

A Use Case Driven Approach for System Level Testing

Muhammad Touseef1, Zahid Hussain Qaisar2

 1 UIIT, PMAS, Arid Agriculture University,

Rawalpindi, Pakistan

2 Assistant Professor, Computer Science Department,

Institute of Engineering and Technology,

National Fertilizers Corporation (NFC-IET)

Multan, Pakistan

Abstract
Use case scenarios are created during the analysis phase to

specify software system’s requirements and can also be used for

creating system level test cases. Using use cases to get system

tests has several benefits including test design at early stages of

software development life cycle that reduces over all

development cost of the system. Current approaches for system

testing using use cases involve functional details and does not

include guards as passing criteria i.e. use of class diagram that

seem to be difficult at very initial level which lead the need of

specification based testing without involving functional details.

In this paper, we proposed a technique for system testing

directly derived from the specification without involving

functional details. We utilize pre and post conditions applied as

guards at each level of the use cases that enables us generation

of formalized test cases and makes it possible to generate test

cases for each flow of the system. We used use case scenarios to

generate system level test cases, whereas system sequence

diagram is being used to bridge the gap between the test

objective and test cases, derived from the specification of the

system. Since, a state chart derived from the combination of

sequence diagrams can model the entire behavior of the system.

Generated test cases can be employed and executed to state chart

in order to capture behavior of the system with the state change.

All these steps enable us to systematically refine the

specification to achieve the goals of system testing at early

development stages.

Keywords:

UML, Model Based Testing, System Level Testing, Requirement

Validation, Requirement validation, System Testing, State

based testing.

1. Introduction

Systematic testing is the only key process to accomplish

higher quality software. The step wise refinement model

for software testing is proposed to achieve high quality

software that can be achieved by refinement of system

requirements which serves as a strong basis for system

testing.

Generally user requirements are stated in terms of use case

scenarios that describe user needs relating with the system

behavior in the form of user-system interaction showing

system behavior in operation. Initially, Informal set of

user requirements are used to satisfy and derive scenarios;

A Use case scenario describes detailed description of one

specific usage or the specification of that part of the

system. Analysis of use case scenarios provides a

complete understanding of the system [2]. Which are then

transformed to semi formal model using graphical

notations such as use case, this semi formal model is

source to derive system level test cases, as it defines major

system components and interactions among them. Use

case based testing deals with generation of test cases from

the system requirements. These test cases are then

exercised to show that the system conform its

specification and its overall behavior is accurate. Hence,

use cases provide a foundation for the system level testing

[10]. The basic principle behind the system testing is to

verify the functional and performance aspects of the

intended system [2].

A lot of research work is reported in the literature on use

case and scenario based system testing. The most

important work on the topic is of Briand et.al [2], Nebut

[9] and Whittle [15]. They present the system testing

using use cases. The major limitation of their proposed

work is absence of formalized test case generation based

on control flow with guards. Hence formalized test case

generation based on control flow by passing each of the

guard is not available yet. Similarly Sequence Diagram

and a State Chart can be used for system behavior

validation. In the proposed approach guards are added to

the use cases that help to capture the sequential events

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 5, No 1, September 2012
ISSN (Online): 1694-0814
www.IJCSI.org 78

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

alternatively. In our approach test requirements are

generated as logical expressions with the help of contracts

discovering the path flow. A refinement however, is

required to know behavior of each system component in

more precise, concrete and formal manner.

The rest of the organization of the paper is as under

Section 2 consists of related work of use case based

modeling and testing techniques. In section 3, we have

discussed our proposed approach with results and

discussions section. Section 4 describes the proposed

solution with the help of some example section 5 presents

the conclusion.

2. Related Work

In this section we are going to discuss the related work in

the domain of use case based testing.

Regnell [12] provided a method of creating a synthesized

use case model. Ryser and Glinz [13] presents a technique

for the description of use cases with scenarios showing the

flow of events with pre- and post-conditions (system states)

for the use case, which is a formal representation of the

flow of events.

The most important aspect of use case based testing is the

generation of test cases at the early stages which helps in

refining unclear and poorly defined requirements

Blackburn [18]. By eliminating model defects before the

coding begins and the test case creation results in

significant cost savings and higher quality code because

the later the defects captured they are more costly both in

effort and time.

