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Abstract 
In this paper, we have presented an innovative 
methodology to convey connection between physical and 
mechanical properties of lung tissue in some lung cancer 
diseases. It is proposed in this method to combine 
computed tomography (CT) medical images, image 
processing and Finite Element (FE) technique to grasp the 
patient lung tissue response under gradual stages of lung 
cancer. Finite Element models based on lung CT images 
of different patients are used to analyse the real behaviour 
of lung tissue and detect the difference between 
mechanical parameters in both normal and pathologic 
cases. Results show that normal lungs display distinct 
superiority in strength, and expansion properties. It is also 
notable that we have present new mechanical parameters 
to clearly describe the evolution of different patient’s lung 
cancers cases. Investigating lung cancer using such 
techniques is very promising to enhances data monitoring 
towards the development of automated diagnosis systems.  
Keywords: Computed Tomography, Lung cancer, Image 
processing, Finite Element Analysis. 
 
 
1. Introduction 
 
In biomechanical simulation, finite element method 
(FEM) has been considered to be one of the best tools for 
modeling objects with complex geometry, various 
materials, complex loading paths and boundary 
conditions, such as the human tissues [1-10]. In previous 
studies dealing with FEM in biomechanical simulation 3D 
models have been mostly involved. These models are 
sometimes complicated, time consuming and do not 
converge obviously with realistic behavior of biologic 
organs behavior. We are presenting here a new numerical 
2D FEM based model on the basis of actual CT 
biomedical images to investigate the correlation between 
stresses developed in the biomechanical lung tissue at the 
vicinity of infected tissue and various steps evolution of 
lung cancer disease. This study was conducted based on 
data from patients with different gender and age, who are 
presenting the same lung pathology. In fact, we are 
interested with lung cancer because it is responsible in 
most deaths for both men and women; it is the most 
deadly form of cancer death. Smoking, exposure to 
passive smoking and practice of certain professional 

activities inside contaminated environments with radon, 
uranium, arsenic, nickel, chromium, tars etc, are known to 
be at the origin of most lung cancer diseases. 
In this article we are dealing with a new FEM based 
methodology to predict the evolution of pulmonary lung 
disease, in the particular lung cancer pathology. In this 
approach the medical CT images with conjunction with 
image data processing have been used as a strong support 
to build the FEM model and to create correlation rule 
between FEM issued results and the evolution stages of 
the lung cancer disease. This study can be very useful in 
the medical applications to make a rapid predictive 
pathway tool of some diseases evolution.  
Medical images of lung cancer have been loaded using 
Matlab software, where the boundaries of special parts 
have been marked using adequate image filtering and 
markers. Abaqus commercial code has been used to 
assemble the different organs presented in the CT images 
as parts which are prepared previously and then, imported 
using CATIA software. Imported parts simulating organs 
have been embedded into the whole model and 
quadrilateral reduced integration elements have been used 
to mesh the different parts. Material properties have been 
obtained from data in the literature [9-10]. Thus, in this 
investigation, simulations are used to analyze the Von 
Mises effective stress distribution, strains and the 
maximum principal stresses in the various lung regions. 
Moreover, the overall stresses and strains in the different 
tissues are calculated. We have conclude after comparison 
between different simulations that in overall examined 
cases, a concentrated relative high stress level is noticed at 
the vicinity of lung cancerous tissues. Nevertheless, it is 
also remarked a correlation between the evolution size of 
the lung cancerous tissue and the effective stress in the 
lung tissue. Description of the different steps toward final 
results and details of calculation are described in the 
following sections. 
 
2. Interest of this work for the medical 
imaging 
 
CT images can produce a huge amount of data, a typical 
CT dataset that is used for pulmonary embolism diagnosis 
can have more that 500 slices, the size of the smallest 
visible volume being in the order of magnitude of one 
millimeter. Computer aid can provide main goal by 
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decreasing the time required to perform an exam, and 
acting also as a safety measure for radiologists. In this 
work we are proposing a complementary tool to enhance 
the expertise of radiologist and to contribute to the 
development of automated diagnosis systems.  
 
