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Abstract
In this work, we consider a linear discrete system where a part of 
dynamics is affected by a disturbance. Being unable to cancel the 
effects of this disturbance, we propose a control law in closed 
loop to reduce the sensitivity of the system output to the 
disturbance. Finally, and to illustrate the results, we give 
examples in which it is based on the technique of pole placement. 
All simulations are done using Matlab/Simulink TM 
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1. Introduction

When modeling a system, the mutual connections that 
bind with its environment can't be ignored and so, we are 
often obliged to take into account certain undesirable 
parameters, let's mention as examples pollution, bacterial 
infection, earthquakes, severe weather…In order to face 
such problems, scientists have elaborated different 
approaches such as the identifiability (Arild Thomson   
2007; Kauffman et al., 2004; Robert et al., 2007)and the 
detectability (Franklin, 2001; Kailath , 1980; Ogata, 1995)
or the H∞ control theory (Chi Tsong, 2008; Dingyu Xie, 
2002; Goodwin, 2007), the theory of sentinel (Lions et al., 
1986; Lions, 1988) and the frequency domain and 
robustness (Ackermann, 1993; Ayala et al., 2002; Rosario, 
2007; Gu et al., 2005). Our contribution in this direction is 
to construct, under certain hypothesis, a control law so that 
the sensitivity of the resulting system output would be 
relatively tolerable.
    More precisely, let's consider the following discrete 
linear perturbed system
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( )i i ix A A x Bu
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


                        (1)

The corresponding output is    i iy Cx       (2)

where  A, B and C are respectively (nxn), (nxm) and (pxn) 
matrices and the disturbance ΔA  has the form  ΔA=αE 
with  min max   is unknown and E a (nxn) matrice 

which defines the emplacement of the disturbance in the 
system dynamics.
    To attenuate the effect of the perturbation, we 
investigate a control law 

i iu Ky
in such a way that the resulting output of the system
verifies

min max, 0iy
i and   




    
            (3)

where ε  is a predefined tolerance threshold and where the 
inequality

     iy








means that the sensitivity of yi  to the perturbed α will not 
reach the predefined threshold ε.

2. Some technical results

To understand this problem, we limit ourselves to the 
uncertainty in one of the parameters of the matrix A, so
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                 (4)

substituting   the control  ui=Kyi  in the equation  (1)
hence the new discrete linear system of the closed loop 
can be rewritten as follows
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let's compute the derivative of xi+1 with respect to α, we 
will have

1i i i i
i

dx dx dx dx
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d d d d
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we put

i
i

dx
z

d
                                                   (7)

so, we will have
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let’s put
A E BKC   

then, we can write
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since z0 = 0, it’s easy to show that
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and then the previous inequality can be written as
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we assume that the gain m x nK  is such that 

max( ) 1A E BKC                         (10)

where  max( ) 1A E BKC    is the spectral radius of 

the matrix  maxA E BKC  .

then, it is known (see Burden et al., 2001; James et al., 
2007) that for any ε0 > 0, there exists norm 

max
. such as

max 0max
.A E BKC              (11)

we recall that if 

maxH A E BKC  

according to Jordan transformation     1H SJS    

and so, the matrix norm 
max

. is
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and where the matrix norm .


is given by

1
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and the vector norm is 
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according to (9), we can write
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since  min max   , we have min maxp q   

where  1 , 0p q and p q  

         min max( )A p q E BKC     
let’s put

min minA E BKC   

max maxA E BKC   
so, we have
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min max max max( )p E q       

min max maxmax
E     

and finally, we obtain

max min maxmax max max
A E BKC E        (16)

the expression (15) gives
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where
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using (11), we have 1i 
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0 0 min maxmax max max
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                                                                     (18)
let’s put 

0 min max max
E            (19)

in the next, we suppose

0 min max max
1E             (20)
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and if we consider the function F defined by
1( ) 1xF x x x                        (21)

it is easy to establish that the F(x) is a decreasing 
function with the following maximum

1
max( ( ))

ln( ) exp(1 ln( ))
F x   

  
   (22)

this is reached when
1

ln( )
x  


that means        ( ) , 1F x x  
therefore, we obtain 

   0max max
idy

C E x
d




                     (23)

so, in order to realize the sensitivity condition

min max, 0iy
i and   




   


it is sufficient to verify the ε-tolerance condition

0max max

1
( )

ln( )exp(1 ln( ))
C E x  

  
       (24)

