
Sequential Pattern Mining With Multiple Minimum

Supports by MS-SPADE

K.M.V.Madan Kumar
1
, P.V.S.Srinivas

2
 and C. Raghavendra Rao

3

1
Research Scholar, CMJ University, Shillong, Meghalaya, India

Assoc Professor, TKR College of Engg &Tech, Hyderabad, AP, India
2
Professor, Dept. of CSE, Geethanjali College of Engineering & Technology, Hyderabad, India

3
Professor, Dept. of CIS, University of Hyderabad, Hyderabad, India

Abstract

Although there may be lot of research work done on sequential

pattern mining in static, incremental, progressive databases, the

previous work do not fully concentrate on support issues. Most of

the previous approaches set a single minimum support threshold for

all the items or item sets. But in real world applications different

items may have different support threshold to describe whether a

given item or item set is a frequent item set. This means each item

will contain its own support threshold depends upon various

issues like cost of item, environmental factors etc. In this work we

proposed a new approach which can be applied to any algorithm

independent of whether the particular algorithm may or may not

use the process of generating the candidate sets for identifying the

frequent item sets. The proposed algorithm uses the concept of

“percentage of participation” instead of occurrence frequency for

every possible combination of items or item sets. The concept of

percentage of participation will be calculated based on the

minimum support threshold for each item set. Our proposed

algorithm by name “MS-SPADE”, which stands for Multiple Support

Sequential Pattern Discovery using Equivalent classes , which discovers

sequential patterns b by considering different multiple minimum

support threshold values for every possible combinations of item or

item sets.

Keywords

Multiple minimum supports, sequential patterns, Percentage of

participation, Frequent Patterns

1. Introduction

Sequential Pattern mining is one of the most important

research issues in data mining. Which was first

introduced by Agarwal and Srikanth [2] and can be

described as follows: we are given a set of data sequences

which will be used as input data. Each sequence consists

of a list of ordered item sets containing a seta of different

items. The sequential pattern mining finds all Sub

sequences with frequencies lower than min support which

is given by user. After that there have been a significant

research work was done by various researchers on

sequential pattern mining and defined number of

algorithms not only for static data base [2],[3] Where data

do not change over time but also for incremental data

bases[6] where there will be new data arriving as the time

goes by. In addition to above researchers some other

researchers derived other kind of sequential patterns like

closed sequential patterns [7], [8], [9]. Constraint

sequential pattern [10] maximal sequential patterns [11]

spatio temporal sequential patterns [12]. Sequential

pattern on specific type of data [13] on stream data. But

all the works which was discussed above are by

considering uniform min.sup

But considering uniform min.sup, implicitly assumes that

all items in the data base have similar frequency. However

some items may appear very frequently in the data base

while other rarely appears. Under such circumstances, if

we set the value of min support too high we will not find

those rules involving rare items in the data base. On the

other hand if we set that value too low, it will generate

huge amounts of meaningless patterns. Therefore lieu

et.al [4] first address this and propose the concept of

multiple minimum supports (MMS in Short)in association

rule mining. In this study we first extend the definition of

sequential pattern by considering the concept of MMS,

which allows users to specify multiple min.sup for each

item. Items with low frequencies will be specified with

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 5, No 1, September 2012
ISSN (Online): 1694-0814
www.IJCSI.org 285

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

lower minimum support and pattern involving these items

can be easily retrieved for further decision support.

But the major problem on frequent pattern mining with

MMS is that the downward closure property no longer

holds in the mining process, which means that a super-

pattern of an infrequent pattern might be frequent pattern.

To effectively reduce the search space in a level –wise

methods, Liu.et.al proposes the sorted closure property,

where all item in data sets are sorted in ascending order by

their MIS values. The sorted closure property however is

invalid in sequential pattern mining since the order in the

data sequences cannot be altered. Therefore to discover

complete set of sequential patterns with MMS is not

straight forward. Based on the new definitions of

sequential patterns with MMS, we first proposed the

concept called Percentage of participation (POP) where

POP is the percentage of participation of the item or item

set with respect to the no of sequences in the POI i.e. |Db|

and minimum item support (MIS).