Cancers that develop in the lung may arise from a 
bronchial cell that has been developed: those lung cancers 
are then classified as primitive lung cancers. They are also 
classified into two subfamilies of primitive lung cancers: 
according to their cells size, they have different clinical 
presentation and radiological treatment. Small cell cancers 
represent 15% of lung cancers they are called 'SC (small 
cells)' and non-small cell cancers that are now 85% of 
cases identified by 'NSC'. In other cases, lung cancer can 
be a metastasis of a primary cancer developed previously 
in another organ; the lung indeed constitutes the first 
target organ for metastasis. In this work we are interested 
with lung cancer due to metastasis of primary cancer. In 
essence, the method should be able to tell where potential 
regions of risk exist in the medical image, where lung 
cancerous tissues are highly probable, and that the 
physician can in order carefully validate the presence or 
absence of lung cancer. 
 
 
3. Image processing methodology 
 
The principle image processing work in this paper takes 
the form of framework, where CT images of lung cancer 
from different patients are collected, segmentation of 
thorax organs was computed, then, lung cancerous tissues 
were detected and then the detection results are evaluated 
against the same detection process made by a radiologist.  
Segmentation of lung cancer images is a challenging task 
by itself, because of the particular shapes of thorax 
complexity of organs, which are stretched out and multi-
scale structures. The main difficulty of lung cancer images 
segmentation is that the lung cancerous tissue is 
surrounded by other tissues, and it shares sometimes a lot 
of characteristics with other organs tissues. For these 
reasons, we have tested various techniques used in image 
segmentation processing, then we have choose a novel 
application based on active contour method which is based 
on the energy criterion. In this segmentation technique 
different algorithms can be used, the Caselles algorithm 
[10], have been selected in this work because it has 
allowed the best convergence for the overall CT image 
presented in this study. This method works by growing a 
wave front from an initial simple shape that is set inside 
the lung cancer by a radiologist, and the interest of this 
application is in the way this wave is guided by advanced 
information, that is, the priori knowledge of the non lung 

cancerous organs shape [11], this method is build based on 
energy criterion. The used algorithm is a contour-based 
method i.e. the gradient of the image is used to compute 
the force function. The curve will thus be driven to 
regions with high gradient. 
This method does not require any regularization term as it 
is intrinsic to the method. It is implemented as a signed 
distance function and is reinitialized every iteration. The 
specific parameter of this algorithm is the number of 
iterations that can be tuned all depends on the surface of 
the contour. 
Contour detection technique of the lung cancer tissue used 
in this survey found the majority of contours with a good 
accuracy. We are giving now some examples from 
medical lung cancer data sets considered in this work, 
using CT images. The scan images are collected from 
Salah Azaiez National Cancer Institute of Tunisia 
database. Patients have body mass index (BMI) between 
25 and 40. Figure 1 gives a scheme of the prospects that 
permits not only a quantitative but also a visual 
assessment of the method, illustrating the detection 
contour of the affected cells. Figures 2 to 7 prove the 
different steps of detecting contours for different cases. 
Some measures are being possible using Matlab programs 
and they have been used to build sketches of different 
models.  

 

 
Fig 1 Prospects scheme for a more precise reconstruction: refinement of 

the segmentation by active contours 
 

 
Fig 2 (a) CT image of patient (P_1) with Caselle segmentation algorithm 
[10] to highlight cancerous tissues, (b) edges and borders of the original 

plot of this patient. 
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Fig 2 (a) CT image of patient (P_1) with Caselle segmentation algorithm 

[10]  to highlight cancerous tissues at advanced stage, (b) edges and 
borders of the original plot for the patient. 

 

 
Fig 3 (a) CT image of patient (P_2) with Caselle segmentation algorithm 
[10]  to highlight cancerous tissues, (b) edges and borders of the original 

plot.  
 

 
Fig 4 (a) CT image of patient (P_2) with Caselle segmentation algorithm 
[10]  to highlight cancerous tissue, at advanced stage with development 

and presence of a tumour mass with invasion of bone. (b) Edges and 
borders of the original plot of the patient. 

 

 
Fig 5 CT of patient (P_2) with Caselle segmentation algorithm [10]  to 

highlight cancerous tissues, at advanced stage. Pleural effusion 
associated with nodular lymphadenitis. The figure shows the contour of 

the pleural effusion with red colour. 
 
 
 
 
 

 
Fig 6 (a) CT image of patient (P_3) with Caselle segmentation algorithm 
[10] to highlight cancerous tissue.  It is noticeable the presence of highly 
developed lymphadenopathy. (b) Edges and borders of the original CT 

image plot of this patient. 
 