A use case based testing deal with capturing of user

requirements and the generation of test cases for the

system at early stage in the engineering process and

validating the tests with the specification of the system.

Many approaches have been cited in the literature. Major

work can be found in Briand and Labiche [2] that involve

use case diagram, activity diagram and sequence diagram

that for the generation of system tests cases. Use case

dependencies are modeled by an activity diagram and the

class diagram is used to show the functionality of the

system. Testability requirements are generated from the

sequential constraints between the use cases described in

meta-model which include formal description of class,

attributes, operators and contracts. Nebut [9] enhances the

Briand and Labiche [2] work with the introduction of

contracts. Kim [6] discusses application of the state

diagram in UML to class testing where test cases are

generated by using either flow control or data flow

technique. Raza [10] proposes a test path generation

approach for scenarios by applying coverage criteria.

 Hsia [4] Describe user oriented scenario trees that

represent all scenarios for a particular user. A scenario

tree consists of state nodes and event directed arcs,

Regular expressions are used to formally state the user

scenario that results in a deterministic finite state machine

with a single state that defines both its initial and terminal

state. Kosters [7] present an approach for mapping use

cases onto static classes and methods. The technique

transforms the scenario steps into actions. Use case

expansion is described by directed use case graph where

nodes inherits the scenario each scenario step is developed

by method of tree. Whittle [17] mainly focus on the

generation of hierarchical state machines through a

synthesize algorithm that transforms scenarios into state

machines deriving from use case charts.

Alspaugh [1] presents goal/requirement based V&V in

order to develop requirement scenario description

language “ScenarioML” used to generate functional

requirement goals. The “goals and Intentions”

verification helps in distinction of false claims while goal

establishment provide more confidence of testing with less

effort and hence cost-effectiveness is improved. The

scenarios and use cases go until goal success or

abandonment. Test case generation can be done using test

coverage metric that can be to cover all the sub-goals in

the event tree and the test suit consist of set of event traces

that integrally provide requirement goal coverage. Briand

and Labiche [2] Proposed an approach for system testing

by comparing system behavioral aspects with

specifications and ensuring the system behaves as required

and describe in the specification. They had used UML

analysis artifacts to derive system test requirements which

require execution of test scenarios with specification.

Nebut [9] proposes approach inspiration of Briand and

Labiche [2] work UML based approach to system testing.

Contract language for requirements is defined as pre and

post conditions associated as logical expression. Regnell

and Runeson [11] proposed a synthesis phase extension to

the OOSE use case modeling approach. In their approach,

separate use cases are integrated into a synthesized usage

model. The synthesis phase consists of three activities;

formalization, integration, and verification. Usage testing

through automatic generation of test cases is derived from

the usage views. Kim [6] discusses application of state

diagram in UML to class testing by proposing a set of

coverage criteria based on control and data flow in the

UML state diagram.

The set of states represents both the basic and composite

states which contain other states as sub states and are

defined as either OR-State or AND-State. States can have

actions associated with them that contains list of

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 5, No 1, September 2012
ISSN (Online): 1694-0814
www.IJCSI.org 79

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

operations for transition being occur. Test cases are

generated by either using control flow or data flow

technique. Raza [10] proposes a test path generation

approach for scenarios using the interaction overview

diagram “IOD” to express the scenarios.Yang Liu and

Yafen Li [20] proposed a technique for test case

generation using model based architecture. J.J Gutierrez

et al [5] proposed technique for test generation using

model based architecture. Patrícia Machado [11] has

proposed similar kind of approach. A contract transition

system “CTS” is build from the operational contracts in

the IOD that specify the pre and post conditions. The

approach identifies operations in the IOD and then the

CTS matrix is developed that identifies states and

contracts for the CTS. For the generation of contract

transition system CTS scenarios are identified from the

IOD for individual use case and are represented as CTS

based on the CTS matrix. Test paths can be create by

applying coverage criteria i.e. all transition coverage or all

state coverage.

Most of the approaches present in the literature involve

more functional details i.e. Briand and Labiche [2] uses a

class diagram which require more functional analysis of

the system that can be difficult very early in the design

phase. Whittle and Praveen [17] mainly focus on the

generation of hierarchical state machines by describing a

synthesize algorithm that transforms scenarios into state

machines without applying guard. Use case scenario is

created for each use case, from each use case scenario

node sequence diagram is generated and finally by the

combination of sequence diagram a hierarchical state

chart is generated without applying any guards and hence

testing criteria and testing is not consideration.

