

Query Optimization Architecture for Data Grid Environment

Ayouni Houssam Eddine and Belbachir Hafida

 Department of Computer Science, Laboratory Systems Signals Data, Faculty of Science

University of Science and Techenology Mohamed Boudiaf-Oran, Algeria

Abstract
Query optimization in data integration systems over large scale

network, faces the challenges of dealing with autonomous,

heterogeneous and distributed data sources, dynamic execution

environment and changing user requirements. In this paper we

introduce system architecture for query optimization. The latter

consists of several important phases. We introduce also a cost

model to calculate the cost of query execution. In order to

optimize the cost of query processing considering the constraints

in grid environment, an execution model based on mobile agents

for efficient execution of binary relational operators (join) of the

query is determined based on the cost model. Finally the paper

tests our approach through experiment.

Keywords: data grid, query optimization, database, cost model,

mobile agents.

1. Introduction

Nowadays, the technology of grid Computing

allowed the development of services for efficient sharing

of computing resources (e.g. CPU, I / O) between multiple

sites. A site consists of a large number of users

(e.g. scientists, researchers), a very large number of

resources (e.g. databases, CPU, memory, program,

services) and is often dedicated to an application domain

(e.g. pathology, biology, physics). In this context, effective

management of resources is fundamental for applications

using a grid system.

Resource management plays a very important role in a grid

system because it includes the following phases: resource

discovery, the selection of resources, the allocation of

resources, and the query processing.

The distributed query processing produces a relatively

large amount of data transmitted between the different

sites participating in the execution of the query. The latter

creates a bottleneck in a large scale environment.

Therefore, it becomes important to find an execution

strategy that reduces the number of transmission and the

amount of data transferred during the execution of the

query.

The aim of this article is to exploit the problem of query

optimization taking into account the characteristics of grid

systems (e.g. the large-scale, instability and the autonomy

of nodes, heterogeneity and the unavailability of

resources). Therefore, our goal is to find a solution that

minimizes the cost of execution of queries.

2. Related Work

 In last few decades, many researchers have been devoted

for the query processing in grid environment [1, 2, 3, 4, 5].

In this context, design and implementation of an efficient

query optimization technique for grid environment is

utmost important. Taking into account the constraints of

the grid, a cost model for calculating the query execution

cost, was introduced in [1]. In order to optimize the cost of

query processing considering the constraints in grid

environment, a linear programming optimization problem

(LPP) is formulated based on the cost model., and they

also deal a constraint-based query optimization technique

using the linear programming optimization problem. In

[2], another cost model is defined for dynamic grid

database environment, and also gives the dynamic query

optimization algorithm used for the query plan to make

adaptive evolvement along with the fluctuation of gird

environment. The authors of [3] propose a new model for

distributed query optimization that integrates three distinct

phases namely, (1) creation of single node plan, (2)

generation of parallel plan, and (3) optimal site selection

for plan execution. They also present different heuristic

approaches for solving the proposed integrated distributed

query processing problem. In [4], a semantic query

optimizer for a grid environment is proposed; it mainly

implements optimization of the following three modules:

semantic extension of the user query, resources selection,

and parallel processing. In [5], the Hameurlain team

defined an execution model based on mobile agents to the

distributed dynamic query optimization in large-scale

systems. The idea is to execute each relational operator

using a mobile agent, which allows decentralizing the

decisions taken by the optimizer and adapting dynamically

to estimation errors on the profile of relations.

In this paper, we propose architecture for query evaluation,

which will improve the performance of the query during

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 5, No 1, September 2012
ISSN (Online): 1694-0814
www.IJCSI.org 458

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

the execution phase, taking into account the fluctuations of

the grid.

3. The proposed approach

In this section, we present our architecture for query

processing in data grid environment. We explain the

different phases of evaluating a query in our proposed

architecture, specifying the role of each phase. We assume

that a user submits his query from a node of the local site

(transmitter site) via an interface and through

authentication mechanisms (predefined by the

administrator of the grid). The different phases of the

evaluation of the query are:

Fig. 1 Architecture of the proposed system.