 
Fig 7 (a) CT image of patient (P_3) with Caselle  segmentation algorithm 
[10] to highlight cancerous tissue after one month from the initial saved 

stage. It is noticeable the presence of highly developed 
lymphadenopathy. (b) Edges and borders of the original CT image plot 

of a patient. 
 

 
Fig 8 Sketch of the 2D CT image reproduction ttransforming pixels to 

data matrix before sketching.  
 

The different images presented in this section have 
illustrated a high accuracy of the algorithm used to detect 
cancerous lung tissues at different stages. These results 
were very encouraging but they can be with a high 
usefulness if they can be merged into a technique that 
allow quantitative measurements of the different 
transformations associated to the progressive development 
of cancerous tissues. Thus, this information can be highly 
valuable for lung cancer diagnoses and also post 
treatment. Therefore, we have build different FEM models 
based on transformed CT images to 2D sketches 
reproducing the real shape of different organs and tissues 
with a high accuracy. A linear reduction scale was used to 
be with accuracy with real dimensions of the different 
organs. The following section details the different steps of 
FEM modelling and how we have take advantage within 
those models to promote lung cancer pathology.  
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4. Computational Finite Element modeling 
 
In order to study the real mechanical properties of the 
pulmonary behaviour and distinguished the difference 
between different stages when lung cancerous tissue is 
being developed. A 2D model is established based on the 
anatomy of principle organs drown by the CT medical 
image. The FE model was generated from a CT-image set 
by interactively identifying different tissue groups using 
data image processing described via section.2. Regions of 
interest were identified by appropriate masks and provided 
into a 2D representation as it shown by Figure 8. 
Image-based modelling is prepared then via IGS-format 
parts using CATIA software from images of different 
organ parts, and then imported to Abaqus FE package [12] 
to build the entire assembly of an overall FE model. CT 
Images are captured at 5 cm H2O internal pressures 
showing tissue regions including the smooth muscles and 
the cartilage profiles as shown by Figure 2 to Figure 7.  
Necessary dimensions of different organs are interpolated 
through a sketch deduced from CT images after 
application of contour filtering and data measurements 
within specific algorithms. Figure 16 shows the scheme 
toward transforming the original CT image of one patient 
to a finite element model (FEM), where plane stress 
hypothesis is adopted. Due to the complex anatomical 
structure of some external edges, some simplifying 
assumptions were mandatory. Essentially, the model was 
considered as composed of a cartilaginous zone, a smooth 
muscle zone for lung muscles and smooth connective 
tissue accounting for all the tissues covering the cartilage, 
inner and outer surfaces. The FE conceived models have 
been build from 10 patients’ experimental CT images. 
They were collected for two cancer configurations stages, 
primary stage and advanced one. The patients were 
classified into male or female gender, age, weight and 
BMI factor as it is shown by the Table 1. 
 
Table 1 

 
*M = men, W= women 

 
4.1 Boundary conditions 
 
Boundary conditions were defined at the highlighted 
surfaces Figure (10) and Figure (11): symmetry constraint 
along x direction at surfaces S1 and S2; symmetry 
constraint along y direction at surface S3. Nodal 
displacement in the y and x directions is attributed to 
internal edges (red edge in figure (10)) to simulate the 

deformation of the tissue under the internal pressure that is 
varying from case to case and that is meticulously 
depending on the patient and his healthy state. Typical 
boundary conditions are replicated for all FE models. 
Loading parameter described above, will be discussed in 
further details in the following section. Connection 
between organs is ensured using multipoint constraints 
(MPC) between nodal regions embedded from an organ to 
another. Some external nodes have been fixed to ensure 
the stability of the model during loading. 
 
Loads were assigned to simulate realistic conditions at 
various internal lung pressures applied through successive 
steps. A first step has been used to simulates internal 
normal pressure by attributing nodal displacements in the 
x and y direction, at external free lung surfaces. The 
following load steps simulate uniform pressure loads with 
a parametric pressure value that is varying in the range [5 
to 40 cmH2O], applied at the inner lung surfaces. This 
parameter will be also used further to deduce the 
behaviour of different tissues when simulating the 
evolution aspect of lung cancer. In fact, the measurement 
of the total-respiratory-system Pressure-Volume, has been 
well analysed in reference [13]. Pressure-Volume 
evolution, in normal and pathologic cases has been well 
discussed in this reference and it was demonstrated that 
there is a relation between internal lung pressure and the 
lung disease. This study has been motivating to focus on 
studying the effect of the lung internal pressure on the 
mechanical behaviour of the different organs, for all the 
analyzed cancerous cases.  
 
