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Abstract 
Iterative decoding techniques have gain popularity due to their 
performance and their application in most communications 
systems. In this paper, we present a new application of our 
iterative decoder on the GPCB (Generalized Parallel 
Concatenated Block codes) which uses cyclic permutations. We 
introduce a new variant of the component decoder. 
After extensive simulation; the obtained result is very promising 
compared with several existing methods. We evaluate the effects 
of various parameters component codes, interleaver size, block 
size, and the number of iterations.  
Three interesting results are obtained; the first one is that the 
performances in terms of BER (Bit Error Rate) of the new 
constituent decoder are relatively similar to that of original one. 
Secondly our turbo decoding outperforms another turbo decoder 
for some linear block codes. Thirdly the proposed iterative 
decoding of GPCB-BCH (75, 51) is about 2.1dB from its 
Shannon limit.  
 
Keywords: Parallel concatenated block codes; cyclic 
permutation; BCH codes; quadratic residue codes; Iterative 
decoding  

1. Introduction 

Since the initial proposal of ‘Turbo Codes’ by Berrou et al 
in 1993 [1], the iterative principle has been extended to 
other new codes families [2, 3, 4, 7]. In [5], we have 
developed a new soft decoding algorithm (SIHO decoder) 
based on cyclic propriety for the most linear block codes. 
We use the cyclic permutation which stabilizes all cyclic 
codes and a set of test vectors obtained by flipping least 
reliable bits of the received codeword, the algorithm is 
considered as a light soft version of permutation decoding. 
In [6] we focus on changing SIHO decoder presented in [5] 
in order to reduce its complexity by studying some 
parameters. We compute its soft output using extrinsic 

information according to Soleymani et al [7]. We realized 
a turbo decoding, by adopting the Pyndiah’s connection 
scheme without the famous coefficients α  and β . Both 

versions in [5] and [6] can be applied for any cyclic codes, 
particularly QR (Quadratic Residue), BCH and DSC 
(Difference Set cyclic) codes. 
In this work we present:  
The version developed in [6] is an improvement of these in 
[5] in terms of complexity. 
In this perspective and trough this work, we propose a new 
variant of the algorithm presented in [6] in order to reduce 
more its complexity and after, to used it as a component 
decoder within a turbo decoding of General parallel 
concatenated block codes (GPCB). In the proposed turbo 
decoder designed to decode iteratively the the GPCB 
codes, we adopt the Soleymani’s [7] soft output to generate 
the extrinsic information and the Pyndiah’s connection 
scheme. 
We demonstrate the applicability of our efficient algorithm 
on new families of codes i.e. the GPCB codes. 
The performances of this new iterative decoder are 
investigated using simulations. The effects of various 
component codes, the number of iterations, block size; 
interleaver size and pattern are studied. 
Iterative decoding of concatenated codes is a way of using 
long powerful codes while keeping the new variant 
decoder relatively efficient. The concept of our turbo 
decoding can be applied to any concatenated codes 
constructed from cyclic codes. In this paper, we evaluate 
our new decoder on the families of generalized parallel-
concatenated block (GPCB) codes. 
After an overview of the decoder algorithm variant 
adopted here, and its complexity, we show significant 
reducing of the number of useful cyclic permutations and 
test sequences. On other hand we have obtained three 
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interesting results by analyzing the simulations carried out 
and by comparing with other works.  
The rest of this paper is organized as follow, in section II 
we present the component decoder, section III describe the 
soft output structure of the component decoder. Section IV 
describes GPCB codes construction and their iterative 
decoding.  The simulation results are analyzed in section V. 
Section VI concludes this paper. 

2. Component Decoder 

In the previous algorithm [5] the authors use two loops, the 
first is using n circular permutations for received word, and 

the second one processes 2 1p − error patterns generated by 
the parameter p . 