Briand and Labiche [2] derive system test requirements

using of UML analysis artifacts, system test requirements

are generated from the Meta model based on the sequence

diagram that describes each class, method and attribute.

Nebut [9] inspiration of Briand’s work presents UML

based approach to system testing by defining Contract

language for requirements as pre and post conditions

associated as logical expression. We have presented an

approach that has inspiration from Briand and Labiche [2],

Nebut [9] and Whittle [17] work our approaches differs

with the fact that we are taking into account only the

specification of the system without involving the

functional details so a level above on the specification by

capturing the sequential ordering of the use cases with the

guard annotation defined as contracts. Addition of

Contracts in the proposed approach is closer to the way

Nebut [9] applied the contracts to use cases whereas

Briand and Labiche [2] and Whittle [17] does not imposed

contracts. The proposed approach applied contracts on the

use cases to capture the sequential dependencies and the

annotation of contracts on the use case scenario is used to

generate the test objectives whereas Nebut [9] does not

imposed contracts on use case scenarios furthermore test

objectives are created based on the coverage criteria. The

advantage of generating test objectives from contracts

makes them executable by defining as logical expression.

The proposed approach captures use-case flow model and

contracts from the specification. With the addition of

guards at the use case sequential flow allows tracking the

path selection at the top node, with the introduction of

guards to each use case enables to strength the conditional

execution flow of use cases. Introduction of guards to the

scenarios enables to make a conditional testing likewise

generation of conditional test path selection becomes easy

and can be defined as logical expression.

The sequence diagram generation by the proposed

approach from use case scenario which is more

appropriate if guards are available at the use case

scenarios, where the guards of the use case scenario

becomes messages for the sequence diagram. The

sequence diagram can be generated from the use case

scenario by using Whittle [17] synthesis algorithm but the

proposed approach generates a Separate contractual

sequence diagram is generated for each alternative

sequence of a use case scenario with the contract

extraction from the use case scenario to sequence diagram.

Similarly from use case sequence to state chart provide a

complete conditional flow that makes easy to test the

system behavior against events, hence enhances the power

of testing at the analysis level. In the proposed approach

we are generating contractual state chart by the

combination of sequence diagrams through an algorithm

which creates a state chart transition table. Whittle [17]

also proposed a synthesis algorithm for state chart

generation but does not imposed contracts whereas Briand

and Labiche [2] and Whittle [17] uses Activity diagram

instead of state chart.

Our contribution to literature is the extraction of

sequential dependencies of use cases involving use cases

contracts and extraction of test objectives from the use

case scenario contracts both expressed as logical

expression furthermore generation of contractual state

chart.

3. Proposed Approach

In this section, we discuss our proposed approach for

system testing. Our approach is inspired from Briand and

Labiche [2], Nebut [9] and Whittle [15] work. Our

approache differs with the fact that we are taking into

account only the specification of the system. The

proposed approach does not involve functional details so

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 5, No 1, September 2012
ISSN (Online): 1694-0814
www.IJCSI.org 80

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

a level above on the specification by capturing the

sequential ordering of the use cases with the guard

annotation defined as contracts. Addition of Contracts in

the proposed approach is closer to the way Nebut [9]

applied the contracts to use cases whereas Briand and

Labiche [2] and Whittle [15] does not imposed contracts.

Our proposed approach applies contracts on the use cases

to capture the sequential dependencies and the annotation

of contracts on the use case scenario is used to generate

the test objectives whereas Nebut [9] does not imposed

contracts on use case scenarios furthermore test objectives

are created based on the coverage criteria.

In this section we are going to discuss our proposed

approach for system level testing based on scenarios. Our

technique uses following steps

1. Overall System use case diagram

2. Generation of Sequential Use Case Diagram

3. Extracting Sequential Constructs for use cases

from specification

4. Deriving the second level use case scenario

diagrams where each node express/explores the

level-1 use case node with guards

5. Generating execution contracts to level 2

scenario use cases as logical expression

6. Extraction of test Goals from Contracts

7. Deriving the contractual Sequence diagrams from

use case scenario

8. State Chart Transition Table Generation from

combination of sequence diagrams

9. Generation of contractual state diagram from

state chart transition table

10. Test Goals Execution on state chart

E x t r a c t S e q u e n t i a l S y s t e m U s e C a s e D i a g r a m

E x t r a c t i o n o f T e s t G o a l

E x e c u t e T e s t G o a l s
G e n a r a t e S t a t e C h a r t T r a n s i t i o n t a b l e