The structure of this paper as follows. In section 2, we

first review the concept of SPADE as the basis of our

approach. Section 3 introduces the definition of the

sequential pattern mining with multiple minimum

supports (MMS) by involving the Percentage of

participation (POP).Our algorithm called MS-SPADE will

be discussed in section 4. Result analysis was organized in

section 5 and we have conclusion in section 6.

2. Related work

Mohammed J.Zaki proposed an algorithm which works

for mining of sequential patterns in static data bases by

utilizing combinational properties to decompose the

original problem in to smaller sub problems . The smaller

sub problems can be independently solved in main

memory using efficient lattice search techniques and using

simple join operations. By using the SPADE algorithm

they discovered all the frequent sequences within three

database scans. It avoids the process of making repeated

scans for every k-sequence so that improve the efficiency

of the processes in terms of time and space. The SPADE

not only decreases the no of scans and avoids the complex

hash structure which have poor locality. The inputs of

sequential pattern mining by SPADE are the set of atoms

of sub- lattice S, along with their id-list and user-defined

minimum support threshold. The algorithm SPADE will

work on the following three features.

1. We use a vertical id-list database format, where we

associate with each sequence a list of objects in which it

occurs, along with the time-stamps. We show that all

frequent sequences can be enumerated via simple

temporal joins (or intersections) on id-lists.

2. We use a lattice-theoretic approach to decompose the

original search space (lattice) into smaller pieces (sub-

lattices) which can be processed independently in main-

memory. Our approach usually requires three database

scans, or only a single scan with some pre-processed

information, thus minimizing the I/O costs.

3. We decouple the problem decomposition from the

pattern search. We propose two different search strategies

for enumerating the frequent sequences within each sub-

lattice: breadth-first and depth-first search.

Figure 1:Example Data Base

For the above example shown in figure1 the algorithm

SPADE constructs the candidate sets as follows which is

shown in Figure2 (a) and Figure 2(b).

Figure 2(a):ID List for example database

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 5, No 1, September 2012
ISSN (Online): 1694-0814
www.IJCSI.org 286

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

Figure 2(b):Id list for temporal items

To find frequent sequences S P A D E i s using efficient

lattice search techniques and simple joins. All the

sequences are discovered with only three passes over

the database, it also decomposes the mining problem

into smaller sub problems, which can be fitted in the

main memory.

In this approach, the sequential database is

transformed into a vertical id-list database format, in

which each id is associated with corresponding items

and the time stamp. The vertical database of figure 1 is

shown in figure 2(a). For item A, the support count is

4, it occurs with SID 1, 2, 3 and 4 at EID 15,15,10

and 25 respectively. By scanning the vertical database,

frequent 1-sequences can be generated with the

minimum support. For the 2-sequences, the original

database is scanned again and the new vertical to

horizontal database is created by grouping those items

with SID and in increase order of TID. The result

vertical to horizontal database is shown in figure 2(c).

By scanning the vertical to horizontal da t a ba se 2-

sequences are generated. All the 2-item sequence

found are used to construct the lattice, which is quite

large to be fitted in main memory. However the lattice

can be further decomposed to different classes,

sequences that have the same prefix items belong to the

same class. By decomposition t h e lattice i s

partitioned into small partitions that can be fitted i n

main memory. During the third s c a n n i n g o f the

database all those longer sequences are enumerated

by using temporal join

.

There are two methods of enumerating frequent

sequences of a class: Breadth- First Search (BFS) and

Depth-First Search (DFS). In BFS the classes are

generated in a recursive bottom-up manner. For

example to generate the 3-item sequences all the 2-

item sequences have to be processed, but in DFS only

one 2-item sequence and a k-item sequence are further

needed to generate (k+1)-item sequence. BFS need

much bigger main memory to store all the consecutive

2-item sequences, but DFS just need to store the last

2-item sequence of the newly generated k-item

sequences. However BFS has more information to

prune the candidate k-item sequences, and the

possibility of being large of those sequences generated

by BFS is much bigger than those generated by DFS.

All the k-item patterns are discovered by temporal or

equality joining the frequent (k-1)-item patterns which

have the same (k-2)-item prefix, while there are three

possible joining results as candidate generation process

in GSP [Srikant and Agrawal 1996], the Apriori

property pruning technique is also employed in

SPADE.

