

Efficient Processing Power Reservation Approach to

Imporove Real-Time Task Schedulability and Relaibaility

Ahmed E. Youssef1 Abeer Hamdy2 and Reda Ammar3

1 Faculty of Engineering-Helwan, Helwan University

Cairo, Egypt, and

Dept. of Information Systems, King Saud University

Riyadh, 11543, KSA

2 Dept. of Computers and Systems, Electronic Research Institute, and

Faculty of informatics and computer science, British University in Egypt

Egypt

3Dep. of Computer Science and Engineering, University of Connecticut

Storrs, CT 06269-3155, USA

Abstract
Efficient utilization of the computational resources is an

urgent demand especially if real time constraints should be

guaranteed. Moreover, an acceptable level of reliability
should be provided due to the critical nature of some real

time applications. This paper proposes a new approach for

processing power reservations that efficiently utilizes all

the available processing power to improve reliability and
schedulability of independent real time tasks on a uni-

processor. The basic idea of the proposed approach is to

use all of the available processing power in the time

interval between the arrivals of two successive tasks or
when an existing task departs. The advantages of this

mechanism are: 1) it reduces the execution time required

for each task and hence increases its reliability. 2) At the

arrival of a new task; the processing power requirements
for the executing tasks to meet their deadlines are smaller,

which gives the new arriving tasks higher chances to be

accommodated with the existing ones. 3) Efficient

processing power utilization may reduce the power
consumption in processors with dynamic voltage scaling.

An illustration example and simulation experiments

showed that our approach provides a more reliable

scheduling scheme with higher acceptance rate compared
to the traditional approach based on Rialto operating

system.

Keywords-Processing Power, Processor Utilization,

Scheduling, Real-Time Tasks.

1. Introduction

In recent decades, real-time systems have been

employed in many application domains including

banking systems, autonomous robots and control

systems. A real time application is composed of one

or more tasks that are dependent in most cases and

are required to perform their functions under strict

timing constraints. A task missing its deadline may

result in a dominant effect, causing other tasks to

miss their deadlines which may cause a system

failure. Emerging computing paradigms, cloud, grid,

cluster and multi/many core systems provide suitable

platforms for real time systems to satisfy their timing

requirements. Each of these computing paradigms

requires a middleware called scheduler to manage

the allocation of the computing resources to the

admitted applications in such a way that certain

performance metrics are met. These metrics depend

on the application areas and are used to guide the

scheduling decisions. However, in real-time systems,

the main metric is to satisfy timing constraints with

maximum acceptance rate.

Scheduling real time tasks on multiprocessor and
distributed platforms is usually achieved using a two-

level hierarchical scheduler: 1) A high level

scheduler (partition algorithm) which is concerned

with how to partition the applications and assign

them to the different processors. 2) Low level

scheduler (CPU reservation algorithm) that ensures

an efficient and predictable scheduling of real-time

independent tasks on each processor individually. By

and large, in real-time computing, a task is submitted

along with a statement of its start, finish and

computation times. Depending on the available

processing power, the scheduler either admits the

task, guaranteeing the task will be completed on

time, or rejects the request if it is impossible to

satisfy the desired deadline of the task. Thus, in order

to accommodate as many tasks of different

applications as possible while satisfying the required
deadline of each application an efficient utilization of

the CPU processing power is necessary.

In this paper we introduce a new approach for

processing power reservation that improves real-time

task scheduling in terms of both acceptance rate and

reliability. Our approach utilizes all of the processing

power in the execution mode. Thereby; 1) the

processing power requirements for the current loaded

tasks are smaller when new tasks arrive. This gives

higher chances for the new arriving tasks to be

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 5, No 2, September 2012
ISSN (Online): 1694-0814
www.IJCSI.org 196

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

accommodated with the existing ones. 2) The

execution times of the admitted tasks are reduced and

consequently the system reliability is increased. 3)

Power consumption is reduced in processors with

dynamic voltage scaling.

The rest of the paper is organized as follows:

Section 2 reviews some work related to real-time

task scheduling. Section 3 introduces Rialto
processing power reservation approach which we

used as a baseline to evaluate the performance of our

proposed approach. Section 4 describes our proposed

scheduling algorithm. Section 5 illustrates our

algorithm by an example and shows its advantages

by comparing it to Rialto approach. Sections 6

discuss the simulation experiments and results.

