bit length of 

the representation of _ and [. Let ` be a bound on the 

absolute value of all numerators and denominators of the I�.The computational task is to find a solution (], ^�, …	 , ^�) in time which is polynomial in  , log(`), log(1/_) and log Q. 
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 Theorem2. (Solving the simultaneous Diophantine 

approximation problem). Let I� , I� ,… , I� ∈ ℚ be given as 

rational numbers with numerator and denominator 

bounded in absolute value by `. Let 0 < Z < 1. One can 

compute in polynomial time integers (], ^� ,… , ^�) such that                      0 < ] < 2�(�1�)/:Z)(�1�)	and |I� − ^�/]| 	≤ Z/] for all           1 ≤ $ ≤  . 

Proof: A general proof of this theorem is given in [7] but 

we introduce different and simple proof. 

Let [	 =	 2�(�1�)/:Z)� and ! ⊆ ℚ�1�
 be the lattice by the 

rows �f, … , �� ∈ ℚ�1�  of the matrix 

g
hi
Z/[ 	I� 		I�0 −1 	00 	0 −1

⋯ I�⋯ 0	 	⋮				 ⋮0				 0									 ⋱ ⋮⋯ −1l
mn	

The dimension is  + 1 and the determinant is Z/[ =2)�(�1�)/:Z�1�	. The entries of the lattice are ratios of 

integers with absolute value bounded by �I�{`, �o(opq)/rsopq }. 
Note that the lattice ! does not have a basis with entries in ℤ, but rather in ℚ.  

The LLL algorithm applied to !, outputs a non-zero vector t = (t�,… , t�) = (]Z/[, ]I� − ^� , ]I� − ^� ,… , ]I� − ^�). 
If t is the smallest vector found by the LLL-algorithm, 

then from definition7, we have 

‖t‖ ≤ ‖�f∗‖� ≤ 2‖��∗‖� ≤ 2�‖��∗‖� ≤ ⋯ ≤ 2�‖��∗‖�. 
By multiplying together the  + 1 above inequality, we 

have  

              ‖t‖�(�1�) ≤ ‖�f∗‖�. 2‖��∗‖�…2�‖��∗‖� 
                            ≤ 2�(�1�)/�‖�f∗‖�…	‖��∗‖� 
Hence, 

             ‖t‖ ≤ 2�/:(‖�f∗‖…	‖��∗‖)�/(�1�) 
From lemma 1, we know that WXF(!) = ∏ |��∗|����  and so   

‖t‖ ≤ 2�/:WXF(!)�/(�1�) = 2�/:2)�/:Z	 = Z < 1. 

If ] = 0  then t = (0,−^� ,−^� ,… ,−^�)  with some ^� ≠ 0 

and so ‖t‖ ≥ 1, hence	] ≠ 0. Without loss of generality, ] > 0 . Since ‖t‖∞ ≤ ‖t‖  and ‖t‖ < Z < 1  it follows that ]Z/[ < Z < 1 (where	‖t‖∞ = ]Z/[ = t�) and so 

 	0 < ] < [/Z = 2�(�1�)/:Z)(�1�). 
Similarly, for other t� , 2 ≤ $ ≤   we have |]I� − ^�| ≤ Z 

and so  

|I� − ^�/]| 	≤ Z/]    for 1 ≤ $ ≤  . 

 

Theorem3. If we use LLL algorithm for solving 

Simultaneous Diophantine Approximation Problem, then 

the computational complexity of the problem is                	T( v	�I�{ 	J5U(`),  � 	+  	J5U(1/Z)}2), which is 

polynomial time. 

Proof: See [7]. 

3. Hwang Et Al.’s Cryptosystem 

Hwang et al.’s cryptosystem is based on the basic Merkle-

Hellman knapsack cryptosystem.  