3. Solution of the problem

Using the technical results established in the previous 
section, we have

3.1 Proposition

If the gain matrix m x nK  satisfies the two following 
hypotheses:
      h1)  max( ) 1A E BKC    ;

      h2)  0 min max max
1E      

             0 0  is such that  0 1  
            and  max( ) 1A E BKC    .

then the output yi  resulting from the control law 

i iu Ky verifies the sensitivity condition

min max, 0iy
i and   




   


if the following sufficient condition

0max max

1
( )

ln( )exp(1 ln( ))
C E x  

   i iu Ky

is realized.

in order to construct a gain matrix m x nK  verifying the 
two hypotheses of the last proposition , assuming the 
controllability of  max( , )A E B , then it follows from the 

Ackermann’s theorem the existence of m x nL such that 
the poles of the matrix max( )A E BL  may be placed at 

any desired locations. Consequently, we use the 
Ackermann’s theorem to determine a gain matrix 

m x nL such that max( ) 1A E BKC    .

To determine the gain matrix K, we need the following 
lemma:

  3.2  Lemma

If we consider m x nL , the two following assertions are 
equivalent

i) m x pK such that L KC  

ii) Ker C Ker L

  3.3 Remark

If  ( ) , 0Trank C p then Ker C  , consequently, the (pxp)

matrix ( )TCC is invertible and the gain K can be 

calculated using
1( )T TK LC CC 

and so, it is the unique solution of the matrix equation
L KC

4. Illustrative examples

4.1 Example 1

Let’s consider a perturbed discrete linear system

 

1

0.1 0.3 1 0 0

1 0.2 0 0 0.2

0.1 0.5

i i ix x u





      
        
     

 
augmented with the output 

 1 1i iy x
then the system parameters are

 

min max

0.1 0.3 0 1 0
, , 1 1

1 0.2 0.2 0 0

0.1, 0.5, 2, 1 1

A B C and E

n m and p 

     
        
     
    

we investigate the feedback control  i iu Ky such as

 0.4, 0 0.1 0.5idy
i and

d



    
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Step 1
Using Ackermann’s method, there exists a gain L such as

max( ) 0.2A E BL   
with  Matlab/Simulink, we find

( 6 3)L   
Step 2
Since ( )TCC is invertible, it follows from the previous 

remark that
1( ) 4.5T TK LC CC   

then the control ui can be written such as  i iu Ky
let’s simulate the system output for several values of 
perturbed parameter α  :   (0.1 < α < 0.5)
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Fig.1. system outputs for multiple disturbance parameter

Figure 1schows that for the control i iu Ky , the resulting 

outputs of the perturbed system are almost confounded, we 
have taken

1 min 2 3

4 5 6 max

0.1, 0.2, 0.3

0.35, 0.4 0.45and

   
   

   

   
this shows therefore, the insensitivity of the system output 
to disturbance variations. However, by choosing a 
parameter  max  , we notice that the resulting output 

deviates more from the package.

4.2 Example 2

The amount of solute (drug or metabolite) introduced in 
the human body is often assumed to be stored in different 
compartments of the body. A separate equation for each 
compartment relates the rate of solute removable to the 
amount or concentration of the solute in the compartment. 

The solute can be either be transported to another 
compartment or eliminated from the body by metabolism 
or excretion. Consider the linear compartment model 

described in Riggs (1970) for describing the quantities of 
iodine in humans, where k₁₂, k₂₁, k₁₃, k₃₁, k₄₃, ku and kf

are the rate constants governing the transfer of iodine 
between the compartments and its excretion from the body.

        

                Fig. 2  compartmental model for iodine distribution in a human.

