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Abstract 

Although there may be lot of research work done on sequential 

pattern mining in static, incremental, progressive databases, the 

previous work do not fully concentrate on support issues. Most of 

the previous approaches set a single minimum support threshold for 

all the items or item sets. But in real world applications different 

items may have different support threshold to describe whether a 

given item or item set is a frequent item set.  This means each item 

will contain its own support threshold depends   upon various 

issues like cost of item, environmental factors etc. In this work we 

proposed a new approach which can be applied to any algorithm 

independent of  whether the particular algorithm may or may not 

use the process of generating the candidate sets for identifying the 

frequent item sets. The proposed algorithm uses the concept of 

“percentage of participation” instead of occurrence frequency for 

every possible combination of items or item sets. The concept of 

percentage of participation will be calculated based on the 

minimum support threshold for each item set. Our proposed 

algorithm by name “MS-SPADE”, which stands for Multiple Support 

Sequential Pattern Discovery using Equivalent classes , which discovers 

sequential patterns  b by considering different multiple minimum 

support threshold values for every possible combinations of item or 

item sets. 

Keywords 

Multiple minimum supports, sequential patterns, Percentage of 

participation, Frequent Patterns 

1. Introduction 

Sequential Pattern mining is one of the most important 

research issues in data mining.  Which was first 

introduced by Agarwal and Srikanth [2] and can be 

described as follows:  we are given a set of data sequences  

 

 

 

 

which will be used as input data.  Each sequence consists 

of a list of ordered item sets containing a seta of different  

items.  The sequential pattern mining finds all Sub 

sequences with frequencies lower than min support which 

is given by user. After that there have been a significant 

research work was done by various researchers on 

sequential pattern mining and defined number of 

algorithms not only for static data base [2],[3] Where data 

do not change over time but also for incremental data 

bases[6] where there will be new data arriving as the time 

goes by. In addition to above researchers some other 

researchers derived other kind of sequential patterns like 

closed sequential patterns [7], [8], [9].  Constraint 

sequential pattern [10] maximal sequential patterns [11]  

spatio temporal sequential patterns [12]. Sequential 

pattern on specific type of data [13] on stream data. But 

all the works which was discussed above are by 

considering uniform min.sup 

But considering uniform min.sup, implicitly assumes that 

all items in the data base have similar frequency. However 

some items may appear very frequently in the data base 

while other rarely appears.  Under such circumstances, if 

we set the value of min support too high we will not find 

those rules involving rare items in the data base.  On the 

other hand if we set that value too low, it will generate 

huge amounts of meaningless patterns.  Therefore lieu 

et.al [4] first address this and propose the concept of 

multiple minimum supports (MMS in Short)in association 

rule mining.  In this study we first extend the definition of 

sequential pattern by considering the concept of MMS, 

which allows users to specify multiple min.sup for each 

item.  Items with low frequencies will be specified with 
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lower minimum support and pattern involving these items 

can be easily retrieved for further decision support. 

But the major problem on frequent pattern mining with 

MMS is that the downward closure property no longer 

holds in the mining process, which means that a super-

pattern of an infrequent pattern might be frequent pattern. 

To effectively reduce the search space in a level –wise 

methods, Liu.et.al proposes the sorted closure property, 

where all item in data sets are sorted in ascending order by 

their MIS values. The sorted closure property however is 

invalid in sequential pattern mining since the order in the 

data sequences cannot be altered. Therefore to discover 

complete set of sequential patterns with MMS is not 

straight forward. Based on the new definitions of 

sequential patterns with MMS, we first proposed the 

concept called Percentage of participation (POP) where 

POP is the percentage of participation of the item or item 

set with respect to the  no of sequences in the POI i.e. |Db| 

and minimum item support (MIS). 

The structure of this paper as follows. In section 2, we 

first review the concept of SPADE as the basis of our 

approach. Section 3 introduces the definition of the  

sequential pattern mining with multiple minimum 

supports (MMS) by involving the Percentage of 

participation (POP).Our algorithm called MS-SPADE will 

be discussed in section 4. Result analysis was organized in 

section 5 and we have conclusion in section 6. 