3.1 Key Generation: 

Each user chooses a super-increasing sequence (w�, w�	, …	, w�2vf) as secret key. i.e. 

w� > ∑ w(�)�(�� 				($ = 1, 2, … , 1360). 
Choose a large prime ^ as modulus such that	^ > ∑ w��2vf��� , 
two modular multipliers z and z′ such that U|W(^,z) = 1,  
and z.z} = 1		�5W	^. Each user transfers super-increasing 
sequence ~ = (w� ,w�	, …	 , w�2vf)  into a pseudorandom 
sequence � = (I� , I�	,…	 , I�2vf) as follows: 

 

              I� 	= 	w� 	. z	�5W	^		,			(1 ≤ $ ≤ 1360)                  (1) 

 

The public key is (I�, I�	, …	, I�2vf) and the private key is {(w�, w�	, …	 , w�2vf), z,z} , ^}. 
They presented a permutation combination algorithm and 

used this algorithm to ensure the security of the 

cryptosystem. By exploiting this algorithm, they attempted to 

enhance density of knapsack to avoid the low-density attack [2, 

8]. The permutation algorithm is as follows: 

1.  Define an original sequence Bf = {A�, A�)� , A�)�,… , A� , A: , A2, A� , A�}. 
2. Recombine all the elements of the original 

sequence Bf  which obtain ( ! 	− 	1)  sequences B� , . . . , B(�!)�). The sequences B�($ = 1,2,… ,  ! − 1) are 

defined as follows: Bf = {A� , A�)�, A�)� ,… , A� , A:, A2 , A�, A�} B� = {A�, A�)� , A�)�,… ,A� , A: , A2, A� , A�} ⋮ B�!)� = {A� , A�, A2A:,… , A�)�, A�)�, A�	} 
3. Suppose we can compute B� for	1 ≤ � ≤  ! − 1. � can be written as � = ∑ ��( − $)!���� , 0 ≤ �� ≤  . 

Each sequence has an own corresponding value called the 
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factorial carry value, {�� , ��)�, … . , ��, ��} . Using the 

factorial carry value, we can efficiently obtain any 

sequence with the following algorithm.  

 

Algorithm 3: permutation combination algorithm 

INPUT: Bf = (A� , A�,… , A�) and integers �. 

OUTPUT: B� = (A�} , A�} ,… , A2}).  
� = ∑ ������ × ( − $)!. 
For 1 ≤ $ ≤   do 

               if ��	 	= 	0 then 

                       A′�	 	=	A�	; 
       else { 
               for (1 ≤ 	7 ≤ �$) do 

               A′�1( 	=	A�	}; 

Return (A�} , A�} ,… , A2} ). 
 

For instance, generate the original vector 	B0 =(�, ~, S, B, A, =). Find the result of B�ff	:	100 = 0 × 5! + 4 ×4! + 0 × 3! + 2 × 2! + 0 × 1! + 0 then B�ff =(�, =, ~,A, S, B).  
3.2 Encryption:  

For  encrypt the message � , the sender executes the 

following steps:  

1.  Select a hash function whose digest is 1024 bits and 

compute the digest B of � as B = ��f�:(�). 
2. Compute  B} = B	�5W	170!  
3. Compute the factorial carry value � = {��, ��, … , ���f} of B′ where B} = �� × 169! + �� ×168! +⋯+ ���f × 0! 
4. Divide the public key vector � = (I�, I�	, …	 , I�2vf) 
into 8 subset public key vectors. Each subset public key 

vector has 170 elements. 

�	 = {(I�, I�	,…	, I��f), . . . , (I����, I����	, …	, I�2vf)}. 
5. Recombine each subset public key vector using           � = {��, ��, … , ���f}  by means of the permutation 

combination Algorithm. Then chooses the first 128 

elements in each subset public key vector. Thus, the 

sender obtain 1024 elements 	�� =(I��, I��, … , I��f�:). 

6. The message � is divided into {��,��,… ,�(}. Each                �C 	(? = 1, 2,… , 7) is a 1024-bit message: 

�C = {�C,� ,… , �C,�f�:} 

7. The corresponding ciphertext SC  is given as the 

product of 	�� = (I��, I�� ,… , I��f�:)  and �C  (? =1,2,… , 7). 
SC = ∑ I���f�:��� × �C,� 	,			1 ≤ ? ≤ 7. 

The ciphertext is S = {S�, . . . , S(} and sends (S, B}) to the 

receiver. 