Finally, section 7 concludes the paper.

2. Related Work

There has been and continues to be a great deal of

research that addresses the problem of scheduling

real time tasks. In a broad sense, scheduling
approaches can be classified in several ways. For

example, they can be classified based on the

computing platform; scheduling algorithms in [15,

22] address the problem of task allocation over a

Grid; the algorithms in [3,13,18,19,20,21] address

the problem of task allocation over a cluster; the

algorithms in [2,9,10,11,12,14,16,17] address the

problem of allocating tasks over the processors of

multiprocessor and multi-core systems; while the

algorithms in [1, 5, 6, 7, 8, 23] have been proposed to

ensure an efficient and predictable scheduling of

real-time independent tasks over a uni-processor.

Another classification to the scheduling approaches

could be based on the additional performance metrics

along with satisfying timing requirements (e.g.

minimizing completion time, maximizing

throughput, reducing power consumption); The

algorithms in [2,4,15,16,21] have been proposed for
reducing power consumption in processors with

dynamic voltage scaling; while the algorithms in [19,

20] are concerned with achieving effective fault-

tolerant in real time systems.

Most real-time scheduling approaches on a uni-

processor focus on providing proportional share CPU

allocation. A task receives a CPU share that

corresponds to a user specified weight or percentage.

This CPU share is called Processing Power (PP). A

common representative to this scheduling approach

is the Rialto operating system that is developed by
Microsoft research [7,8]. Rialto is designed to

schedule multiple independent real time and non real

time tasks using the CPU reservations on the same

processor. The efficiency of CPU reservation is a

result of a moderate overhead that is incurred by the

CPU scheduling. The overhead is bounded by a

constant and is not a function of the schedulable

tasks. Also, scheduled task cannot violate other

tasks’ guarantees. The following section discusses

the Rialto CPU reservation approach which we used

as a baseline to evaluate the performance of our

proposed approach.

3. Rialto CPU Reservation Approach

Rialto can schedule multiple independent tasks on a

uni-processor using a CPU reservation mechanism.

Processing power reservations are made by the tasks

to ensure a minimum guaranteed execution rate.

Request for processing power reservation is of the

form reserve % processing power out of %

(100) available processing power at processor Pm
for a certain time (task deadline). This is equivalent

to reserving x time units out of every y units for the

task. Based on this proposition, each processor

maintains a data structure, called reservation table, of

a pre-computed schedule. Each entry in the

reservation table contains information such as task

ID Tj, required processing power PPj for each task,

expected starting time Sj and expected completion

time Fj. Table1 shows an example of the reservation

table for a specific processor that accommodates

tasks T1, T2, T3, and T4 and figure 1 shows the

Processing Power Reservation Graph (PPRG) of the
processor over the time interval {115,211}.

Table 1: Reservation table for a process

The negotiation and reservation activities are made
possible using the reservation table, when a task is

admitted the minimum available processing power

on the processor during the deadline of the task is

1.00

1
1

5

0.80

0.20

0.40

0.60

1
2

4

1
3

0

1
3

3

1
4

2

1
5

7

1
5

9

2
1

1

Processing Power

Clock Time

T1
T1

T3

T4

T3

 T2

0.00

Fig.1: PPRG of a processor that accommodates tasks

T1, T2, T3, T4 over the time interval 115:211.

 T2

T4

Tj PPj Sj Fj

T1 0.20 115 130

T2 0.10 124 142

T3 0.30 133 159

T4 0.40 157 211

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 5, No 2, September 2012
ISSN (Online): 1694-0814
www.IJCSI.org 197

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

computed using the reservation table or the PPRG of

the processor. If the required processing power for

the task is less than or equal to the minimum

available processing power, the task is accepted and

a corresponding entry is added to the table and

automatically the PPRG is updated, otherwise the

task is rejected meaning that it cannot be

accommodated by the processor. On the other hand

when a task finished, its entry is deleted from the
reservation table and its processing power is released

allowing the processor to accommodate new tasks.

Algorithm1 describes the Rialto approach for real

time task scheduling.