3.1 Discovering Relations

The first phase is to discover the metadata describing all

relations 𝐸 = {𝐸1 , … , 𝐸𝑚 } referenced in query. The input

parameters of this phase are the names of relations

contained in E. Output parameters contain a set of

metadata 𝑀 = {𝑀𝑒𝑡𝑎𝐷𝑎𝑡𝑎𝑅1 , … ,𝑀𝑒𝑡𝑎𝑑𝑎𝑡𝑎𝑅𝑚 } with

𝑀𝑒𝑡𝑎𝐷𝑎𝑡𝑎𝑅𝑘 contains metadata describing 𝑅𝑘 .

Specifically, for a relation𝑅𝑘 , metadata sent are: profile of

𝑅𝑘 , and placement of 𝑅𝑘 .In profile of 𝑅𝑘 , there is the

relational schema of 𝑅𝑘 (i.e. attributes name and type of

𝑅𝑘) and statistical values of 𝑅𝑘 (e.g. the minimum value of

an attribute and the number of distinct values).These

statistical values are used during the optimization phase.

Regarding the placement of 𝑅𝑘 , it contains information

relating to the location, the fragmentation and duplication

of 𝑅𝑘 .

3.2 Approval (Relations)

It is important to conduct a phase of approval in an

unstable system. The approval means that checks whether

at least (in the case where a relation is replicated on

multiple nodes) one node storing a relation (or fragment of

a relation) is connected to the system and it is possible to

reach this node. Indeed, it would be better to stop the

evaluation of the application at this stage and return a

failure message to the user if a node storing a relation or

fragment is not available.

3.3 Decomposition of queries

The entry of this phase is a distributed query SQL. As in

systems of distributed databases [6], the query

decomposition undergoes four stages: (i) normalization,

(ii) analysis, (iii) removing redundancy and (iv) the

rewriting. Steps (i), (iii) and (iv) based on a set of

transformation rules of query to perform better. By cons,

step (ii) is based on part of the set M. This is the part about

the profile of relations referenced in query, specifically the

attributes of these relations. Indeed, the analysis step is

responsible for performing the syntactic and semantic

analysis. The syntactic analysis can check whether the

name of an attribute of relation referenced in query indeed

on the relational schema. As for the semantic analysis, it

can check, for example, if the relationship Doctor means a

medical or doctor of science. The output of this phase is an

"good" algebraic query in the sense that

incorrect requests are rejected, without redundancy,

expressed in global relations.

Discovering Relations

Approval (relations)

Decomposition

Location data

Discovery of computational resources

Approval (nodes)

Optimization

Query SQL

Execution

Result

Cost Model

Discovery Resources Service

Grid Information Service

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 5, No 1, September 2012
ISSN (Online): 1694-0814
www.IJCSI.org 459

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

3.4 Location Data

The input of this phase is a query expressed on distributed

algebraic relations. The location data is performed based

on some of the metadata contained in the set M.

Specifically, it is metadata about the placement of relations.

As in systems of distributed databases [6], the location of

data consists in transformation of distributed query

(expressed in global relations) on a distributed query

equivalent expressed on fragments. Specifically, the

location of a distributed query involves two steps [7]: (i)

generating an equivalent canonical query and (ii)

simplification. The canonical query (i) is generated from

the distributed query expressed on overall relations by

replacing each relation with its corresponding query

reconstruction. The reconstruction of a relation from its

fragments is performed by a relational operation (e.g. a

join). Simplification (ii) consists to remove unnecessary

operations that can, for example, produce an empty result.

3.5 Discovery of Computational Resources

This phase consists to find only static metadata describing

the computational resource [8]. It’s consists to discovery

a sub-set of nodes available for the execution of a

query. In this context, a simple strategy is to discover

computing resources (e.g. CPU or memory of a site). The

discovery strategy is based on the Grid Information

Service (GIS) [9], it is a directory that contains static

metadata describing the sites.

3.6 Approval (nodes)

Along with the approval relations phase, it is important to

conduct a phase of approval for computing resources to

see if they are well connected to the system. This phase

aims to eliminate discoveries computing resources not

available due to an event such as a network outage.