2. Related work 

 

Mohammed J.Zaki  proposed an  algorithm which works 

for mining of sequential patterns in static data bases by 

utilizing combinational properties to decompose the 

original problem in to smaller sub problems . The smaller 

sub problems can be independently solved in main 

memory using efficient lattice search techniques and using 

simple join operations. By using the SPADE algorithm 

they discovered all the frequent sequences within three 

database scans. It avoids the process of making repeated 

scans for every k-sequence so that improve the efficiency 

of the processes in terms of time and space. The SPADE 

not only decreases the no of scans and avoids the complex 

hash structure which have poor locality. The inputs of 

sequential pattern mining by SPADE are the set of atoms 

of sub- lattice S, along with their id-list and user-defined 

minimum support threshold. The algorithm SPADE will 

work on the following three features. 

 

1. We use a vertical id-list database format, where we 

associate with each sequence a list of objects in which it 

occurs, along with the time-stamps. We show that all 

frequent sequences can be enumerated via simple 

temporal joins (or intersections) on id-lists.  

  
2. We use a lattice-theoretic approach to decompose the 

original search space (lattice) into smaller pieces (sub-

lattices) which can be processed independently in main-

memory. Our approach usually requires three database 

scans, or only a single scan with some pre-processed 

information, thus minimizing the I/O costs.  

 

 
3. We decouple the problem decomposition from the 

pattern search. We propose two different search strategies 

for enumerating the frequent sequences within each sub-

lattice: breadth-first and depth-first search.  

 

 

 

  

 

 

 

Figure 1:Example Data Base 

For the above example shown in figure1 the algorithm 

SPADE constructs the candidate sets as follows which is 

shown in Figure2 (a) and Figure 2(b). 

 

Figure 2(a):ID List for example database 
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Figure 2(b):Id list for temporal items 

To find frequent sequences S P A D E  i s  using efficient 

lattice search techniques and simple joins.  All the 

sequences are  discovered  with  only  three  passes  over  

the  database, it  also decomposes  the mining problem 

into smaller sub problems, which can be fitted in the 

main memory. 

  

In  this  approach,  the  sequential  database is 

transformed into  a vertical  id-list database format,  in 

which each id is associated  with  corresponding items  

and  the time  stamp.   The vertical database of figure 1 is 

shown in figure 2(a).  For item A, the  support  count  is 

4, it  occurs  with  SID 1, 2, 3 and  4 at  EID  15,15,10 

and 25 respectively.  By scanning the vertical database, 

frequent 1-sequences can be generated with the 

minimum support.   For the 2-sequences, the original 

database is scanned again and the new vertical to 

horizontal database is created by grouping those items 

with SID and in increase order of TID. The result 

vertical to horizontal database is shown in figure 2(c).  

By scanning the vertical to horizontal da t a ba se  2-

sequences are generated. All the 2-item sequence 

found are used to construct the lattice, which is quite 

large to be fitted in main memory.  However the lattice 

can be further decomposed to different classes, 

sequences that have the same prefix items belong to the 

same class.   By decomposition t h e  lattice i s  

partitioned into small partitions that can be fitted i n  

main memory.   During the third s c a n n i n g  o f  the 

database all those longer sequences are enumerated 

by using temporal join  

. 

There  are two methods  of enumerating frequent 

sequences  of a class:  Breadth- First  Search (BFS) and 

Depth-First Search (DFS).  In BFS the classes are 

generated in a recursive bottom-up manner.  For 

example to generate  the 3-item sequences all the 2-

item sequences have to be processed, but in DFS only 

one 2-item sequence and a k-item  sequence are further  

needed  to generate  (k+1)-item sequence.  BFS need 

much bigger main  memory  to store  all the  consecutive  

2-item  sequences, but  DFS just need to store the last 

2-item sequence of the newly generated k-item 

sequences. However BFS has more information to 

prune  the  candidate k-item  sequences, and the  

possibility  of being large of those  sequences generated 

by BFS is much bigger than  those  generated by DFS.  

All the  k-item  patterns are discovered  by temporal or 

equality  joining the frequent (k-1)-item  patterns which 

have the same (k-2)-item prefix, while there are three 

possible joining results as candidate generation  process 

in GSP   [Srikant and Agrawal 1996], the Apriori 

property  pruning  technique  is also employed in 

SPADE. 