S y s t e m S p e c i f i c a t i o n s i n N a t u r a l L a n g u a g e

s y s t e m U s e C a s e

S e q u e n c e D i a g r a m s

C o n t r a c t u a l U s e C a s e S c e n a r i o ’ s

S t a t e C h a r t

D e r i v e S y s t e m U s e c a s e D i a g r a m D e r i v e e x e c u t i o n C o n t r a c t s

e x e c u t i o n C o n t r a c t s

s e q u e n t i a l S y s t e m U s e C a s e s D e r i v e C o n t r a c t u a l S c e n a r i o s

D e r i v e C o n t r a c t u a l S e q u e n c e D i a g r a m sT e s t G o a l s

Figure 1: Abstract Flow Model of Proposed Approach

3.1 Overall system use case design diagram

The use case design diagram represents the entire system

usage where nodes are use cases. The number of use cases

may be very large in the system. Each of the use case

contains its own set of events to occur, therefore the entire

system use case diagram can comprises of several use case

nodes by involving interacting actors [9].

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 5, No 1, September 2012
ISSN (Online): 1694-0814
www.IJCSI.org 81

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

3.2 Generation of sequential use case diagram

A use case based requirement validation requires that the

sequential ordering of the use cases should be captured in

behavioral model and can be the first component of

system test requirements [2]. The use case sequential flow

describes how the use cases track each other and gives a

clear idea of system usage [16].

3.3 Extracting sequential constraints for use cases

The sequential constraints between the use cases can be

specified by using the logical expression with the

AND/OR operators, where the OR operator show the

alternative paths in the execution order [16]. As we are

adding contracts to the use cases so the sequential

contracts will be made with the combination of

guards/contracts.

3.4 Generation of use case scenario diagram

A use case scenario is a system usage view of a specific

actor which can be a user, external system or

communicating device [9]. Use cases scenario normally

focus on the behavior of the system and typically describe

several paths for a use case and simulate the sequence of

actions to real happenings as expected to occur when the

system is in operation [8]. We are generating scenario

chart from the specification of the system with addition of

guards to the scenario nodes.. Addition of guards allows

the requirement validation and test case generation [9].

3.5 Generating execution contracts

The execution contracts are generated from the use case

scenario guards applied to the sequential constructs,

where as the alternative path are covered by the decision

conditions.

3.6 Test goal extraction

Test goal specifies the objective for test i.e. what the user

or tester require from the system should be identified

separately. Identification of goals gives confidence to

testing, the goal plan should include the alternatives as

well [1].The primary advantage of using contracts is the

definition of test goals but these should be consistent

while moving from one stage to other in order to make

consistent and proper execution of test goals [9]. Test

goals are extracted from the execution contracts for each

of the alternative a separate test goal has been identified.

3.7 Deriving the contractual system sequence

diagrams

Sequence diagram shows the sequence of events as

appeared in the scenario with one nominal and number of

exceptional scenario involving the system and the

participating actor.

Sequence diagram contains more information than the use

case scenario while at the same time use case scenario

contains more information about pre and post conditions

[9]. Hence sequence diagram can be used to bridge the

gap between the test objectives and test cases alternatively

depicting the use case scenario [9].

3.8 State chart transition table generation from

combination of sequence diagrams

The state chart transition table is created from the

combination of sequence diagrams, as each sequence

diagram consider the message state from where the system

gets the message. So it helps to easily translate the

sequence diagrams into state chart with the help of

transition table. For the generation of transition table we

are introducing an algorithm.