3.7 Optimization

The goal of query optimization is to determine a strategy

for query execution that minimizes a cost function. The

optimization phase includes: (i) selecting the best

replication of relations, (ii) selecting the best

nodes among the set of nodes discovered, (iii) the

definition of the order of relational operations and the best

access algorithm for each of them, and (iv) the placement

of relational operators (also called resource allocation) for

the execution of operations. The optimizer is based on a

cost model consisting essentially of (i) a set of metrics

(e.g. response time of a join) and (ii) a library. The metric

(i) are calculated based on parameter hosts values (i.e.

value of the CPU load, load value of I/O and value of the

memory load of a node) and network (i.e. the value of the

latency and bandwidth between two nodes) stored in the

library. The library (ii) contains statistics on the system

and relations, and cost formulas for estimating the cost of

query execution. Several approaches are proposed for

estimating the cost of executing a query (e.g. the

calibration approach [10, 11], the sampling approach [12]

or also in the historical approach [13]). The main problem

in most of these approaches is that they do not take into

account the variation values of parameter host and network

during the execution cost estimation of a relational

operation (e.g. a join). This may have limits in a system

where resources are shared on a global scale and where

each user (e.g. an application) can connect to a remote

node to perform tasks (e.g. submission of a query). To take

into account the variation of parameter values hosts and

networks, we propose the use of a model of execution

based on mobile agents which can improve the accuracy of

the metrics provided by the cost model.

3.8 Execution

In the last phase, we resume the work of [14, 15, 16] that

defines an execution model based on mobile agents for

dynamic optimization of distributed query in large-scale

environments. A mobile agent is an autonomous and

adaptable software entity, able to move dynamically (code,

data), to access data or resources from a remote location.

This extension allows them to change their execution sites

proactively. Each mobile agent executing a join chooses

itself its execution site by adapting to the execution

environment (e.g. CPU load, bandwidth) and the

estimation accuracies on temporary relation sizes. Hence,

the control which makes the decision of the execution site

change is carried out in a decentralized and autonomous

way.

4. Cost Model

In this section, we describe the different parts of the cost

model involved in the estimation phase of the cost of

query execution plans. We distinguish two parts: the

resident part on the site, and integrated part in the mobile

agent. This cost model is used to estimate the cost of

execution plans of queries submitted.

4.1 Site Cost Model

The cost model of a site Si consists of four units: (i) the

profile of each data source known by Si, (ii) the

characteristics of Si (host parameters + network

parameters), (iii) the characteristics of other sites that

interact with Si, and (iv) the cost formulas.
This information is provided by the GIS, and stored in the

data catalog with a time-stamp of the last update date,

except the cost formulas, because they will not need

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 5, No 1, September 2012
ISSN (Online): 1694-0814
www.IJCSI.org 460

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

frequent updating. The time-stamp allows using the most

recent data.

4.2 Agent Cost Model

The agent cost model is supplied to the agent during the

query optimization. The agent cost model is composed of

two units: (i) the migration space (i.e. list of sites has the

same data source), (ii) location of the second mobile agent

(remote mobile agent that deals with the second data

source). A mobile agent can consult the site cost model, to

estimate its parameters (production cost, and the migration

cost).

4.3 Cost Formulas

In a grid environment, the resources that computing task

needed are computing resources such as memory, CPU etc.

Hence, computing task can be assigned to any node that

has enough computing resources for that task.

4.3.1 Nodes Cost Formulas

The operators of a query execution plan will be executed

at the nodes of the sites. Due to the autonomy and

heterogeneity of nodes (data sources), it becomes difficult

to determine the cost of processing an operator on the

latter. To address this insufficiency, we used a simulation

model presented in [16]. This allows, among other things,

to estimate for a given query, the response time and the

volume of results. To obtain these values, statistics on the

data manipulated and formulas cost associated with each

operation are used (e.g. join, selection). This model

contains calibrated information concerning the execution

cost of every operator [17], and generic cost formulas.