Algorithm 1: Rialto Approach

Input: a set of real-time independent tasks

 T },...,,{ 21 nTTT

Output: acceptance rate

Begin
1. counter = 0

2. For each jT  T

Determine  min min ()
j

j

F

j ava ava t S
PP PP t  



 If (min)j j avaPP PP  ) then

 Increment counter

 Update PPRG in the window],[jj FS as:

 () () , [,]res res j j jPP t PP t PP t S F  

3. Acceptance rate = counter/n

End

4. The Proposed Approach

In this section we present our new algorithm for
processing power reservation and utilization. The
input to this algorithm is a set of tasks T

},...,,{ 21 nTTT

Each task Tj is defined using three

parameters (Sj,Fj,PPj). The algorithm has to determine
the acceptance/rejection status of the tasks, and
updates the PPRG. The basic idea of the algorithm is
to use all of the available processing power (PPava) in
the time interval between the arrivals of two
successive tasks or when an existing task departs.
When a task departs, its processing power is released
back and re-distributed among the remaining active
tasks. During the scheduling process the processor
alternates between two modes; Execution Mode (EM)
and Reservation Mode (RM).

Execution Mode (EM): is activated between two
successive arrivals or at the departure of an executing
task. In this mode, all the available processing power
is distributed among the allocated tasks proportional
to their workloads WLj. Consequently, each task is
allocated with at least its reserved processing power.
If a task receives a higher processing power, it
terminates earlier before its deadline. Otherwise, it
terminates exactly at its desired deadline.

Reservation Mode (RM): is activated at the arrival
of a new task. Each of the existing tasks is assigned
part of the available processing power depending on
its remaining workload, guarantee no deadline
violation. The remaining processing power becomes
available for the new task. If it is enough to
accommodate the new task, it is admitted. Otherwise,
the new task is rejected.

The algorithm proceeds as follows:

a. Initialization:
1. At the arrival of the first task T1: All the

available processing power PPava (initially

PPava =1) is assigned to it, instead of its

required PP1. So the task can terminates

earlier than its required finish time (F1).

2. The new finishing time (Z1) is calculated

which we will call lock time.

3. The task is added to a list called active_list

(K).

b. Reservation Mode (RM): Processor converts

from EM to RM at the arrival of a new task Ti. RM

proceeds as follows:

1. For each existing task Tj in K compute remaining

workload (WLj) in the time interval [Si, Fj-EM].

WLj=PPj-EM * (Fj-EM-Si)
Where,

 Si: Task Ti arrival time,

PPj-EM : is the new processing power assigned for

Tj during execution mode (PPj-EM ≥ PPj),

 Fj-EM : Execution mode finish time of Tj. which

is either equal to its required finish time Fj or
smaller .

2. Compute the new reservation processing power

PPj-RM for each task Tj in K such that Tj finishes at its

required finish time Fj)

Where, PPj-RM ≤ PPj

3. Use PPj-RM for each task Tj in K to allocate Tj and

update the PPRG in the time interval [Si, Fj].

4. Compute the minimum available reservation

processing power in the time interval [Si, Fi]

 min ava RMPP min ()
i

i

F

ava t S
PP t  



() 1 ()ava RMPP t PP t 

5. If PPi PPmin-ava-RM , task Ti is accepted, added to
the active list K and the PPRG is updated; Else Ti is

rejected.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 5, No 2, September 2012
ISSN (Online): 1694-0814
www.IJCSI.org 198

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

6. The processor converts from RM to EM.

c. Execution Mode (EM): It is activated after

accepting a new task during the reservation mode or

at the departure of an existing task to re-distribute the

available processing power. EM proceeds as follows

when accepting a new task Ti:

1. Compute the new execution mode processing

power (PPj-EM) for each task Tj in K as follows:

2. If Tj K then

 Set ,

 Move Tj from K to a temporary list L

 Set

 Go To step 1

3. Compute the lock time for the current execution

mode Fj-EM (N.B. All the tasks in the list K, have

required finish times later than Fj-EM, will finish at the

current execution mode lock time).

4. Move the tasks in the temporary list L to K.

5. Use PPj-EM for each Tj in K to plot PPRG in the
time interval .

At the departure of a task Ti during EM, the previous
steps will be repeated during the interval [].