 Algorithm to Generate a State Chart Transition Table

Input: Combination of sequence diagrams belongs to a

single use case scenario

Output: A State Chart Transition Table with 5 columns:

Column 1: Contains State

Column 2: Contains Guard to move the alternate State

Column 3: Contains Next State by Passing the Guard

Coulmn 4: Contains alternative State

Column 5: Contains Guard to reach the alternative State

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 5, No 1, September 2012
ISSN (Online): 1694-0814
www.IJCSI.org 82

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

1 Algorithm Generate_State_Chart_Transition_Table

2 Body

3 GenerateSeqNodes

4 SortSeqNodes

5 Generate StateTable

6 End
1 Function GenerateStateTable

2 Var i := 1 Number

3 Var StatTab[i][5] TwoDArray

4 SortSeqNode := 1st(SortSeqNode)

5 While (SortSeqNode not end) do

6 If So





rtSeqNode[Previous] = null then

7 SortSeqNode = Next SortSeqNode

8 End If

9 StatTab[i][1]:=SortSeqNode[Previous]

10 StatTab[i][2]:=SortSeqNode[Guard]

11 StatTab[i][3]:=SortSeqNode[State]

12 SortSeqNode = Next SortSeqNode

13 If SortSeqNode[Previous] = StatTab[i][1]

14 StatTab[i][4]:=SortSeqNode[State]

15 StatTab[i][5]:=SortSeqNode[Guard]

16 End If

17 SortSeqNode = Next SortSeqNode

18 i++

19 done

20 End

3.9 Generation of contractual state diagram

from state chart transition table

Since each of the alternative sequence is described

independently with its own specific order of events, by

these can cause in the introduction of inconsistencies that

must be detected and resolved. UML sequence diagram

cannot contain enough details for the detection and

resolution of such conflicts. State charts; models the

system behavior against the events and can be helpful for

resolving them [15]. We are generating state chart from

the transition table that is inherited from the combination

of sequence diagram so sequence diagram messages will

be converted into guards to the state chart making the

execution of state chart with contracts, and making

possibility for the execution of test goals defined earlier at

the use case scenario description in the form of test goals.

4. Case Study

For the case study we are using Inventory System.

4.1 System Specification

1. Only authorized user can access the system

2. The first step will be to create a Purchase

Requisition for the item indicating the item

required

3. Purchase order for an item can be made only for

the completed Purchase Requisition

4. Purchase order can be put to registered vendor

against the requisition

5. The item for which there is purchase order must

be stocked in the system

6. A Store Requisition for the issuance of item can

be made possible only if the item is stocked in

7. A stock out can be made for an item only against

the store requisition

4.1.1 Overall system use case design diagram

Figure 2 represents the entire system use case where the

actors that are interacted to the system are defined.

Purchase_Requisitio
n

Purchase_Order

Stock_In

Store_Requisition

Stock_Out

User(U)

Purchaser(P)

Supplier(S)

Figure 2 Entire System Use case

4.1.2 Generation of sequential use case diagram

Fig 3 shows an entire sequential use case with guards

applied; the entire sequential use case shows the execution

flow of the whole life cycle of the system with Pre and

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 5, No 1, September 2012
ISSN (Online): 1694-0814
www.IJCSI.org 83

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

Post Condition of each use case representing a use case

node.

Purchase_Requisition(PR) Purchase_Order

Store_Requisition Stock_In

Stock_Out

[/Completed Purchase_Requisition]

[/Completed Purchase_Order]

[/Completed Stock_In]

[/Completed Store_Requisition]

[/Completed Stock_Out]

Figure 3 Sequential System Use case diagram

4.1.3 Extracting sequential constraints for use

cases

The sequential contracts for the entire system use case is

derived by following the path in the transition as logical

expression by using the “AND/OR” logical operators.

Where OR indicates optional path of the system flow.

[/Completed Purchase_Requisition and /Completed

Purchase_Order and /Completed Stock_In and

/Completed Store_Requisition and /Completed Stock_Out]

For extraction of Sequential Contracts each of the use case

nodes i.e. used in fig 2 has to be involving path execution

of the whole system.

4.1.4 Generation of use case scenario diagram

For each of the use case there will be a scenario indicating

the ordering of events in the use described as use case

scenario. As there are multiple use cases in the system so

for each use case there will be a separate scenario diagram.

We are only dealing with the use case scenario Purchase

Requisition (PR) here.

Purchase Requisition Request

Validate User

Add Item(i) to Purchase Requisition

Search Item (i)

Add Item(i) to System

Completed Purchase Requisition

[/PR Request]

[/add_PR(i)]

[/Not Exist(i)]

[/Exist(i)]

[/add(i)]
[/PR(i)]

Cancel Purchase Requisition Request[/Not Validated User(U)]

[/Validated User(U)]

Fig 4 Use Case Scenario for Purchase Requisition

4.1.5 Generating execution contracts

Contracts generated from the use case scenario will be

used to define the test goals by routing through the path.