2.1 The description of improvement of our 
component decoder  

In [6] they restrict the number of permutations in order to 
reduce its complexity considering only k  cyclic 
permutations; the target permutation is taken according to 
the maximum sum of the soft values within k positions of 
the received word R.  
In this paper, we present a light version of this decoder 
algorithm by including a stopping criteria “Threshold” 
introducing the confidence value concept.  
 Figure 1 describes the light version, in which we continue 
to generate the error pattern and encoding systematic part 
until we reached the threshold value 

(such j
iE Threshold< ). 

We stopped the generation of test sequences and goes out 
of all the rest of permutations, if the threshold is reached. 
We continue to generate test sequences with k cyclic 
permutations if threshold is not reached.  
 

The input of the decoder, when the channel perturbed  

by a white Gaussian noise, is equal to c rr u b= + , where 

1( ... ... )
ic j nr r r r= is the observed vector, 

1 j( ... ... )  u 1
ij nu u u u= = ± the emitted codeword and 

1( ... ... )
ic j nb b b b= is the white noise whose components 

jb  have zero average and variance 2σ .  

The received word cr  is sorted in descending order andσ  

denotes the permutation associated to this sort: ( )cq rσ=  
 

( )

0 1 1

      0 i n-1

....

i c pi

n

q r p

q q q −

= ≤ ≤


≥ ≥
                             (1) 

 
Fig. 1   The flow chart of the algorithms with stopping criteria 

2.2 Implementation and simulations results 

The new algorithm is very attractive because it need not 
swap 2 p over  extra test vector and k  permutations. 

In addition, it’s very simple to implement and has a low 
complexity. Using the threshold for comparison, we show 
in figure 2 and 3 that the complexity is reduced 
significantly by increasing the SNR. Precisely in figure 3 at 
the SNR=6 we have 98% of test sequence gain complexity, 
by using the proposed algorithm. 
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Fig. 2   Performances Comparison by varing SNR. 

 
Fig. 3  Gain pourcent of our algorithm  by varing SNR  

We show in figure 4 that the Performances of our light 
version in terms of BER compared with [5] are the same. 

 
Fig. 4  Performances Comparison using different permutations for BCH 

(63, 51,5). 

But the computational complexity of our variant algorithm 
is less complex than the [6] and [7] as show in table I. 
Table I below present the analysis computation of 
complexity of three algorithms. 

 For BCH (63, 51, 5) and at SNR=5 we 

have 51aK k≈ = . 

Table 1: Computational of Complexity for the Three Variants 

Algorithm Complexity 

SIHO Variant in [5] 
( ) ( )( )( )p

2 n.log n n log n kO + −

 

SIHO Variant in [6] 
( ) ( )( )( )' 1

2 k.log n n log n k
PO + + −

 

Our Algorithm 

( ) ( )( )( )
p

.log n n log n k

2 .na

KaO
K

+ −


 

 

3. Confidence value and Soleymani Soft 
Output   

3.1 Confidence value: 

The concept of confidence value denoted by Φ   is 
detailed more in [7]. In this subsection, we will content 
ourselves with give a brief description. 

Let { }0 1 1, ,..., nX x x x −= be the transmitted codeword; 

{ } P D  X | R= =Φ be the probability that the decoder 

makes correct decision { }0 1 1, ,..., nD d d d −= giving 

received sequence { }0 1 1, ,..., nR r r r −= . In other words, it 

is the evaluation of the decoder’s decisions. ComputingΦ    
is impossible for a practical implementation, thus 
estimation has to be performed. To estimateΦ , Soleymani 
et al. [7] adopted a distance destructive denoted by 

destDist as a metrics measure between R   and D   where 

only the positions increasing the Euclidian distance 
contribute , that is to say, where the noise vector R has a 
different polarity from the decision vector D . The 
following formula (2) illustrates this. 
 