3.3 Decryption: 

Receiver after receiving (S, B}) , executes the following 

steps to derive � from	S and B′: 
 

1.  Compute the factorial carry value � = {��, ��, … , ���f} of B′ where 

B} = �� × 169! + �� × 168! + ⋯ , ���f × 0. 

2. Divide his/her secret key vector ~ = (w��, w��, … , w��2vf)  into 8 subset public key 

vectors. Each key vector has 170 elements. 

          ~ =	{(w� , w�	,…	, w��f), . . . , (w����, w����	,…	 , w�2vf)}. 
3. Recombine each subset public key vector using           � = {��, ��, … , ���f}  by means of the Permutation 

Combination Algorithm. Then chooses the first 128 

elements in each subset public key vector. The receiver 

obtain 1024 elements ~� = (w�� , w�� ,… , w��f�: ). 

However ~� = (w�� , w�� ,… , w��f�:)  is still a super-

increasing sequence. 

5.  Divide S into S = {S�, . . . , S(}. Each SC 	(? = 1, 2,… , 7) 
is a 1024-bit ciphertext. 

6.  Compute 

                      BC = SC ×z}	�5W	^ 

                            = ∑ (I���f�:��� × �C,�) × z}	�5W	^ 

                            = ∑ (w���f�:��� ×z × �C,�) × z}	�5W	^ 

                            = ∑ w���f�:��� × �C,� 	�5W	^ 

for ? = 1,2,… , 7 . So we have BC = ∑ w���f�:��� × �C,� 	�5W	^. 

Since ^ > ∑ w��2vf���  we have BC = ∑ w���f�:��� × �C,� 	. Hence, 

the receiver can solves these super-increasing knapsack 

problems with algorithm1 and obtains �C,�  for 1 ≤ $ ≤1024  and 1 ≤ ? ≤ 7 . Therefore, we can recover original 

message � = {�� ,�� ,… ,�(} where	�C = {�C,� ,… , �C,�f�:}. 
 
Aboud attacked this cryptosystem by using Shamir’s 
attack [16] on the basic Merkle-Hellman cryptosystem. As 
we said, Lagarias in [9] showed Shamir’s attack is 
inefficient in practice, so Aboud’s attack is not practicable. 

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 5, No 1, September 2012 
ISSN (Online): 1694-0814 
www.IJCSI.org 114

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.



  

4. Our Proposed Attack 

In this section, we present our attack against the Hwang et 

al.’s knapsack cryptosystem. The first step in the attack is 

noticing that the given knapsack problem | = ∑ I�������  

(with public weights (I� , I� , . . . , I�) and target |) can be 

transformed into infinitely many different easy knapsack 

problems with super-increasing weights (I′� , I′� , . . . , I′�) and 

target		|′. This was independently observed by Eier-Lagger 

[4] and Desmedt-Vanderwalle-Govaerts [3]. Their result can 

be summarized in the following lemma. 

Let (w� , w� ,… , w�) be the private super-increasing sequence, (I� , I� , . . . , I�)  be the Corresponding public key such that I� = 	z. w� 	�5W	^  and �,^  be defined as in section 3. Let � = z)�	�5W	^, so we have 

w� = 	�. I� 	�5W	^. 

Lemma 2. There exists an	_ > 0 such that if 
�′�′ is rational 

with ��′�′ − ��� < _ , then the weights (w′� , w′� , . . . , w′�)  where 

w′� = �′I� 		�5W	^′ for $ = 1, . . . ,   are super-increasing. 

 
Our attack consists of three steps: in step1, we can use 
LLL-lattice basis reduction algorithm for finding a super-
increasing sequence ~′ = (w′� , w′�	,…	 , w′�2vf ) that is very 
close to super-increasing sequence ~ = (w� , w�	, …	, w�). In 

step2 and step3 we use super-increasing sequence ~′ =(w′�, w′�	, …	, w′�2vf ) and public ciphertext (S, B′)  for 
recover the plaintext.  

 

Step1: 

In the general form, equation (1) can be written as follows: 

I� = w� . z	�5W	^,						1 ≤ $ ≤  . 

Where (I�, I�	, …	 , I�) is the public key and (w�, w�	,…	 , w�) 

is the private key. 