Pre Condition: User (u)

Execution Contracts: [/PR_Request and {(/Validated

User (U) and /add_PR(i) and (exist(i) or (Not /Exist(i) and

/add(i))) and /PR(i)) or /Not Validated User(U)}]

Post Condition: PR(i)

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 5, No 1, September 2012
ISSN (Online): 1694-0814
www.IJCSI.org 84

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

4.1.6 Test goal extraction

Test goals are extracted from the execution contracts

defining the path flow for the scenario. Each test goal

defines the alternative path of the scenario.

Test Goal TG_PR1

TG_PR1= [/PR_Request and /Validated User (U)

and /add_PR(i) and exist(i) and /PR(i)]

Test Goal TG_PR2

TG_PR2= [/PR_Request and /Validated User (U)

and /add_PR(i) and Not /Exist(i) and /add(i))

and /PR(i)]

Test Goal TG_PR3

TG_PR1= [/PR_Request and //Not Validated

User (U)]

4.1.7Deriving contractual system sequence diagrams

User System

[Purchase Requisition Requst]/ PR Request

Purchase Requisition Screen]

[Add Purchase Requisition]

[add item(i) to Purchase Requisition] / add_PR(i)

[Search item (i)] / Exist(i)[Completed Purchase Requisition] / PR(i)

[Validate User]/Validated User(u)

[End Purchase Requisition Request]

Fig 5 Sequence Diagram for Purchase Requisition

User System

[Purchase Requisition Requst] /PR Request

[Cancel Purchase Requisition Request]/Not PR(i)
[Validate User]/ Not Validated User(u)

[End Purchase Requisition Request]

Fig 6 Sequence Diagram 2 for Purchase Requisition

User System

[Purchase Requisition Requst] /PR Request

[Display Purchase Requisition Screen]

[Search item (i)] /Not Exist(i)

[Completed Purchase Requisition] / PR(i)

[Validate User]/Validated User(u)

[End Purchase Requisition Request]

[add item(i) to System] / add(i)

[Add Purchase Requisition]

[add item(i) to Purchase Requisition] / add_PR(i)

 Fig 7 Sequence Diagram 3 for Purchase Requisition

4.1.8 State chart transition table generation from

combination of sequence diagrams

State Chart Transition table is generated from the

Algorithm defined. The Transition Table contains five

Columns State, Guard, New state after passing the guard,

alternative state defines if the guard condition does not

satisfy then the alternative route should be adopt where

the alternative state guard is the passing condition for the

alternative state respectively. The state chart transition

table generated from sequence diagram 1, 2 and 3 are as

follows.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 5, No 1, September 2012
ISSN (Online): 1694-0814
www.IJCSI.org 85

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

Table 1: State chart transition tables for PR

State Guard New State Alternative State Alternative State

Guard

Purchase Requisition
Request

/PR Request Validate User Nill Nill

Validate User /Validated User(U) Add Purchase Requisition Cancel PR
Request

/Not Validated
User(U)

Add Purchase
Requisition

Nill Display Purchase Requisition
Screen

Nill Nill

Display Purchase
Requisition Screen

Nill Add item (i) to Purchase
Requisition

Nill Nill

Add item (i) to
Purchase Requisition

/Add_PR(i) Search item (i) Nill Nill

Search item (i) /Exist (i) Completed Purchase Requisition Add item (i) to
System

/Not Exist (i)

Completed Purchase
Requisition

/PR(i) End Purchase Requisition
Request

Nill Nill

Cancel Purchase
Requisition Request

/Not PR(i) End Purchase Requisition
Request

Nill Nill

Add item (i) to System /Add(i) Completed Purchase Requisition Nill Nill

4.1.9 Generation of contractual state diagram from

state chart transition table

Add Item(i) to PR

Display PR Screen

Cancel PR Request

Purchase Requisition Request

Search(i)

Add Item(i) to System

Completed PR

End PR Request

Validate User(U)

[/PR_Request]

[/Validated User(U)]

[/Add_PR(i)]

[/Not Exist(i)]

[/Add(i)]

[/Exist(i)]

[/Not Validated User(U)]

[/Not PR(i)]

[/PR(i)]