( )

( ){ }

2

  DES

where DES = | . 0

dest j j
j

j j j

Dist r d

j r d d

∈

= −

− <

∑
                      (2) 

 
As we may notice, there is a relationship between the 

confidence value Φ   and the destructive Euclidean 

distance destDist . Using simulation software according to 
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Soleymani et al. [2], the influence of the variables Eb/No, 
P and the number of iterations may be omitted, and a 
confidence value Φ   is treated as a function of destructive 
Euclidean distance, it can be written as: 

 ( )destf DistΦ =                                                           (3) 

3.2 Computation of Soleymani’s soft output 

In this subsection, we are giving the computation of 
Soleymani’s soft output as it is described in [7] that 

{ }0 1 n-1X= x ,x ,...,x   is the transmitted code word; the 
symbol { } j 0,..., 1jx n∈ − has certain confidence 
value Φ. The probability of jx can expressed as: 

 
( 1 | ) ( 1, | ) ( 1, | )j j jP x R P x D X R P x D X R= ± = = ± = + = ± ≠         (4) 

 
The first term of (4) represents the probability value 
when the decoder gives a correct codeword. Applying 
Bayes’ rule to this term will yield: 

 
( 1, | ) ( 1, , ). ( , )

                                  ( 1, , ).

P x D X R P x D X R P D X Rj j
P x D X Rj

= ± = = = ± = =

= = ± = Φ     
(5) 

Since the decision bit jd  is known, then 

  d
( 1, | )

0 if d

if xj jP x D X Rj xj j

φ == ± = =  ≠

                  (6) 

The second term in (4) represents the probability value 
when the decoder decides in favor of a wrong codeword. 

In this case, we consider the transmitted symbol jx  

corrupted by Gaussian noise.  Thus: 
2exp 2

( 1, )
21 exp 2

rj
P x D Xj

rj

σ

σ

 ± 
 = ≠ =
 + ± 
 

              (7) 

 Once again, we apply Bayes’s rule to the second term in 
(4) and we get  
 

( )

( 1, | ) ( 1, , ) . ( | )

2exp 2
                                 . 1

21 exp 2

P x D X R P x D X R P D X Rj j

rj

rj

σ

σ

= ± ≠ = = ± ≠ ≠

 ± 
 = −Φ
 + ± 
 

(8)
 

 
Combining (4)-(8), the a posteriori probability of 

jx becomes 

( )

( )
2exp 2

. 1  if d 1
21 exp 2

( 1| )
2exp 2

. 1  if d 1
21 exp 2

rj
j

rjP x Rj rj
j

rj

σ
φ

σ

σ

σ

  
   
 
         

    
 

+
+ −Φ = +

+ +
= + =

+
−Φ = −

+ +

       (9) 

And  

( )

( )
2exp 2

. 1   d 1
21 exp 2

( 1| )
2exp 2

. 1  if d 1
21 exp 2

P

rj
if j

r jx Rj rj
j

rj

σ

σ

σ
φ

σ

  
  

 
  
          
      

−
−Φ = +

+ −
= − =

−
+ −Φ = −

+ −

    (10) 

As in the traditional algorithm presented by Pyndiah in 
[9], we can obtain the extrinsic information ω j  by the 
following equation 

σω
 = +
 = −
 = −
 

( 1| )2
ln

2 ( 1| )

P x Rj rj jP x Rj

                      (11)                      

(11) 
Substituting P (xj = +1|R) and P (xj = −1|R) from (6) 
and (7), we get 

 

( )σσω

  Φ +  
= −  

−Φ      

2exp 22
ln

2 1

r dj j
d r dj j j j

               (12) 

Unlike other list-based algorithms, soft outputs 
generated by previous formula (12) can directly injected 
into the next decoding stage without scaling by a 
weighting factor α. 

4. GPCB codes and their iterative decoding 

4.1 GPCB codes construction 

The GPCB codes based on cyclic code as a form of 
concatenation are presented in figure 5;For decoding 
generalized parallel-concatenated block (GPCB) codes, we 
are using as component codes with an interleaver placed 
before the second block encoder. A block of 

*N M k= data bits at the input of the encoder is 
subdivided to M sub-blocks each of k bits. Each k bits 
vector is encoded in order to produce n bits codeword. The 
input block is scrambled by the interleaver-denoted by Π- 
before entering the second encoder. The codeword of 
GPCB code consists of the input block followed by the 
parity check bits of both encoders. 
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In this contribution several interleaving techniques were 
invoked such as helical, random, block, diagonal, and 
cyclic interleaver. 