 Let � = z)�	�5W	^ where 1 ≤ � < ^. We have 

       w� = I� . z)��5W	^ = I� . �	�5W	^, 1 ≤ $ ≤                 (2) 

This means that for 1 ≤ $ ≤  , there exists some integers ?� 	such that 

I�� − ?�^ = w� 
and 0 ≤ ?� < I�. Hence, 

                     0 ≤ �/^ − ?�/I� = w�/I�^.                    (3) 

Since (w� , w� ,… , w�) is a super-increasing sequence, so w� ≥ 2�)� and with ^ > ∑ w�����  we have 

0 ≤ w� < ^/2�)� 

Hence 

0 ≤ �/^ − ?�/I� < 1/I�2�)�. 
In particular, the right side of  �/^ − ?�/I� < 1/(I�2�)�) is 
very small. Hence, we can assume 

                                   �/^ ≈ ?�/I�.                                   (4) 

From equation (4), If we take �} = ?�  and ^} = I� , then  �′/^′ is very close to �/^ and from lemma 2, the positive 

integers w′� = �′I� 		�5W	^}  for 1 ≤ $ ≤   are a super-

increasing sequence (note that I�’s are public and obvious).  

Subtracting the case $ = 1 of equation (3) from the $-th gives 

?�I� − ?�I� = w�I�^ − w�I�^ = I�w� − I�w�I�I�^  

and so, for 2	 ≤ $ ≤  , 

   |I�?� − I�?�| = |�q�,)�,�q|� < ���,� = 2w� < ��o�,�q      (5) 

Since I�  is public, It remains to compute the integer ?� 

such that equation (5) holds, given only the integers I�, I�, . . . , I�. Another way to write equation (5) is 

   ��,�q − C,Cq� < ��qCq�o�,�q , 2	 ≤ $ ≤   .          (6) 

and one sees that the problem is precisely simultaneous 

Diophantine approximation. 

From theorem2, We can solve the simultaneous 

Diophantine approximation in the polynomial time and 

find a value for ?�. We now set �} = ?� and ^′ = I� (note 

that I�  is public) and computes w′� = �′I� 	�5W	^′  for 1 ≤ $ ≤   to obtain the sequence (w′� , w′� , . . . , w′�) , as we 

said this is a super-increasing sequence. We then compute |} = �′|	(�5W	^′)  for any challenge ciphertext 	| . Since (w}� ,w}� , . . . , w}�)  is super-increasing sequence, we can 

solve an easy knapsack problem |} = ∑ ������ w′�  with 

algorithm1 and therefore the original message bits �� , 1 ≤ $ ≤   are recovered. 

 

Let [ = 2�(�1�)/:Z)� and � = Z/[. We can use LLL-lattice 

basis reduction for solve equation (5) (simultaneous 

Diophantine approximation) and hence, the value of � ′ = ?�  is determind. Consider the lattice !(B)  with 

dimension J + 1 and basis matrix  

B =
g
hi
� 	I� 		I20 −	I� 	00 	0 −	I�

⋯ IL⋯ 0	 	⋮				 ⋮0				 0									 ⋱ ⋮⋯ −	I�l
mn	
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where 0 < � < 1 and 1 < J <  . LLL-lattice basis reduction 

algorithm can be applied to the lattice !(B) to output a 

relatively short vector	t = (t1, t2,… , tJ), which can be 

used to approximate the simultaneous Diophantine 

approximation problem. Since t ∈ !(B), there exist 

integers ?�	, ?�,… , ?L such that 

        t = (t� , t�,… , tL) 
           = (�?� , ?�I�− ?�I� , ?�I2− ?2I� ,… , ?�IL − ?LI�) 
 where (I�, I�	, …	, IL) is the public key. After computing t = (t�, t�,… , tL) with LLL-lattice basis reduction 

algorithm, we can compute ?� from equation t� = �?�. 
With the pair (�′, ^′) = (?� , I�), we now compute integers 

w′� = I� . �}�5W	^} ,				1 ≤ $ ≤ n 

which form lemma 2, this is a super-increasing sequence. 

We can use this sequence in place of to private key (w�, w�, … , w�). 
 