Add Purchase Requisition

Fig. 8 State Diagram 3 for Purchase Requisition

5. Results and Discussion

We are generating results based on the related techniques

that presents use case based system testing. [2] work

provide a base for system testing based on use cases [9]

extends by adding contracts. However lack of some

formalization technique for properly test case generation

and to maintain consistency between use cases to scenario

and state chart generation is sensitive issue. The main

advantages of the proposed approach as under

5.1 Use Case Sequential Ordering

Addition of guards to the use cases as pre and post

condition enables to formally express sequential flow as

logical expression. AND/OR logical operators can be used

to identify execution paths where the OR logical operator

shows the alternative paths in the system. The advantage of

current proposed approach is that it allows the addition of

guards to use cases which added more strength to testing

by aiding to generate complete test conditions with guards

and enabling to derive conditional test case generation also

sequential flow can be tested by guards easily.

5.2 Contractual Use Case Scenarios

A Use Case Scenario presents the execution trace of a

system and provides a base for the development of state

machine [2]. Use case scenarios can be expressed by using

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 5, No 1, September 2012
ISSN (Online): 1694-0814
www.IJCSI.org 86

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

the sequence diagram that shows the flow of events [2] but

it is difficult to define guards at the sequence diagram.

However through pre and post conditions applied to use

case scenario enables the generation of test paths. The

proposed approach also applies the contractual sequence

diagram derived from the use case scenario that can be

used to bridge the gap between the test objectives and test

cases alternatively depicting the use case scenario as it may

contain additional information than scenario.

5.3 Test Goal Generation through Scenarios

The advantage of applying guards at the scenario enables

to generate the test cases also referred to as test goals.

These test goals capture the flow of events for the use case

scenario. As the test goals are based on contracts so that

can be formalized as logical expression.

5.4 Contractual State Chart

State diagrams represent the object behavior with

invocation of event “represent operation” and are used to

record different states with events that can cause a state

transition. A state machine is composed of state

representing the behavior of the system on certain input

whereas transition may result in an output action, event “an

input” and action the output result [17]. State diagram

annotation with guards “Guards are associated with pre

and post conditions” enables to specify the entry and exit

conditions. Optional Guards can be added to states and

transition may be annotated with guard, event, and action.

If there is no guard or both guards are true then the exit

action is performed. Test cases are imposed to verify the

behavior of the system when applied on the state chart.

We had implemented a tool that takes XML containing

guards of scenario as input and generate test path

expressing test cases as logical expression.

6. Conclusions

In this paper, we presented a scenario based testing

technique for system level testing. The main aim of the

proposed approach is to generate formalize test cases by

applying guards on the scenarios covering conditional flow

path coverage criteria. For every use case scenario in the

system, we generated a sequence diagram by utilizing the

guard conditions on the scenarios. By combining the

generated sequence diagrams, we generated a state chart

depicting the overall behavior of the system.

We applied the proposed approach on an inventory system

case study. We created an entire system level use cases

then sequential use case diagrams is generated through the

contracts showing the whole system execution path. The

advantage of applying contracts at the scenario enables to

generate the test cases / test goals and enables us to

validate system from the user as at this point user can view

what are the actual steps involved in the system usage.

References
[1] T. Alspaugh, D. Richardson, T. Standish and H. Ziv.

2005. Scenario-driven specification-based testing

against goals and requirements. In REFSQ'05, pp 187-

202

[2] L. Briand and Y. Labiche. 2002. A UML-Based

Approach to System Testing, Software Quality

Engineering Laboratory, Systems and Computer

Engineering, Innovations in Systems and Software

Engineering, Springer. pp. 12-24.

[3] K. El-Far and J. A. Whittaker. 2001. Model-based

Software Testing. Encyclopedia on Software

Engineering, Volume 1. New York, USA. pp. 825-837.

[4] P. Hsia, J. Samuel, J. Gao and D. Kung. 1994. Formal

Approach to Scenario Analysis, IEEE, Volume 11. pp.

33 – 41.

[5] J. J. Gutierrez, M. J. Escalona, M. Mejias, and J.

Ramos Torres. 2009. An approach for Model-Driven

test generation International Conference on Research

Challenges in Information Science

Publisher: IEEE, Pages: 303-312.

[6] C. Kaner and F. Tech. 2003. An Introduction to

Scenario Testing (no paging).

[7] Y. G. Kim, H. S. Hong, D. H. Bae and S. D. cha. 1999.