 

 

Figure 2(c) Vertical to horizontal database recovery 

 

Before this many researchers have developed various 

methods to find frequent sequential patterns with a static 

database. Apriori All [2], GSP [3] are the milestones of 

sequential pattern mining algorithms based on traditional 

association rules mining technique. Han et al. and Pie et 

al. brought up Free Span and Prefix Span, which found 

sequential patterns by constructing sub databases of the 

entire database. Zhang et al.  proposed two algorithms  

GSP+  and   MFS+  based   on  static   algor ithms GSP 

and  MFS  (also  derived by  the  same  authors).But as 

discussed early in section1 all the researchers 

considered uniform min.sup to describe whether the 

sequence is frequent or not. 

 

3. Problem Definition 

 

In this section, we formally give definitions used in the 

discovery of sequential pattern with MMS. Let I denote 

the set of items in the database, and a subset of I is called 
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an item set. A customer’s data-sequence is an ordered list 

of items with time stamps. Therefore, a sequence, say α, 

can be represented as <(a1: t1), (a2: t2), (a3: t3), …, (an: 

tn)>, where a j is an item, and tj  stands for the time when 

aj  occurs, 1≤ j≤n, and tj-1≤tj for 2≤j≤ n. 

If several items occur at the same time in tj for 2 j the 

sequence, they are ordered alphabetically. 

  

Definition 1. Given an item set Iq = (i1, i2...im), we say 

item set Iq occurs in α if integers 1≤k1 < k2 <…< km ≤n 

exist such that, i1 = ak1, i2 = ak2,... ,im = akm  and tk1= tk2=...= 

tkm. We refer to k1 and tk1 jointly as the position and the 

time that Iq occurs in α, respectively. 

 

Definition 2. Let β = <I1, I2...Is> (Iq subset or equal to I for 

1 ≤q≤ s) be a sequence of item set. Assume that each Iq in 

β occurs in α. Then we say sequence β occurs in α, or is a 

subsequence of α if tI1 < tI2<...< tIs, where tIq (1≤ q ≤s) is 

the time, at which Iq occurs in α. 

 

Definition 3. A sequence database S is formed by a set of 

records <sid, s >, where sid is the identifier of this data-

sequence and s is a data-sequence. For a given sequence β, 

the support count of sequence β in S are defined as 

follows: 

 

supp (β) = |{(sid, s)| (sid, s) ЄS ^β is a subsequence in s}| 

 

The following definitions are related to the concept of 

MMS. In this model, the definition of the minimum 

support is changed. Each item in the database can have its 

minsup, which is expressed in terms of minimum item 

support (MIS). In other words, users can specify different 

MIS values for different items. 

 

Definition 4: Let MIS (i) denote the MIS value of item i (i 

subset or equal to I). Given an item set Iq = (i1,i2,...,im), the 

MIS value of item set Iq = (i1,i2,...,im) (1≤ k ≤m), denoted 

as MIS(Iq), is equal to:    

 

           min [MIS (i1), MIS(i2),…, MIS(im)] 

Definition 5: Given a sequence β = <I1.I2...Is>  

(Iq subset or equal to I for 1≤ q≤ s), the minimum support 

threshold of β, denoted as MIS (β), is equal to: 

 

  min [ MIS(I1), MIS(I2),…, MIS(Is)] 

Definition 6: Given a sequence database S and a sequence 

β, we call β is frequent in S or β is a sequential pattern in S 

if supp (β) ≥MIS (β). 

 

Definition 7: Let I be an item or item set and MIS (I) be the minimum item support threshold of item I. |Db
p,q

| is the 

number of sequences In the POI. Timestamps between p ,q. 

 

  Percentage Of Participation(POP) = 100/ |Db
p,q

|* MIS(I) 

                                           

With the provision of different minimum item support 

thresholds for different items, user can effectively express 

different support requirements for different data-

sequences. MMS allow users to have higher minimum 

supports for sequences involving high frequent items, and 

also allows us to have lower minimum supports for 

sequences involving rare items. Given a sequence 

Database S and a set of MIS values for all items in S, we 

discover all sequential patterns that satisfy MIS (β). 

 

4. The Proposed Algorithm 

SPADE: Algorithm design and implementation 

 
In this section we describe the design and 

implementation of MS-SPADE. Figure 4(a) shows the 

high level structure of the algorithm.  The main steps 

include the computation of the frequent 1-sequences and 

2-sequences, the decomposition into prefix-based parent 

equivalence classes, and the enumeration of all other 

frequent sequences via BFS or DFS search within each 

class. We will now describe each step in some more detail. 