After each loading step, the deformed configurations and 
the stress distribution in the specific tissues were 
extracted, Figure 10 (a) shows the limit of the free edge in 
the lung cancerous tissue highlighted in red, where 
pressure is applied. This red edge is only associated to 
internal pressure without any other reaction conducted by 
contact with other tissues. Figure 11 (b) is showing a red 
highlighted path that is selected for detecting stresses 
variation along this path. In fact we have designated such 
particular path to extract and represent stresses evolution 
in this region because this path is crossing both 
uncontaminated lung tissues and contaminated lung 
tissues. Stresses distribution due to internal pressure 
variation along this red path can bring information about 
the strength of the lung tissue in both normal and 
pathologic cases and also distinguishes between different 
pathologic cases.  
 

 
Fig 9 Prospects scheme steps toward the 2D FEM biomedical model 

from CT images. 
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Fig 10 (a) boundary conditions; (internal pressure on the free red edge of 

lung tissue) case of patient P_4 at initial stage. 
 
 
 

 
Fig 11(a) boundary conditions and mesh refinement in the model, (b) 

extractions of mechanical parameters along the red path 
 
4.2 Tissues mechanical properties 
 
Concerning the mechanical properties of pulmonary 
tissues for the different patients, the parameters related to 
the materials behaviour were set as based on studies 
carried out in literature review. In fact, both the cartilage 
and soft tissues were assumed to be homogeneous and 
isotropic materials. Soft tissues are assumed as non-linear, 
elastic and nearly incompressible materials. The various 
mechanical parameters are resumed in the Table 2 as it is 
mentioned in the reference [14]. 

 
Table 2 

 
 
 
5. Analyses and discussion 
 
Deformed configurations of the different simulated 
cancerous lungs show that lung responses are strongly 
dependent on the volume of the cancerous lung tissue and 
its shape. Figure 12 (a) and Figure 12 (b) are associated to 
the patient (P_5 in table 1) for both initial and advanced 
cancerous stages. Figure 13 is representing the pressure 
evolution along the loading path described above, for both 
primitive and advanced cancer lung pathology 
corresponding to patient (P_5). These two figures have 

well emphasized the pressure evolution in the described 
path, for both primary and advanced stages. It is well 
established a rapid increase in the pressure values in 
cancerous tissues. Thus, in the case of advances cancerous 
stage, the pressure is higher in overall tissues and also the 
slope of the trend pressure curves is mostly higher then 
initial case. This fact can be associated to the rigidity 
increasing in the pulmonary cancerous tissue that is 
acquired as an additional amount of mass tissue is 
significantly occurring. Also, the drop of pressure is due 
to wider internal contact surface between both soft and 
contaminated lung tissue, which is due to the larger mass 
of cancerous tissue. In turn, when the internal pressure 
load is increasing, the overall stresses are increasing also 
in the same way. Indeed, it is well shown that the stress 
amplitude is also increasing almost in the same way as 
pressure. According to the model presented by figure 14, 
and simulating earliest cancerous stage of patient P_6, it is 
remarked that at the vicinity of the contaminated tissue the 
gradient of stresses is being changed. Thus, the downfall 
of stress curves for various pressure values is 
characterized with a law rate. A small concentrated stress 
field appears in many parts of the model, in particular at 
the vicinity of abrupt changes in the lung tissue shape. 
Figure 15 is representing stresses along the normal path 
(highlighted in red) from the FE model illustrated by 
Figure 14, it shows similar downfall behavior for all 
internal pressure values. A stress representation for the 
advanced cancer stage of patient P_6 is also exemplified 
by Figure 16. We can conclude that, the existence of 
cancerous lung tissue reduces the mechanical resistance of 
the lung. But this collapse is depending on the amount of 
contaminated lung tissue and the mass distribution in the 
lung.  
 