Test cases generation from UML state diagrams, IEE,

pp. 187-192.

[8] G. Kosters, B. U. Pagel and M. Winter. 1997. Coupling

Use Cases and Class Models, Proc. of the BCS-

FACS/EROS workshop on Making Object Oriented

Methods More Rigorous. pp. 27-30.

[9] H. Liang, J. Dingel and Z. Diskin. 2006. A

Comparative Survey of Scenario-based to State-based

Model Synthesis Approaches, School of Computing

Queen’s University Kingston Ontario Canada. ACM.

pp. 5 – 12

[10] C. Nebut, F. Fleurey, Y. L. Traon and J. J. Quel. 2003.

Requirements by Contracts allow Automated System

Testing. Software Reliability Engineering ISSRE 14th

IEEE International Symposium IEEE. pp. 85.

[11] P. Machado., 2010. Automatic Test-Case Generation.

Publisher SpringerLinks Pages: 59-103.

[12] N. Raza, A. Nadeem and M. Z. Z. Iqbal. 2007. An

Automated Approach to System Testing Based on

Scenarios and Operations Contracts, IEEE, pp. 256-

261.

[13] B. Regnell and P. Runeson. 1998. Combining Scenario

Based Testing with Static Verification and Dynamic

Testing Department of communication system, Lund

University Sweden CITESEER (no paging).

[14] B. Regnell, K. Kimbler and A. Wesslen. 1995.

Improving the use case driven approach to

requirements engineering Proceedings of the Second

IEEE International Symposium IEEE. pp. 40-47.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 5, No 1, September 2012
ISSN (Online): 1694-0814
www.IJCSI.org 87

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

[15] J. Ryser and M. Glinz. 1999. A Scenario-Based

Approach to Validating and Testing Software Systems

Using Statecharts, Department of Computer Science,

University of Zurich, CITESEER (no paging).

[16] J. Ryser and M. Glinz. 2000. Using Dependency charts

to improve Scenario-Based Testing, Department of

Computer Science, University of Zurich, CITESEER

(no paging).

[17] J. Whittle and K. Praveen. 2006. Generating

Hierarchical State Machines from Use Case Charts,

14th IEEE International Requirements Engineering

Conference IEEE. pp.19-28.

[18] S. S. Some, 2007. Specifying Use Case Sequencing

Constraints using Description Elements, Sixth

International Workshop on Scenario and State

Machines, IEEE. pp. 4-10.

[19] L. Geiger and A. Zundorf, 2005, Story Driven Testing

SDT, International Conference on Software

Engineering, ACM. pp. 1-6.

[20] Y. Liu, Y. Li and P. Wang 2010, Second International

Conference on Information Technology and Computer

Science Publisher: IEEE, Pages: 344-347.

Muhammad Touseef is Software Engineer and has achieved his
MSCS from UIIT in 2009, achieved MIT (Master in Information
Technology) in 2005 and BCS (Bachelor in Computer Science) in
2001. He is currently working as Senior Software Engineer in
Islamabad Club, Islamabad, Pakistan. He has done few
publications and now wants to pursue his PhD in Computer
Science soon.

Zahid Hussain Qaisar is an Assistant Professor and doing his
PhD (Computer Science) and has completed his MSCS (Master of
Sciences in Computer Sciences) and BSCS (Bachelor of
Sciences in Computer Sciences) from Pakistan. He is currently
working as Assistant Professor in NFC-IET (Institute of
Engineering and Technology) National Fertilizers Corporation,
Multan, Pakistan. He has also taught software Engineering,
Introduction to computing, Automat Theory, Theory of
Computation, Formal Methods and Operating Systems at
graduation and master level at various universities and institutes.
He has few publications in journal and conference level. His area
of interest are software Modeling, Software Designing, Software
Testing and Formal methods and software development. He has
also an impact factor publication mentioned below “A safe
regression testing approach for safety critical systems”
Published in: · Journal Advances in Engineering Software.
Volume 42 Issue 8, August, 2011 Pages 586-594
Elsevier Science Ltd. Oxford, UK, UK
 DOI:10.1016/j.advengsoft.2011.04.007

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 5, No 1, September 2012
ISSN (Online): 1694-0814
www.IJCSI.org 88

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

http://dx.doi.org/10.1016/j.advengsoft.2011.04.007