 

 

 

MS-SPADE (pop, D); 

F1= {frequent items or 1-sequences}; 

F2= {frequent 2-sequences}; 

E= {equivalence classes [X] Ω1}; 

for all [X] €E do Enumerate –Frequent-set ([X]; 

 

Figure 4(a): Algorithm MS-SPADE 
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2 

Algorithm POP (Items, MIS(I)) 

1. var POP; 

2. var I, Imin;// Items 

3. For (all combinations of items in the ele); 

4. If (No of items >1); 

5. Check and identify the item Imin having less support; 

6. POP (ele)=100/|Db
p,q

|*MIS(Imin): // |Db
p,q

| is no of 

sequences from p to q 

7. else 

8. POP (ele)=100/|Db
p,q

|*MIS(I): // |Db
p,q

| is no of 

sequences from p to q 

 

END 

 

Figure 4(b): Algorithm for Percentage of Participation 

 

3.1.Computing frequent 1-sequences and  

2-sequences 

 
Most of the current sequence mining algorithms assume a 

horizontal database layout such as the one shown in figure 

1. In the horizontal format the database consists of a set of 

input-sequences. Each input-sequence has a set of events, 

along with the items contained in the event. In contrast 

our algorithm uses a vertical database format, where we 

maintain a disk-based id-list for each item, as shown in 

figure 2(a). Each entry of the id-list is a (sid,eid ) pair 

where the item occurs. This enables us to check support 

via simple id-list joins. 
 
Computing POP: For computing pop of the elements we 

first check the no of items for the element, if the no of  

items are more than  one then the algorithm consider the 

MIS value of  item which is having least .Then it will 

calculate the Pop. For example if the element is AB or A-

>B and the MIS values are 0.2 and 0.3 then the MIS of 

element is 0.2. Then the pop will be 100/0.2 * no of 

sequences i.e. 100/0.2*4 =125 % for it’s each occurrence. 
 
Computing F1:   Given the vertical id-list database, all 

frequent 1-sequences can be computed in a single 

database scan.  For each database item, we read its id-

list from the disk into memory. We then scan the id-list, 

incrementing the pop for each new sid encountered as 

shown in figure 4(d) for the example shown in figure 

1.But here we are taking the values of min.sup for 

A,B,C,D,E,F,G and H are 4,3,2,4,1,3,2 and 2. We are 

considering an item as a binary variable. We consider only 

once per each sequence occurrence. 

 

Computing F2:   Let N2 = |F1 | be the number of frequent 

items, and A the average id-list size in bytes. A naive 

implementation for computing the frequent 2-sequences 

requires id-list joins for all pairs of items.  The amount of 

data read is A · N · (N − 1)/2, which corresponds to 

around N /2 data scans. This is clearly inefficient. Instead 

of the naive method we propose two alternate solutions: 
 
 
1. Use a preprocessing step to gather the pop of all 2-

sequences above a user specified lower bound.  Since this 

information is invariant, it has to be computed once, and 

the cost can be amortized over the number of times the 

data is mined. 

 

2. Perform a vertical-to-horizontal transformation on-the-

fly. This can be done quite easily, with very little overhead.  

For each item i , we scan its id-list into memory.  For 

each (sid, eid) pair, say (s, e) in L(i ), we insert (i, e) in 

the list for input-sequence s.  For example, consider the id-

list for item A, shown in figure 7. We scan the first pair (1, 

15), and then insert ( A, 15) in the list for input-sequence 

1. Figure 2(c) shows the complete horizontal database 

recovered from the vertical item id-lists.  Computing F2   

from the recovered horizontal database is straight-

forward. We form a list of all 2-sequences in the list for 

each si d, and update pop in a 2-dimensional array indexed 

by the frequent items. 

 

4.2. Enumerating frequent sequences of a class 

 
Figure 4(c) shows the pseudo-code for the breadth-first 

and depth-first search.  The input to the procedure is a set 

of atoms of a sub-lattice S, along with their id-lists.  