 
Fig. 5  The  M.K Information bits are encoded twice by supplying the 

original information and its interleaved version. 

 

 
Fig. 6  Encoder structure of  GPCB codes 

A systematic GPCB code is based on two component 
systematic block codes, C1 with parameters (n1, k) and C2 
with parameters (n2, k). Viewing the coding scheme of 
figure as single GPCB encoder, the length of the 
information-word to be encoded by the GPCB code is 
given by the size of the interleaver N M k= × .  

The first encoder produces 1 1( )P M n k= × −  parity 

check bits. The second encoder produces 

2 2( )P M n k= × −  parity check bits.  Thus the total 

number of parity bits generated by the GPCB encoder 

is 1 2 1 2( 2 )P P P M n n k= + = × + − × .  

The length of the GPCB codeword is given by: 

1 2( )L N P M n n k= + = × + − . Consequently, the 

code rate of the PCB codes can be computed by: 

1 2

N kR
L n n k

= =
+ −

.  

This implies that the GPCB code rate is independent of the 
interleaver size N. Below we give some examples of codes 
based on this construction. 
 

Table 2: Some examples of PCB codes 

 

Component code 

 

M GPCB code 

BCH(63, 51, 7) 
 

1 GPCB-BCH(75, 51) 
10 GPCB-BCH(750, 510) 

100 GPCB-BCH(7500, 5100) 
200 GPCB-BCH(14000, 10200) 

RQ(47, 24, 11) 
 

1 GPCB-RQ(70, 24) 
10 GPCB-RQ(700, 240) 

100 GPCB-RQ(7000, 2400) 
200 GPCB-RQ(14000, 4800) 

BCH(127, 106, 7) 
 

1 GPCB-BCH(148, 106) 
10 GPCB-BCH(1480, 1060) 

100 GPCB-BCH(14800, 10600) 
200 GPCB-BCH(29600, 21200) 

BCH(255, 215, 
11) 

 

1 GPCB-BCH(295, 215) 
10 GPCB-BCH(2950, 2150) 

100 GPCB-BCH(29500, 21500) 
200 GPCB-BCH(59000, 43000) 

 

4.2 GPCB iterative decoding 

The decoding of the GPCB codes is iterative (see figure 7). 
The first component decoder uses the systematic 
information and the first parity check bits in order to 
generate extrinsic information as in Pyndiah’s connection 
scheme.  
This extrinsic information is used to update the reliabilities 
of the systematic information, which will be interleaved 
and feed into the second decoder with the second parity 
check bits received from the channel.  

 

 
Fig. 7  The turbo decoder at  Jth iteration  

The second decoder also generates the extrinsic 
information, and then updates the reliabilities of the 
systematic information for the second time. The updated 
reliabilities will be des-interleaved and feed again into first 
decoder, for the next iteration. The process resume until a 
maximum number of iterations is reached.  
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5. Simulation results 
In this section, the performance of the generalized parallel-
concatenated BCH (GPCB-BCH) codes is evaluated. The 
transmission is over the additive white Gaussian noise 
(AWGN) channel and binary antipodal modulation. We 
are interested in the information bit error rate (BER) for 
different signal to noise ratios per information bit (Eb/N0) 
in dB. There are many parameters, which affect the 
performance of GPCB codes when decoded with iterative 
decoder.  
Here we study the effect of the following parameters on the 
decoder as in table III, precisely the number of decoding 
iterations, the component codes, interleaver size and 
patterns   

Table 1:  The parameters of communication system 

Parameter name Value 
Modulation  BPSK 

Channel AWGN 
Interleaver pattern Semi-Random interleaver ; 

Diagonal interleaver; 
Cyclic interleaver; 
Block interleaver 

Component decoder Soleymani output and Pyndiah 
connection schema 

Iterations 1 to 10 (6 as default value) 
Interleaver size 1xk, 10xk, 50xk ,100xk, 200xk 

 

5.1 The Turbo effect (number of iterations) 

The simulation results plotted in figure 8 show the 
performance of the iterative decoder for the 
GPCB-BCH (3750, 2550).   