Figure 2(c) Vertical to horizontal database recovery

Before this many researchers have developed various

methods to find frequent sequential patterns with a static

database. Apriori All [2], GSP [3] are the milestones of

sequential pattern mining algorithms based on traditional

association rules mining technique. Han et al. and Pie et

al. brought up Free Span and Prefix Span, which found

sequential patterns by constructing sub databases of the

entire database. Zhang et al. proposed two algorithms

GSP+ and MFS+ based on static algor ithms GSP

and MFS (also derived by the same authors).But as

discussed early in section1 all the researchers

considered uniform min.sup to describe whether the

sequence is frequent or not.

3. Problem Definition

In this section, we formally give definitions used in the

discovery of sequential pattern with MMS. Let I denote

the set of items in the database, and a subset of I is called

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 5, No 1, September 2012
ISSN (Online): 1694-0814
www.IJCSI.org 287

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

an item set. A customer’s data-sequence is an ordered list

of items with time stamps. Therefore, a sequence, say α,

can be represented as <(a1: t1), (a2: t2), (a3: t3), …, (an:

tn)>, where a j is an item, and tj stands for the time when

aj occurs, 1≤ j≤n, and tj-1≤tj for 2≤j≤ n.

If several items occur at the same time in tj for 2 j the

sequence, they are ordered alphabetically.

Definition 1. Given an item set Iq = (i1, i2...im), we say

item set Iq occurs in α if integers 1≤k1 < k2 <…< km ≤n

exist such that, i1 = ak1, i2 = ak2,... ,im = akm and tk1= tk2=...=

tkm. We refer to k1 and tk1 jointly as the position and the

time that Iq occurs in α, respectively.

Definition 2. Let β = <I1, I2...Is> (Iq subset or equal to I for

1 ≤q≤ s) be a sequence of item set. Assume that each Iq in

β occurs in α. Then we say sequence β occurs in α, or is a

subsequence of α if tI1 < tI2<...< tIs, where tIq (1≤ q ≤s) is

the time, at which Iq occurs in α.

Definition 3. A sequence database S is formed by a set of

records <sid, s >, where sid is the identifier of this data-

sequence and s is a data-sequence. For a given sequence β,

the support count of sequence β in S are defined as

follows:

supp (β) = |{(sid, s)| (sid, s) ЄS ^β is a subsequence in s}|

The following definitions are related to the concept of

MMS. In this model, the definition of the minimum

support is changed. Each item in the database can have its

minsup, which is expressed in terms of minimum item

support (MIS). In other words, users can specify different

MIS values for different items.

Definition 4: Let MIS (i) denote the MIS value of item i (i

subset or equal to I). Given an item set Iq = (i1,i2,...,im), the

MIS value of item set Iq = (i1,i2,...,im) (1≤ k ≤m), denoted

as MIS(Iq), is equal to:

 min [MIS (i1), MIS(i2),…, MIS(im)]

Definition 5: Given a sequence β = <I1.I2...Is>

(Iq subset or equal to I for 1≤ q≤ s), the minimum support

threshold of β, denoted as MIS (β), is equal to:

 min [MIS(I1), MIS(I2),…, MIS(Is)]

Definition 6: Given a sequence database S and a sequence

β, we call β is frequent in S or β is a sequential pattern in S

if supp (β) ≥MIS (β).

Definition 7: Let I be an item or item set and MIS (I) be the minimum item support threshold of item I. |Db
p,q

| is the

number of sequences In the POI. Timestamps between p ,q.

 Percentage Of Participation(POP) = 100/ |Db
p,q

|* MIS(I)

With the provision of different minimum item support

thresholds for different items, user can effectively express

different support requirements for different data-

sequences. MMS allow users to have higher minimum

supports for sequences involving high frequent items, and

also allows us to have lower minimum supports for

sequences involving rare items. Given a sequence

Database S and a set of MIS values for all items in S, we

discover all sequential patterns that satisfy MIS (β).