This information represents the initialization processing

cost, the processing cost of a tuple and the production cost

of the result [17]:

 SSO initial cost for sequential scan, estimated

based on the disk load, calculated by the GIS,

 SS1 cost for fetching a tuple, estimated based on

the CPU load of node, calculated by the GIS,

 SS2 cost of processing a result tuple for

sequential scan, estimated based on the memory

load of node, calculated by the GIS,

 FS(p) represents the selectivity factor of the

predicate of the query which can be estimated by

selectivity formulas described in [18].

This information is used to estimate the response time of

operators executed on nodes, using generic formulas. For

example, the formula estimating the cost of scan of a

relation R not indexed is described in the following way

[18]:

Scan_Cost (R) = SS0 + SS1 * ||R|| + SS2 *||R|| * FS (p)
(1)

In the case where multiple nodes connected to the same

site, has given the same data R, the node check

min(Scan_Cost (R)) will be selected.

4.3.2 Sites Cost Formulas

These formulas are used to estimate the response time of

operators executed on the Site. They are more accurate

than those the nodes, because the architecture of the site

and the algorithms which implement the operators are

known. In our case, we are interested only binary operators

such as joins, because unary operators (projection,

selection) run locally, and therefore only the cost of

processing to be calculated, it is usually negligible

compared to the cost of communication in large scale

systems such as data grids.

We have extended the semi-join algorithm by allowing the

agent to choose the site of execution of the join in a data

grid. The formula for estimating the response time of the

semi join based on mobile agents with two basic relations

T = Join (R, S) performed by two mobile agents AG1 and

AG2, is as follows:

Cout-Semi-JoinR,S= Projection-Cost R +Join-Cost S, temp1 +

Join-Cost 𝑅, temp2 + Migration-Cost AG1

+ Migration-Cost AG2 + CoutTransS1,S2 temp1

 + CoutTransS2,S1 temp2 (2)

with :

Projection-Cost R = 𝑆𝑆0 + 𝑆𝑆1 ∗ 𝐶𝐴𝑅𝐷 𝑅 +

 𝑆𝑆2 ∗ 𝐶𝐴𝑅𝐷(𝑅) (3)

Join-Cost R, S = 𝑆𝑐𝑎𝑛_𝐶𝑜𝑠(R)+CARD(R:P)*FS(p)*

Scan_Cost (S) (4)

 with

FS(p)=1.5/maw(CARD(R), CARD(S))

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 5, No 1, September 2012
ISSN (Online): 1694-0814
www.IJCSI.org 461

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

𝐶𝑜𝑢𝑡𝑀𝑖𝑔𝑟𝑎𝑡𝑖𝑜𝑛𝑆𝑖,𝑆𝑗 𝐴𝐺

=

0 𝑰𝒇 𝑨𝑮 𝒅𝒐𝒆𝒔 𝒏𝒐𝒕 𝒎𝒐𝒗𝒆

𝐶𝑜𝑢𝑡𝑆𝑒𝑟 + 𝐶𝑜𝑢𝑡𝐷𝑒𝑠𝑒𝑟 𝑰𝒇 𝑨𝑮 𝒎𝒐𝒗𝒆𝒔
 𝒘𝒊𝒕𝒉𝒐𝒖𝒕 𝒓𝒆𝒍𝒂𝒕𝒊𝒐𝒏 𝒇𝒓𝒐𝒎 𝑺𝒊𝒕𝒐 𝑺𝒋

𝐶𝑜𝑢𝑡𝑆𝑒𝑟 + 𝐶𝑜𝑢𝑡𝐷𝑒𝑠𝑒𝑟

+CoutTransSi,Sj 𝑅𝑒𝑙 𝑰𝒇 𝑨𝑮 𝒎𝒐𝒗𝒆𝒔

 𝒘𝒊𝒕𝒉 𝒓𝒆𝒍𝒂𝒕𝒊𝒐𝒏 𝒇𝒓𝒐𝒎 𝑺𝒊𝒕𝒐 𝑺𝒋 (5)

CoutTransSi,Sj 𝑅𝑒𝑙 = 𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝑆𝑖, 𝑆𝑗 +
 𝑅𝑒𝑙

 𝑝

∗ 𝑇𝑟𝑎𝑛𝑠 𝑆𝑖, 𝑆𝑗 (6)

The terms used in the above formulas have the following

meanings:

 Projection-Cost R : The projection cost of R,

 Join-Cost R, S : The natural join cost between R
and S,

 𝐶𝐴𝑅𝐷 𝑅 : The number of rows from R.