 

 
Fig. 8  Effect of iterations on Iterative decoding for 

GPCB-BCH(3750,2550) code 

Figure 8 show that the slope of curves and coding gain are 
improved by increasing the number of iterations. At 10-5 
about 1.8dB coding gain can be obtained after 4 iterations. 
After the 4th iteration, the amelioration of the coding gain 

becomes negligible because of the steep slope of the BER 
curve. The turbo phenomenon is well established. In the 
rest of this paper, the curves are done with 4 iterations. 

5.2 The effect of block size (M parameter) 

Footnotes should be typed in singled-line spacing at the 
bottom of the page and column where it is cited.  Footnotes 
should be rare. 
Figure 9 shows the BER versus SNB results of the BCH 
(75, 51) code with M varying from 1 to 200. By increasing 
M from 1 to 100, about 3.0dB coding gain can be obtained 
at 10-5 and little gain can be obtained by further increasing 
the parameter M. 
Now we consider the QR (70, 24) code. The performance 
is shown in figure 10. For this code, the coding gain 
increase with M. At 10-5 about 3.0dB coding gain can be 
obtained by increasing M from 1 to 100. The amelioration 
becomes inconsiderable while the parameter M is greater 
or equal to 200.  
 

 
Fig. 9   Effect of parameter M on Iterative decoding on BCH(63,51)   

 
Fig. 10  Effect of parameter M on Iterative decoding of QR(47, 24) code 
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5.3 GPCB iterative decoding The effect of 
interleaver 

To study the influence of the interleaver pattern on the 
GPCB codes performance, we have evaluated the BER of 
the GPCB-BCH (750,510) code using different 
interleavers. 

 
Fig. 11   Interleaver structure effect on GPCB-BCH(750, 510) code  

 
Fig. 12  Interleaver structure effect on Iterative decoding for 

GPCB-BCH(7500, 5100) code 

Such as diagonal, cyclic, block and random interleaver 
with two different value of parameter M (M=10, M=100).  
The figure 11 shows the results For M=10 and figure 12 
for M=100, we observe that the cyclic and diagonal are 
little good than random, block and helical ones for m=10. 
For M=100, we observe that all these interleavers are 
similar. 

5.4 Comparisons with other works and Shannon 
limits. 

To evaluate the performance of the parallel-concatenated 
block codes, we compare the coding gain at 4th iteration of 
the codes GPCB-BCH (7500, 5100).  

  

Fig. 13   Performance comparison of  GPCB-BCH (75, 51) code  and its 
position from Shannon limit 

 

Fig. 14  Performance comparison between proposed GPCB codes and 
Farchane et al.  GPCB (dotted line),at  6 iterations. 

In figure 13, we observe that performance of this   code 
about 2.1 dB away from their Shannon Limit. 
In the other hand the comparison between our decoder and 
the algorithm of Farchane et al.  [10], for the same rate in 
figure 14, we shows that our decoder outperforms the 
Farchane et al. algorithm; for GPCB-BCH (7500, 5100) 
code and at 6 iterations, for BER=10-5 our decoder gain is 
about 1.3 dB than [10]. 

6. Conclusions 

In this paper, we have demonstrated the application of the 
improved and efficient SIHO decoder algorithm as a 
component decoder in a turbo decoder to decode the 
GPCB codes. We have investigated the effects of various 
component codes, the number of iterations, interleaver size 
and pattern using simulations. The results show that the 
slope of curves and coding gain are improved by 
increasing the number of iterations and/or the interleaver 
size (the parameter M).  
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From the simulations, we retain that GPCB codes based on 
GPCB-BCH (75, 51) is about 2.1dB from Shannon limit. 
The decoder presented by Farchane et al [10] can be 
applied only for codes with algebraic component decoder; 
however our decoder is practical for all GPCB codes based 
on cyclic codes. The obtained results look very promising 
and open new perspectives. The extension of this study is 
to investigate this decoding for serial concatenated block 
codes and for the family of codes RS. 
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