The stress-distance curves are plotted for every one of the 
simulated cases. The maximum principal stresses in the 
lung tissue for various patients are simulated at the earliest 
cancerous stage and advanced one, with internal pressure 
of 5 cm H2O. Those values are variable and they are 
meticulously depending on the contaminated lung surface 
or volume, the cancerous mass concentration, the gender 
and the BMI of patients and so on. If we decide to take 
advantage from the simulation investigation, we have to 
consider new independent variables that can bring 
correlated information indicating the severity of the 
disease and to compare between patients state evolution. 
This could put in light the behavior of cancer lung disease 
and then enhance therapeutic medicine. Hence, it is 
noticed that only the ribs and muscle display appreciable 
values for mechanical stresses; the stresses in the 
connective tissues are almost negligible, that is due to the 
fact that these tissues are assumed to be large deformable 
materials.   
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Fig 12 stresses along the different parts of the model, patient P_5 at 

earliest cancerous stage (a) and (b) at cancerous advanced stage. 
 

 
Fig 13 stresses vs distance for the different pressure values, patient P_5, 

at earliest cancerous stage (a), and advanced cancerous stage (b). 
 

 
Fig 14 (a) pressure plotted along the different tissues, (b) Mises stresses 

along the different parts of the model patient P_6. 
 

       
Fig 15: Stresses vs distance for the different pressure values. (Patient P_6 

at earliest stage) 
 

 
Fige 16: Stress evolution during different steps of pressure loading, 

evolution of stresses distribution according to pressure values (patient 
P_6) 

 
5.1 First FE parametric analyses 
 
The quasi-static pressure-volume P-V relationship is one 
aspect of lung mechanical behavior that was used in many 
researches to obtain information about how lungs deform 
during breathing in health and disease. Moreover, the PV 
curves have been widely studied in various pathological 

cases but adapted especially for intense respiratory trauma 
distress. Several theoretical and experimental works have 
attempted to explain the nature of the pressure volume 
curves P-V when breathing is forced [13-17]. But, access 
to the real interaction between the lung and the chest wall 
and other organs under the effect of pressure change was 
always difficult and it is still poorly mastered by clinicians 
and experimentalists. We have attempted to explain the 
relation between pressure and volume variation in the case 
of cancerous lungs, based on a simulation approach that 
takes into account interaction between the different 
thoracic organs.  
So far, to study the evolution of remarkable characteristics 
of lung cancer at various stages accordingly to different 
internal pressures values, we have investigated in this first 
parametric numerical study, the evolution of lung volume 
firstly, and the BMI parameter secondly. As far as we are 
dealing with 2D CT images, we have introduced the 
concept of unit volume fraction within the hypothesis that 
this volume corresponds to surface per unit length. Two 
volume fractions are introduced via two parameters 
denoted; Vfds (volume fraction of deformed shape) and 
Vfads (volume fraction of advanced deformed shape). 
These two ratios are defined respectively; as follows: 
First, the Vfds ratio refer to the ratio of  lung tissue 
characteristic surface, contaminated with carcinogenic 
cells, divided by the lung surface characterizing the initial 
lung state.  
Vfds = final deformed contaminated surface/ initial lung 
surface               (1) 
Secondly, the Vfads ratio that denotes the ratio of the final 
deformed contaminated surface at advanced lung 
cancerous stage divided by the initial lung surface. 
Vfads = final deformed contaminated surface at advanced 
lung cancerous stage/ initial lung surface   (2) 
 
In fact, the FEM can provide calculation of surfaces for 
deformed and non deformed lung shape but if we consider 
a surface per unit thickness, we can transform this area 
ratio into volume ratio. So both ratios are being 
characteristic of a unit volume of the lung. 
The FE simulation that we have presented in this study 
deals with different values of predefined internal pressure 
(Pi). The choice of the internal pressure spectrum which is 
varying in the range [10 to 40 kPa] was established based 
on experimental considerations involved in different 
references [13-17]. In fact, authors in reference [13], have 
studied the impact of pressure evolution in the thorax on 
the lung volume evolution for normal and pathologic cases 
and they have examine the interest of P-V curves based on 
experimental data. As far as we are interested with 
behavior of cancerous lungs, we have considered the 
following analysis. 
The methodology of calculation applied at this step 
consists on determining the evolution of lung volume in 
two stages. The first stage is the study of the lung volume 
evolution with primary infected lung tissue versus 
pressure. To make an independent lung volume parameter 
that can be applied to different patients without 
considering their lung geometric shape, we have defined 
in this case curves corresponding to variation of Vfds 
parameter and pressure Pi (Pi = 10, 20, 30, 40 kPa). In a 
second stage, we have determined the changes in lung 
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volume of a cancerous lung within an advanced stage and 
the pressure Pi, so that we have outlined the Vfads 
parameter versus pressure Pi. We have then compared 
these two developments for different patients and we have 
established the following conclusions: 
The evolution of the lung volume ratio is increasing 
almost linearly with pressure as it is shown by figure 17. 
Indeed, for different patients and for both configurations 
of a primary stage cancer and advanced one, the volume 
fraction increases when the pressure increases. This FE 
finding is in concordance with the experimental results 
due to reference [13]. 
 We have attempted also to classify the volume fractions 
as a function of BMI associated to both configurations, 
primary lung cancer stage and advanced stage. We have 
found a decreasing trend of volume ratio as a function of 
BMI, (figure 18 and figure 19) this finding also meet 
results established experimentally in reference [13]. 
 