 CARD(R:P):The number of rows from R that
satisfy the join condition P.

 𝑀𝑖𝑔𝑟𝑎𝑡𝑖𝑜𝑛 − 𝐶𝑜𝑠𝑡𝑆𝑖,𝑆𝑗 𝐴𝐺 : The sum of the AG

migration cost. The migration cost of an agent
[19] is the sum of the serialization cost
(𝐶𝑜𝑢𝑡𝑆𝑒𝑟), the de-serialization cost of the context
of the agent (𝐶𝑜𝑢𝑡𝐷𝑒𝑠𝑒𝑟) and the transfer cost
(CoutTrans),

 𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝑆𝑖, 𝑆𝑗 : Time to establish communication
between two sites Si and Sj estimated based on
the value of the latency between Si and Sj,

 CoutTransSi,Sj 𝑅𝑒𝑙 : The transfer cost of the

relation T depends mainly on the localization of
the agent and networks characteristics,

 |Rel|: The size of Rel.

 |p|: The size of a page p.

In this context, we conclude the total cost of the query,
which is the sum of the costs of the query operators:

 𝐶𝑜𝑠𝑡𝑞𝑢𝑒𝑟𝑦 = Cout-Semi-JoinR,S (7)

5. Performance Evaluation

In this section, the performance of the proposed system is

studied. The first part describes the general configuration

of the simulation, including simulated grid environment.

The second part shows the results of the experiment and

gives a brief analysis.

5.1 Simulation Tool

We have implemented our proposed system using the

GridSim toolkit. The GridSim toolkit [20] is one of the

most widely used grid simulation tools.

It has been used for simulating and evaluating virtual

organizations based resource allocation, workflow

scheduling, and dynamic resource provisioning techniques

in global grids.

5.2 GridSim Configuration Files

There are four configuration files used to control various

inputs to GridSim. These are as follows:

5.2.1 Simulation Parameter File

It contains various simulation parameters which the user

can modify them. These parameters are the names of

configuration files of the network, files, resources, and

users of the grid.

5.2.2 Network Configuration File

It describes the network topology, that is to say the

available routers, and network connections between them.

The grid configuration that we have used in our simulation

is the CMS Data Challenge 2002 test bed [21] (Figure 2).

Fig. 2 CMS Data Challenge 2002 Grid Topology.

5.2.3 Files Configuration File

It contains information on the simulated files like size of

each file and its identifier. Was used in our simulation

"Employees Sample Database" located on the official

website of MySQL, and contains the following relations

(Table 1):

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 5, No 1, September 2012
ISSN (Online): 1694-0814
www.IJCSI.org 462

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

Table 1: Employees Simple Database.

Table Name Number of

tuples

Size (mégaoctet)

employees 300024 14.5156

departments 9 0.0313

dept_manager 24 0.0469

dept_emp 331603 21.5469

titles 443308 30.1094

salaries 2844047 130.1875

5.2.4 Resources Configuration File

It contains the description of Grid resources such as name,

size of storage resources, bandwidth, router name on

which the resource is attached, list of files (replicas)

containing in each resource.

5.2.5 Users Configuration File

It contains descriptions of grid users such as name, name

of the router on which the user is connected, the catalog

replicas name (in our case we use a global catalog replicas

"TopRegionalRC."), and the list of operations performed

for each user.

5.3 Simulation Results

To test the validity and performance of our approach, two

different optimization techniques: the classical approach of

query optimization for distributed databases (DQO) [22],

and an algorithm for query optimization in data grid

environments (GQO), described in [1], are compared with

our approach to process a query (figure 3) in a simulated

grid. The following code is an example of query which

integrates four tables in the database "Employees Sample

Database."