4. The Proposed Algorithm

SPADE: Algorithm design and implementation

In this section we describe the design and

implementation of MS-SPADE. Figure 4(a) shows the

high level structure of the algorithm. The main steps

include the computation of the frequent 1-sequences and

2-sequences, the decomposition into prefix-based parent

equivalence classes, and the enumeration of all other

frequent sequences via BFS or DFS search within each

class. We will now describe each step in some more detail.

MS-SPADE (pop, D);

F1= {frequent items or 1-sequences};

F2= {frequent 2-sequences};

E= {equivalence classes [X] Ω1};

for all [X] €E do Enumerate –Frequent-set ([X];

Figure 4(a): Algorithm MS-SPADE

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 5, No 1, September 2012
ISSN (Online): 1694-0814
www.IJCSI.org 288

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

2

Algorithm POP (Items, MIS(I))

1. var POP;

2. var I, Imin;// Items

3. For (all combinations of items in the ele);

4. If (No of items >1);

5. Check and identify the item Imin having less support;

6. POP (ele)=100/|Db
p,q

|*MIS(Imin): // |Db
p,q

| is no of

sequences from p to q

7. else

8. POP (ele)=100/|Db
p,q

|*MIS(I): // |Db
p,q

| is no of

sequences from p to q

END

Figure 4(b): Algorithm for Percentage of Participation

3.1.Computing frequent 1-sequences and

2-sequences

Most of the current sequence mining algorithms assume a

horizontal database layout such as the one shown in figure

1. In the horizontal format the database consists of a set of

input-sequences. Each input-sequence has a set of events,

along with the items contained in the event. In contrast

our algorithm uses a vertical database format, where we

maintain a disk-based id-list for each item, as shown in

figure 2(a). Each entry of the id-list is a (sid,eid) pair

where the item occurs. This enables us to check support

via simple id-list joins.

Computing POP: For computing pop of the elements we

first check the no of items for the element, if the no of

items are more than one then the algorithm consider the

MIS value of item which is having least .Then it will

calculate the Pop. For example if the element is AB or A-

>B and the MIS values are 0.2 and 0.3 then the MIS of

element is 0.2. Then the pop will be 100/0.2 * no of

sequences i.e. 100/0.2*4 =125 % for it’s each occurrence.

Computing F1: Given the vertical id-list database, all

frequent 1-sequences can be computed in a single

database scan. For each database item, we read its id-

list from the disk into memory. We then scan the id-list,

incrementing the pop for each new sid encountered as

shown in figure 4(d) for the example shown in figure

1.But here we are taking the values of min.sup for

A,B,C,D,E,F,G and H are 4,3,2,4,1,3,2 and 2. We are

considering an item as a binary variable. We consider only

once per each sequence occurrence.

Computing F2: Let N2 = |F1 | be the number of frequent

items, and A the average id-list size in bytes. A naive

implementation for computing the frequent 2-sequences

requires id-list joins for all pairs of items. The amount of

data read is A · N · (N − 1)/2, which corresponds to

around N /2 data scans. This is clearly inefficient. Instead

of the naive method we propose two alternate solutions:

1. Use a preprocessing step to gather the pop of all 2-

sequences above a user specified lower bound. Since this

information is invariant, it has to be computed once, and

the cost can be amortized over the number of times the

data is mined.

2. Perform a vertical-to-horizontal transformation on-the-

fly. This can be done quite easily, with very little overhead.

For each item i , we scan its id-list into memory. For

each (sid, eid) pair, say (s, e) in L(i), we insert (i, e) in

the list for input-sequence s. For example, consider the id-

list for item A, shown in figure 7. We scan the first pair (1,

15), and then insert (A, 15) in the list for input-sequence

1. Figure 2(c) shows the complete horizontal database

recovered from the vertical item id-lists. Computing F2

from the recovered horizontal database is straight-

forward. We form a list of all 2-sequences in the list for

each si d, and update pop in a 2-dimensional array indexed

by the frequent items.

4.2. Enumerating frequent sequences of a class

Figure 4(c) shows the pseudo-code for the breadth-first

and depth-first search. The input to the procedure is a set

of atoms of a sub-lattice S, along with their id-lists.