The state variables are: x₁: Amount of inorganic iodine in 
the thyroid gland, x₂: Amount of organic iodine in the 
thyroid gland, x₃: Amount of hormonal iodine in the extra 
thyroidal tissue, x₄: Amount of iodine in the inorganic 
iodine compartment. And the inputs are: q₃: Rate of entry 
exogenous iodine, q₄: Rate of entry of exogenous 
hormonal iodine. The state equations of this system are 
[see 19]

1
12 14 1 21 2 41 4

2
21 1 21 23 2

3
23 2 34 3 3

4
14 4 34 3 14 4 4

( )

( )

( )

( )

f

u

dx
k k x k x k x

dt
dx

k x k k x
dt
dx

k x k k x q
dt
dx

k x k x k k x q
dt

     

   

    


     


and the corresponding outputs are

1 1 2 3 4

2 3 4f u

y x x x x

y k x k x

   
  

so, the matrices of the system are
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11 12 13 14

21 22 23 24

31 32 33 34

41 42 43 44

0 0

0 0
,

1 0

0 1

1 1 1 1

0 0 f u

a a a a

a a a a
A B

a a a a

a a a a

and

C
k k

   
   
    
   
   

  

 
  
 

where

11 12 14 12 21

13 14

21 12 22 21 23

23 24

31 34

32 23 33 34

41 14 42

43 34, 44 14

( ), ,

0,

, ( ),

0,

0,

, ( ),

, 0,

( )

f

u

a k k a k

a a

a k a k k

a a

a a

a k a k k

a k a

a k a k k

   
 
   
 

 
   

 
   

Baseline values of the system parameters are

12 21 23

34 14 41

0.8 / , 0.05 / , 0.01/

0.3 / , 0.15 / , 0.5 /

0.02 / , 1.2 /f u

k day k day k day

k day k day k day

k day k day

  
  

 

We suppose that the dynamic of the system is affected by a 
disturbance only in the parameter  11a

so, the perturbed parameter 11
pa   becomes

11 11
pa a  

we are first interested in determining a control law such
that the output y1 is insensitive to the disturbance α in the 
system dynamic.
otherwise

 1
1, 0 0.001 0.145

dy
i and

d
 


    

where ε1 is the predefined threshold tolerance, it has the 
value

2 0.04 
then, the same work can be applied to the second output y2

with a predefined threshold tolerance  ε2

2 0.04 
so, we have

1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

E

 
 
 
 
 
 

      4, 2 2n m and p  

Step 1
First, we will discretize our continuous system using a 
sampling period  Te = 1 sec.
consequently, the new discrete linear system is written as

1i d i i d i

i d i

x A x Ex B u

y C x

   
 

the matrices of the new discrete linear system are 
calculated using Matlab/Simulink

0.8788 0.0047 0.0386 0.2209

0.7422 0.9780 0.0210 0.1154

0.0034 0.0084 0.7292 0.0004

0.0665 0.0010 0.1197 0.1951

0.01519 0.1450

0.0033 0.0439

0.8558 0.0001

0.0819 1.4863

1 1 1 1

0 0 0.02 1.2

d

d

d

A

B

and

C

 
 
 
 
 
 
 
 
 
 
 
 

 
  
 

Step 2
Then, the system will be simulated for several disturbance 
parameters


max

[0.0010 0.0015 0.0075 0.0540 0.0810 0.160

0.145and








the initial vector is 

 5
0 10 0.1 0.4 0.78 0.65x 

Step 3
Using Ackermann’s method and Matlab/Simulink, we find 

9.83 42.5612 1.3215 1.33

12.2514 19.208 0.1296 2.1322
L

   
  
 

with        max 0.6d dA E B L   
Step 4
We can calculate the gain K using the expression given in 
the previous remark

17.2177 13.4929

10.6354 7.23
K

 
   

so, we will introduce a law control i iu Ky such that

1 2
1 2

dy dy
and

d d
 

 
 
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Figure 3  illustrates the same interpretations as in the first 
example, As the value of α remains bounded between αmin  
and αmax, and as a condition of tolerance (24) is always 
true it is always possible to reduce the sensitivity of the 
output by using a control law, it suffices to locate the poles 
of the closed loop system in a sub region of the unit circle. 
But when, we are subject to a strong disturbance parameter 
(α>αmax) ,it can be observed that the output deviates more 
from the output of the unperturbed system. These results 
confirm our work.
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Fig.3.  outputs of four compartments model with one perturbed parameter 

5. Conclusion

In this paper we consider a discrete linear system with 
perturbed dynamic. We have proposed, under certain 
hypotheses, a control law which allows the insensitivity of 
the output to the disturbance. Future research will 
investigate the generalization of the developed technique 
for several uncertainties in the dynamic of the nominal 
system model.
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