Step2: 

We can eavesdrop public ciphertext (S, B}) from insecure 

channel and hence we can compute factorial carry value � = {�� , �� ,… , ���f} of B′ where B} = �� × 169! + �� × 168! +⋯+ ���f × 0! 
with the following algorithm. 

 

Algorithm4: compute the factorial carry value of integer � 

INPUT: integers �,  such that � <  !. 
OUTPUT: {�� , ��, . . . , ��} such that 0 ≤ �� ≤  − $ and        	� = ∑ ������ × ( − $)!. 
1. 6f ← � 

2. for $ = 1 to   

               do  ��� ← � �,�q(�1�)�)!�																											6� ← 6�)� − �� × ( + 1 − $)!� 
3. Return "{��, �� , . . . , ��}" 

 

Step3: 

We divide super-increasing sequence (w′�, w′�,… , w′� ) 

(which is computed in step1) into 8 subset public key 

vectors: 

                ~′ =	 {(w′�, w′� ,… , w′��f), 
                            (w′���, w′� , … , w′2:f), 
                                         ⋮ 

                            (w′����, w′� , … , w′�)}. 
and recombine each subset public key vector using 

factorial carry value 	� = (�� ,�� ,… , ���f ) (which is 

computed in step2) by means of the permutation 

combination algorithm. Similar Hwang et al.’s 

cryptosystem, we can choose first 128 elements in each 

subset public key vector. Then, we will obtain 1024 

elements (w}�� , w}��,… , w}��f�:) .  
With computed pair (�′, ^′)  from step1, first compute S′ = S × � ′	�5W	^′ and then divide S′ into S′ = {S′�, . . . , S′(}. 
Each SC 	, 1 ≤ ? ≤ 7  is a 1024-bit message. Now, since (w}��, w}��,… , w}��f�:)  is super-increasing sequence, we 

can use algorithm1 for solve the following super-

increasing subset sum problems: 

                      S′� = ∑ 		w′���f�:��� × ��,� 		�5W	^′ 
                        S′� = ∑ 		w′���f�:��� × ��,� 		�5W	^′                       (7) 

⋮ 
                       S′( = ∑ 		w′���f�:��� × �(,� 		�5W	^′ 
and recover message bits �C = {�C,�,… , �C,�f�:}, 1 ≤ ? ≤ 7 
to obtain the original message � = {�� ,��,… ,�(} for any 

challenge ciphertext (S, B}). 
5.  Performance Analysis of Attack 

As we see in section 4, in step1, we need to find a pair of 

integers (�′, ^′) such that �}/^′ is very close to �/^ (where � = z)�	(�5W	^) and ^ are parts of the private key and (I�, I�	, …	 , I�) is public key). As we showed, we can take ^′ = I� where I� is public. So we need to find a value for �} = ?�. In step2, we can use algorithm4 for find the 

factorial carry value � = {�� , ��,… , ���f} of the public 

value B′. In step3, we need one modular multiplication for 

compute S′ and (1024× 7) subtraction to solve equation 

(7) with algorithm1 for recover the original message	� ={�� ,��,… ,�(} from any challenge ciphertext (S, B}).   
Hence, the more difficult and important part of attack is 
step1. In step1, we used simultaneous Diophantine 
approximation problem for finding the value of �} = ?� . 
So we need to compute the computational complexity of 
simultaneous Diophantine approximation problem. 
complexity of this problem is given in theorem3 where 
take T( v	�I�{ 	J5U(`), � 	+  	J5U(1/Z)}2) bit operations, 
which is polynomial time. Consequently, the proposed 
attack is polynomial time and practicable. 
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6.  Conclusion 

We considered cryptanalysis of a knapsack-type public 
key cryptosystem. This cryptosystem uses a combination 
permutation algorithm in the encryption phase to avoid the 
low density attack by keeping the density high. This 
cryptosystem is vulnerable to LLL-lattice basis reduction 
algorithm, since it uses a super-increasing sequence as a 
private key and attempt to hide this sequence with modular 
multiplication for constructing the public key. But as we 
showed, the modular multiplication cannot hide the super-
increasing sequence. To avoid this attack we can choose 
another easy knapsack problem that is not a super-
increasing sequence or we do not use modular 
multiplication for producing the public key from the 
private key. 
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