Frequent sequences are generated by joining the id-lists of 

all pairs of atoms (including a self-join) and checking the 

cardinality of the resulting id-list against POP. Before 

joining the id- lists a pruning step can be inserted to ensure 

that all subsequences of the resulting sequence are 

frequent. If this is true, then we can go ahead with the id-

list join, otherwise we can avoid the temporal join.  The 

sequences found to be frequent at the current level form 

the atoms of classes for the next level.  This recursive 

process is repeated until all frequent sequences have been 

enumerated.  In terms of memory management it is easy 

to see that we need memory to store intermediate id-lists 

for at most two consecutive levels. The depth-first search 

requires memory for two classes on the two levels. The 

breadth-first search requires memory of all the classes on 
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the two levels. Once all the frequent sequences for the 

next level have been generated, the sequences at the 

current level can be deleted. 

 

Enumerate-Frequent-Seq (S); 

 for all atoms Ai Є S do 

      Ti= $; 

       for all atoms Aj Є S, with j ≥ I do 

  R=Ai V Aj; 

             If (Prune (R) == FALSE) then 

                 L(R) =L (Ai) ∩ L (Aj); 

          If total.POP (R) ≥ 100 then 

  Ti =Ti U {R}; F|R| = F|R| U {R}; 

end 

if (Depth-First –Search) then Enumerate-Frequent–Seq 

(Ti); 

end 

if (Breadth-First –Search) then  

for all Ti ≠ $ do Enumerate - frequent-Seq (Ti); 

 

Figure 4 (c): Pseudo code for breadth-first and depth-first 

search 

 

A 

 

B 

SID EID POP 

 

SID EID POP 

1 15 25 

 

1 15 33.3 

1 20   

 

1 20   

1 25   

 

2 15 33.3 

2 15 25 

 

3 10 33.3 

3 10 25 

 

4 20 33.3 

4 20 25 

     

E 

 

F 

SID EID POP 

 

SID EID POP 

2 20 100 

 

1 20 33.3 

    

1 25   

    

2 15 33.3 

    

3 10 33.3 

    

4 20 33.3 

Figure 4 (d): Id –lists for atoms of frequent 1-sequence with pop 

  

5. Result Analysis 

 

Our proposed algorithm is very effectively working for 

test dataset and we have analyzed the test dataset for 

different parameters like period of interest, execution time 

etc. 
 
 
 

5.1 Impact of period of interest (POI) on execution 

time 
 
Execution time is the time required to execute all the 

instructions in the proposed algorithm. Here we can 

observe that  the execution time will  increase a 

l it tle bit with respect to the t ime taken for 

identifying the item having minimum MIS 

value. For this we applied the quick sorting 

technique .It can be noted that execution time is 

directly proportional to POI. The reason is that, the 

increase in POI required more time for process as the no 

of new elements will be added to the existing one. 

Figure 5(a) shows the impact of POI over the execution 

time. 

 

Figure 5(a) 

 

5.2       Impact of POI over number of patterns 
 
 
Number of patterns is dependent on per iod  of interest 

a. As from F i g 5 ( b )  we can see that as the period of 

interest increases, the number of patterns also increases. 

This is because as the period of interest increases, the 

algorithm has more items to process and so they give 

more number of patterns.  
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Figure 5(b) 

5.3     Comparison between MS-SPADE and SPADE in 

terms of time in progressive database 
 
 
Generally mining frequent sequential  patterns 

with multiple minimum supports will  take more 

t ime when compared with mining frequent 

sequences with uniform support .  In case of 

percentage of participation (POP), the time for 

execution of Ms -SPADE  will  take l it tle bit 

more time than the SPADE. The difference of 

t ime between these two will  be the time for 

identifying the i tem having minimum MIS value 

from the newly arriving element and 

accumulating the POP. We can observe the 

difference in the Figure5(c). 

 

 

 
 

Figure 5(C) 

6. Conclusion 

 The proposed  MS SPADE algorithm works efficiently  

by using the concept of percentage of participation (POP) 

for mining frequent sequences with multiple minimum 

supports. Even though the algorithm is taking little more 

time for execution when compared with SPADE (which 

finds the frequent sequential patterns considering uniform 

min.support for different items), it works on frequent 

sequences with multiple minimum supports for different 

items. As the  algorithm is finding the sequences with 

multiple minimum supports we can ignore the little 

increase in time of execution. But in order to calculate the 

POP of all candidate sequential patterns, it keeps all the 

candidate sets for all sequences. This involves huge 

memory usage and involves lots of computation time.                           
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