Frequent sequences are generated by joining the id-lists of

all pairs of atoms (including a self-join) and checking the

cardinality of the resulting id-list against POP. Before

joining the id- lists a pruning step can be inserted to ensure

that all subsequences of the resulting sequence are

frequent. If this is true, then we can go ahead with the id-

list join, otherwise we can avoid the temporal join. The

sequences found to be frequent at the current level form

the atoms of classes for the next level. This recursive

process is repeated until all frequent sequences have been

enumerated. In terms of memory management it is easy

to see that we need memory to store intermediate id-lists

for at most two consecutive levels. The depth-first search

requires memory for two classes on the two levels. The

breadth-first search requires memory of all the classes on

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 5, No 1, September 2012
ISSN (Online): 1694-0814
www.IJCSI.org 289

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

the two levels. Once all the frequent sequences for the

next level have been generated, the sequences at the

current level can be deleted.

Enumerate-Frequent-Seq (S);

 for all atoms Ai Є S do

 Ti= $;

 for all atoms Aj Є S, with j ≥ I do

 R=Ai V Aj;

 If (Prune (R) == FALSE) then

 L(R) =L (Ai) ∩ L (Aj);

 If total.POP (R) ≥ 100 then

 Ti =Ti U {R}; F|R| = F|R| U {R};

end

if (Depth-First –Search) then Enumerate-Frequent–Seq

(Ti);

end

if (Breadth-First –Search) then

for all Ti ≠ $ do Enumerate - frequent-Seq (Ti);

Figure 4 (c): Pseudo code for breadth-first and depth-first

search

A

B

SID EID POP

SID EID POP

1 15 25

1 15 33.3

1 20

1 20

1 25

2 15 33.3

2 15 25

3 10 33.3

3 10 25

4 20 33.3

4 20 25

E

F

SID EID POP

SID EID POP

2 20 100

1 20 33.3

1 25

2 15 33.3

3 10 33.3

4 20 33.3

Figure 4 (d): Id –lists for atoms of frequent 1-sequence with pop

5. Result Analysis

Our proposed algorithm is very effectively working for

test dataset and we have analyzed the test dataset for

different parameters like period of interest, execution time

etc.

5.1 Impact of period of interest (POI) on execution

time

Execution time is the time required to execute all the

instructions in the proposed algorithm. Here we can

observe that the execution time will increase a

l it tle bit with respect to the t ime taken for

identifying the item having minimum MIS

value. For this we applied the quick sorting

technique .It can be noted that execution time is

directly proportional to POI. The reason is that, the

increase in POI required more time for process as the no

of new elements will be added to the existing one.

Figure 5(a) shows the impact of POI over the execution

time.

Figure 5(a)

5.2 Impact of POI over number of patterns

Number of patterns is dependent on per iod of interest

a. As from F i g 5 (b) we can see that as the period of

interest increases, the number of patterns also increases.

This is because as the period of interest increases, the

algorithm has more items to process and so they give

more number of patterns.

0

500

1000

1500

2000

2500

1 2 3 4 5 6 7 8

Ti
m

e
 t

o
 c

al
cu

la
te

 t
h

e

p
at

te
rn

s
(m

se
c)

Time Vs Period Of
Interest

time

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 5, No 1, September 2012
ISSN (Online): 1694-0814
www.IJCSI.org 290

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

Figure 5(b)

5.3 Comparison between MS-SPADE and SPADE in

terms of time in progressive database

Generally mining frequent sequential patterns

with multiple minimum supports will take more

t ime when compared with mining frequent

sequences with uniform support . In case of

percentage of participation (POP), the time for

execution of Ms -SPADE will take l it tle bit

more time than the SPADE. The difference of

t ime between these two will be the time for

identifying the i tem having minimum MIS value

from the newly arriving element and

accumulating the POP. We can observe the

difference in the Figure5(c).

Figure 5(C)

6. Conclusion

 The proposed MS SPADE algorithm works efficiently

by using the concept of percentage of participation (POP)

for mining frequent sequences with multiple minimum

supports. Even though the algorithm is taking little more

time for execution when compared with SPADE (which

finds the frequent sequential patterns considering uniform

min.support for different items), it works on frequent

sequences with multiple minimum supports for different

items. As the algorithm is finding the sequences with

multiple minimum supports we can ignore the little

increase in time of execution. But in order to calculate the

POP of all candidate sequential patterns, it keeps all the

candidate sets for all sequences. This involves huge

memory usage and involves lots of computation time.