 
Fig 17 linear trends of both volume fractions (vfds and vfads) vs internal 

pressure for the first patient. 
 
In patient’s cases with primary cancer stage, we have 
noticed a faster evolution of pulmonary volume fraction 
against pulmonary pressure as it is shown by figure 17. In 
fact, the rate of volume fraction over pressure is higher in 
initial cancerous stage then in advanced case. This can be 
explained partially by the hyper sensitivity of lung tissue 
to endure internal pressure. Indeed, advanced cancerous 
stage is still marked by an invasion of infected lung tissue 
higher than an early stage cancerous lung. This fact may 
also be attributed to higher resistance to pressure evolution 
of the lung tissue and subsequently a lower convergence 
toward increasing the relative volume variation versus 
pressure increasing. 
 
Table 3 

 
 

 
Fig 18 variation of the BMI vs the vfds the linear trend of this graph 

show that for patients with high BMI values, the volume fraction of the 
infected tissue is almost lower. 

 

 
Fig 19 variation of the BMI vs the vfads the linear trend of this graph 

show that for patients with high BMI values, the volume fraction of the 
infected tissue is almost lower. 

 
It is shown by Figure 18 and Figure 19 that the rate of the 
vfads over BMI is higer than the vfds rate over BMI. This 
fact is also done in other patients curves so that we can 
realize that the volume fraction of the primary cancerous 
stage tissue is less sensitive to BMI variation, and it 
accords a slow progression vs the BMI evolution. 
Conversally, the advanced cancerous stage of lung tissue 
is more sensitive to the BMI and we observe a rapid 
decrease in the volume fraction vfads when BMI factor 
increses.  
 
5.2 Second FE parametric analyses 
 
In another step we have addressed a second parametric 
numerical study that deals with new parameters which are 
describing the disease severity. By means of these new 
clues associated to numerical simulations, we will define 
the following parameters, and then study their evolution 
for the different patient’s cases.  
We have defined at first the following parameter; KTL = 
stress intensity factor in the lung tissue affected by the 
tumor cells. KTL measures the ratio of maximum stresses 
found in a field of lung tissue surrounding the infected 
tissue, divided by the average mean stress of lung tissue in 
the same region. Thus, the surface surrounding the 
infected tissue is defined so that the maximum thickness 
of this surface is equal to the maximum thickness of the 
infected tissue. We have represented the evolution of this 
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non dimensional parameter for patients listed in table 1, 
and then we have compared results of this parameter for 
initial cancerous stage and advanced stage. Table 4 
resumes the different KTL factors for patients listed by 
table1. as it is shown in this table the stress intensity factor 
KTL for lung tissue is higher in the case of advanced 
cancerous lung stage then it is in initial cancerous stage. 
This fact is attributed to the high change in the lung shape 
within the existence of advanced tumor cells; so that local 
stresses will increase in some regions much more than in 
others. This phenomenon contributes in heighten of the 
factor KTL associated to the advanced cancerous lung.  
 
Table 4 

 
 

Secondly, we have defined another ratio denoted by dvr; 
this ratio is an independent parameter that indicates the 
density of the geometric shape of the tumor tissue, but it 
takes into account the distribution of the tumor surface 
mass relative to total lung tissue surface mass defined in 
the same region. dvr= the surface of cancerous lung tissue 
divided by the entire lung surface. 
At least we have denoted by r the ratio of the two 
parameters; KTL and dvr; r= KTL/dvr. Now we can 
address this new parameter to estimate the relative 
gradient of the stress intensity factor, because it allows 
inferring severity of concentrated stresses per unit of lung 
volume. Indeed, the value of this parameter indicates that 
the lung mass endure a large or a small change in stresses 
and strains in the presence of tumor tissue in the lung 
tissue. 
Outstandingly since this factor is as more significant as 
the severity of the disease is important, because for a low 
volume of lung tissue there is a large gap of constraints in 
this tissue. Thus, the risk of acute respiratory disorder is 
significant. We tried to calculate this factor from different 
patients listed by Table 1. Results of these calculations are 
considered in Table 5 below.  
 