Fig. 3 Example of query.

After applying the rules of the decomposition, and

eliminate redundancies by applying the properties of the

relational algebra, three execution plans of query are

generated (Figure 4).

(a) Bushy Tree

(b) Deep left tree

(c) Deep right tree

Fig. 4 Execution Plans of query.

select first_name, last_name, salary
from employees,salaries,dept_emp, departments
where
(employees.emp_no=salaries.emp_no)and(employe
es.emp_no=dept_emp.emp_no) and
(dept_emp.dept_no=departments.dept_no)and(dep
artments.dept_name='Marketing');

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 5, No 1, September 2012
ISSN (Online): 1694-0814
www.IJCSI.org 463

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

Table 2: The simulation parameters.

Number of Sites 10

ss0 10 × 10−6 𝜇𝑠

ss1 30 × 10−6𝜇𝑠

ss2 20 × 10−6𝜇𝑠
Page size 4 Ko
Cost of serialization 3.2 ms

Cost of deserialization 4.3 ms

Agent size 2806 Bit
The minimum reliability of the

bandwidth between sites
50%

The maximum reliability of the

bandwidth between sites
90%

Number of experiment 100

The query is applied with the three techniques of query

optimization in the same environment, and the final results

are shown in Figure 5 for the three execution plans.

Fig. 5 Evaluation of the average execution time of different approaches

for each execution plans.

The results in Figure 5 show that our approach handles the

query in a better delay compared to other approaches DQO

and GQO in all the cases.

Based on this analysis, we constant that the performance

of our approach is better, the latter is due to its ability to

adapt with the changing environment (load nodes and

bandwidth) based on power mobile agents.

6. Conclusion

In this paper is presented architecture of a query

optimization in a grid environment. Our architecture can

handle a request in the shortest time. In the optimization

technique, model of mobile agents are used in order to

deals a problems of the dynamic behavior and

heterogeneity of the grid resources. A cost model for

estimating the cost of query is also introduced.

The results obtained are very satisfactory and makes our

approach a tool capable to process queries in a grid

environment with an optimal execution time. The use of

mobile agents increases the performance of our approach

because they adapt well to changes in the dynamic

environment that characterizes the data grids, with

migrating through the nodes to improve overall response

time of the query.

References
[1]Chhanda Ray, Nilava Guha ”Determination of Cost Model for

Constraint-based Query Optimization in Data Grids

“Proceeding of International Conference on Advances in

Computer Science ACEEE 2010.

[2] N. Hu, Y. Luo, Y. Wang, “Adaptive Evolvement of Query

Plan based on low cost in Dynamic Grid Database”,

proceedings of 9th International Conference on Software

Engineering, Artificial Intelligence, Networking, and

Parallel/Distributed Computing, pp 411-415, 2008.

 [3] Krishnamoorthy, S., Saple, A.K., and Achutharao, P.H. An

integrated query optimization system for data grids. In

Proceedings of Bangalore Compute Conference 2008.

[4] Luo Y H, Chen T F, Zhang Y S. Study on semantic query

optimization of grid data. Computer Engineering and

Applications, 45(2):16-20,2009.

[5] Franck Morvan, Abdelkader Hameurlain. A Mobile

Relational Algebra. in : International Journal of Mobile

Information Systems, IOS Press, Vol. 7 N. 1, p. 1-19, january

2011.
[6] M. T. Özsu, P. Valduriez; Principles of Distributed Database

Systems, Second Edition Prentice-Hall, 1999.

[7] G. Gardarin and P. Valduriez ; SGBD Avancés, Bases de

données objets, déductives et réparties, Eyrolles, 1990.

[8] M. El Samad, A. Hameurlain, F. Morvan; Resource

Discovery and Selection for Large Scale Query Optimization

in a Grid Environment, International Conference on Systems,

Computing Sciences and Software Engineering (SCSS 2007),

Springer, Advances in Computer and Information Sciences

and Engineering, pp. 279-283, 2007.

 [9] B. Plale, P. Dinda, M. Helm, G. von Laszewski, and J.