 References

[1] R. Agrawal and R. Srikant, “Fast Algorithms for

Mining Association Rules,” Proc. 20th Int’l Conf. Very

Large Data Bases (VLDB ’94), pp. 478-499, Sept. 1994.

 [2] R. Agrawal and R. Srikant, “Mining Sequential

Patterns,” Proc. 11th Int’l Conf. Data Eng. (ICDE ’95),

pp. 3-14, Feb. 1995.

[3] R. Srikant and R. Agrawal, “Mining Sequential

Patterns: Generalizations and Performance

Improvements,” Proc. Fifth Int’l Conf. Extending

Database Technology (EDBT ’96), Mar. 1996.

[4] B.Liu, W.Hsu and Y.Ma, “Mining association rules

with multiple minimum supports”, Proceedings of the fifth

ACM, SIGKDD conference Sandiego,CA,USA,August

15-18,1999,P.341

[5] M.J. Zaki, “Efficient Enumeration of Frequent

Sequences,” Proc. Seventh ACM Int’l Conf.

Information and Knowledge Management (CIKM ’98),

Nov. 1998.

 [6] Jen-Wei Huang, Chi-Yao Tseng, Jian-Chih Ou, and

Ming-Syan Chen, Fellow, IEEE: A General Model for

Sequential Pattern Mining with a Progressive Database

IEEE Transactions On Knowledge and Data Engineering

VOL. 20, NO. 9, SEPTEMBER 2008

[7] S Cong, J. Han and D. Padua,“Parallel Mining

of Closed Sequential Patterns,” Proc. 11th ACM

0

20

40

60

80

100

1 2 3 4 5 6 7 8

N
o

 O
f

P
at

te
rn

s

No Of Patterns Vs POI

No Of
Patterns Vs
POI

0

500

1000

1500

2000

2500

3000

1 2 3 4 5 6 7 8

Ti
m

e
 T

o
 C

al
cu

la
te

 P
at

te
rn

s
(m

se
c)

Time Variation for Ms-
spade vs Spade

Time for
MS-SPADE

Time
SPADE

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 5, No 1, September 2012
ISSN (Online): 1694-0814
www.IJCSI.org 291

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

SIGKDD Int’l Conf. Knowl- edge Discovery and Data

Mining (KDD ’05), pp. 562-567, Aug. 2005.

[8] J. Wang and J. Han, “Bide: Efficient Mining of

Frequent Closed Sequences,” Proc. 20th Int’l Conf.

Data Eng. (ICDE ’04), pp. 79-91, 2004.

[9] X. Yan, J. Han, and R. Afshar, “Clospan: Mining

Closed Sequential Patterns in Large Datasets,”

Proc. Third SIAM Int’l Conf. Data Mining (SDM

’03), pp. 166-177, May 2003.

[10] M.N. Garofalakis, R. Rastogi, and K. Shim,

“Spirit: Sequential Pattern Mining with Regular

Expression Constraints,” Proc. 25
th
 Int’l Conf. Very

Large Data Bases (VLDB ’99), pp. 223-234, 1999.

[11] C. Luo and S.M. Chung, “Efficient Mining of

Maximal Sequential Patterns Using Multiple

Samples,” Proc. Fifth SIAM Int’l Conf. Data Mining

(SDM), 2005.

[12] H.Cao, N .Mamoulis, and D.W. Cheung,

“Mining Frequent Spatio-Temporal Sequential

Patterns,” Proc. Fifth Int’l Conf. Data Mining (ICDM

’05), pp. 82-89, Nov. 2005.

[13] J.-K. Guo, B.-J. Ruan, and Y.-Y. Zhu, “A Top-

Down Algorithm for Web Log Sequential Pattern

Mining,” Proc. Ninth Pacific-Asia Conf. Knowledge

Discovery and Data Mining (PAKDD), 2005.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 5, No 1, September 2012
ISSN (Online): 1694-0814
www.IJCSI.org 292

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