Table 5 

 
 
As r ratio is independent from the geometry, it is 
characteristics of pure lung tissues properties. 

Consequently, it is found out that in females the rate r= 
KTL / dvr is a bit higher than in male’s patients for similar 
dvr ratios, Figure 20.  
 
We also note that there is some dependence of the r factor 
with the BMI; in fact, according to table 5, we can 
conclude that obesity promotes the severity of the stresses 
in the vicinity of the tumour tissue which increases the r 
factor for these patients. Thus, obese patients are more 
susceptible to lung problems when lung tumour is present. 
 

 
Fig 20 Stress intencity factor ktL for two cancerous stages with different 

patients. 
 
 

6. Conclusions 
 
This paper has presented an innovative methodology for 
efficiently analysing and exploring critical lung disease 
such as pulmonary cancer. We have presented the 
methodology used to detect crucial mechanical properties 
according to geometric parameters deduced from medical 
CT images. Basically, the FE technique combined to 
image data processing has lead to establish the difference 
between mechanical parameters in various pathologic 
lungs. Mechanical parameters were used to enhance the 
comprehension and the analysis of lung cancerous 
diseases of various patients.   
The identification of tumour lung tissues in CT images is 
not easy to be precisely defined and consistent with 
reality. It requires a large experience and high 
competence. To meet this need, a suitable mathematical 
approach has been used to detect the contaminated 
cancerous lung tissues. This step was very important 
before a transition for building FE models based on the 
organs shape captured via 2D CT images. In fact, the FE 
modelling was possible through combination of various 
techniques based on Matlab capabilities, CATIA software 
and Abaqus commercial code. 
The 2D finite element CT based modeling is established to 
investigate essentially stresses at various pressures. In this 
analysis, the von Mises effective stress, pressure 
distribution and maximum principal stresses in the overall 
organs as well as pathologic mechanics were investigated. 
The computed stress behavior of the different tissues is 
qualitatively consistent with the experimental results 
established in the literature for the spectrum of pressures 
used in this study. 
The parametric FE study has enabled investigation of 
distribution and magnitude of various lung tissue 
parameters under pressure. We can establish that such a 
method has provided a useful complement to experimental 
and analytical models. Thus, this technique was used to 
substantiate mechanical and material parameters inside 
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various lung tissues and the, and then enhance the 
behavior of lung tissues in the lung cancer pathology. This 
fact has reveals the effect of mass distribution of 
cancerous lung tissues. Thus, it has been established that  
increase of BMI factor can promotes stress concentration 
at the vicinity of tumor lung tissue. We have introduced 
some mechanical parameters to describe the behavior of 
lung tissue and to find correlation between geometric 
parameters of tumor lung tissue and mechanical 
parameters.  
The methodology used in this study can support 
understanding physiological and clinical relevant lung 
problems, while analyzing the evolution of lung damage 
caused by carcinoma cells. 
In addition to cancers diseases, the procedure of analysis 
and simulation described in this article can also be used 
for a variety of respiratory diseases and distress 
syndromes. Indeed, it can be used by the clinician for 
several purposes. It should enable clinicians, based on 
prior health data of a patient (CT scanned image) to 
provide the response of the entire rib cage and the 
different organs before surgery, especially for forced 
ventilation when the respiratory function of a lung are 
exhausted. It can allow adapting and even customizing 
ventilation parameters according to each patient's 
respiratory mechanism and thus protect the patient lung 
from damage, in the case of forced respiration. The 
methodology described here can allow also the different 
stages of diseases, and making right predictions. It can be 
performed to determine the appropriate conditions before 
injury and can also provide the basis for quantitative 
analysis and the integration of information into the 
radiotherapy scheduling, treatment, and follow-up process. 
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Nomenclature  
 
Smin: Von Mises minimum stress 
Smax : Von Mises maximum stress  
V fds : volume fraction of deformed shape 
V fads: volume fraction of advanced deformed shape 
P:  pressure 
KTL: stress intensity factor in the lung tissue 
dvr: surface of cancerous lung tissue divided by the entire 
lung surface. 
r: KTL/dvr 
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