McGee. Key concepts and services of a grid information

service. 2002.

[10] W. Du, M.-C. Shan ; Query Processing in Peagasus. In

Object-Oriented Multidatabase systems : A Solution for

Advanced Applications, pp. 449-468, 1995.

[11] G. Gardarin, F. Sha, Z.-H. Tang ; Calibrating the Query

Optimizer Cost Model of IRODB, an Object-Oriented

Federated Database System, Proc. of 22th International

Conference on Very Large Data Bases, Morgan Kaufmann,

Mumbai (Bombay), India, pp. 378-389, september 1996.

[12] Q. Zhu, S. Motheramgari, Y. Sun: Cost Estimation for

Queries Experiencing Multiple Contention States in Dynamic

Multidatabase Environments. Knowl. Inf Syst.5(1): 26-

49,2003.

0

50

100

150

200

250

300

Bushy tree Deep left
tree

Deep right
tree

Distributed query
optimization
approach (DQO)

Grid query
optimization
approach (GQO)

Our approach

A
v

er
ag

e
ex

ec
u

ti
o

n
 t

im
e
 (

se
co

n
d

s)

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 5, No 1, September 2012
ISSN (Online): 1694-0814
www.IJCSI.org 464

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

 [13]S. Adali et al. ; Query Caching and Optimization in

Distributed Mediator Systems, Proc. of ACM SIGMOD

International Conference on Management of Data, ACM

Press,Montreal, Canada, pp. 137-148, june1996.

[14] J.-P. Arcangeli et al.; Mobile Agent Based Self-Adaptive

Join for Wide-Area Distributed Query Processing, Journal of

Database Management, Idea Group, Vol. 15, N. 4, pp. 25-44,

2004.

[15] M. Hussein et al.; Embedded Cost Model in Mobile Agents

for Large Scale Query Optimization, Proc. of the 4th Intl.

Symposium on Parallel and Distributed Computing, IEEE

CS, pp. 199-206, 2005.

[16] F. Morvan, M. Hussein, A. Hameurlain; Mobile Agent

Cooperation Methods for Large Scale Distributed Dynamic

Query Optimization. Dans : International Conference on

Database and Expert Systems Applications (DEXA 2003),

IEEE Computer Society, pp.542-547, september 2003.

[17] A. Fuggetta, G. P. Picco, and G. Vigna. Understanding Code

Mobility. IEEE Trans. on Software Engineering, May 1998.

[18] W. Du, M. Shan. Query processing in Pegasus. In Object-

Oriented Multidatabase Systems, A Solution For Advanced

Applications, Prentice Hall International (UK) Ltd, pp. 449-

468, 1995.

[19] L. Ismail, D. Hagimont: A Performance Evaluation of the

Mobile Agent Paradigm. OOPSLA 1999: 306-313.

[20] R. Buyya and M. Murshed, "GridSim: A Toolkit for the

Modeling and Simulation of Distributed Resource

Management and Scheduling for Grid Computing,” The

Journal of Concurrency and Computation: Practice and

Experience, Vol. 14, Issue 13–1, Wiley Press (2002).

[21] K. Holtman, CMS data grid system overview and

requirement, Tech. Report CERN July, 2001.

[22] Evrendilek, C., Dogac, A., Nural, S., Ozcan, F.:

Multidatabase Query Optimization. Journal of Distributed

and Parallel Databases 5(1), 77–113 (1997).

Ayouni Houssam Eddine received her Master. degree from the
Department of Computer Science at the University of Science and
Technology Mohamed Boudiaf USTO-Oran, Algeria, in 2009.
Currently he is a phd student at the University of Science and
Technology Mohamed Boudiaf USTO. His research areas include
Grid Computing, Query Optimization, and Mobile Agents.

Belbachir Hafida leads a many research projects on Database,
Data mining, and Grid Computing. She is the manager of
Laboratory Systems Signals Data, Department of Computer
Science, Faculty of Science.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 5, No 1, September 2012
ISSN (Online): 1694-0814
www.IJCSI.org 465

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