Algorithm 2 briefs our proposed approach.

Algorithm2: The proposed approach

Input: a set of real-time tasks T },...,,{ 21 nTTT

Output: acceptance rate

Begin
1. counter = 0
2. Arrange T in an event (task arrival/departure)

queue, Q

3. Get an event e from Q

4. While (Q is not empty)

IF (e is an arrived task)

* Convert PPRG from EM to RM

 * Check acceptance of the arrived task

If (task accepted)

- Increment counter

- Allocate task on PPRG

- Convert PPRG from RM to EM

ELSE

* Remove departed task from in EM

* Redistribute PP among remaining tasks

5. acceptance- rate = counter/n

End

5. An Illustration Example

This section presents an example that illustrates the

idea of our proposed approach. The set of the

arriving tasks are described in Table 2. Figure 2
shows that based on Rialto approach T4 cannot be

accommodated by the processor since its required

processing (0.3) exceeds the minimum available

processing power (0.1) in its time interval [50,100],

i.e., PP4>PP4-min-ava

The PPRGs for these tasks during the reservation

mode and the execution mode using our approach are

shown in Figs. 3-7. A quick inspection for these

PPRGs revealed that while task T4 is rejected using

Rialto approach, all tasks including T4 were accepted
for scheduling using our approach for processing

power utilization. This shows that by utilizing all the

available processing power during the execution

mode after T4 arrives we reduce the PP requirements

for T1, T2 and T3 so that T4 can be accommodated.

Table 3 shows the acceptance/rejection status of each

task using Rialto approach and using our approach. It

can be noticed that using our approach, tasks T3 and

T4 finish earlier than their desired deadlines.

Table 2: Tasks Reservation Table.
Ti Si Fi PPi

T1 10 60 0.3

T2 20 70 0.2

T3 25 80 0.4

T4 50 100 0.3

1

0.8

0.6

0.4

0.2

60 10 100 70 80 20 25 50

1.2

T4

T3

T2

T1

Fig.2: T4 is rejected using Rialto approach

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 5, No 2, September 2012
ISSN (Online): 1694-0814
www.IJCSI.org 199

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

Task Rialto approach Our approach

Finish

time

Acceptance

status

Finish

time

Acceptance

status

T1 60 accepted 60 Accepted

T2 70 accepted 70 Accepted

T3 80 accepted 71.876 Accepted

T4 100 rejected 71.876 Accepted

The reliability of each task can be estimated using

the following equation:

 t- R *exp 

Where: t: execution time of Tj

 β: failure rate of the processor

Table 4 shows the reliability of each task when
executed on a processor of failure rate β = e-3. It can

be noticed that an improvement of 1% and 3% in the

reliabilities of the tasks T3 and T4 respectively when

executed using our approach over their reliabilities

when executed using Rialto approach. So, we

conclude that our approach will also provide higher

level of reliability due to the reduction in the

execution time.

Tj Rialto approach Our approach

Execution

time

Reliability Execution

time

Reliability

T1 50 0.951229425 50 0.951229425

T2 50 0.951229425 50 0.951229425

T3 55 0.946485148 46.876 0.954205712

T4 50 0.951229425 21.876 0.978361544

6. Simulation Experiments

6.1. Experiments Setup
In order to show the performance of the proposed

approach relative to Rialto, four simulation

experiments were conducted. In each experiment,

sets of tasks were generated according to the

following settings:

1. Each set contains 10000 tasks generated

randomly.

2. Different sets have different values of 1/λ

however all sets in one experiment have the

same value of 1/μ (μ is the departure rate of

tasks). The values of 1/μ are 10, 15, 20, and 25

in the four experiments respectively. The value

of 1/λ ranges between 1/μ and 100 sec.

3. In each set, a uniform probability distribution is
used to generate random values for execution

time of the tasks.

4. In each set, an exponential probability

distribution is used to generate random values

for inter-arrival time of the tasks.

The ratio (λ/μ) is called traffic intensity (it expresses

processor utilization) and cannot exceed one since λ

is always smaller than μ. If this ratio is close to one

it means that tasks have relatively large λ (fast

arrival). Consequently, their scheduling on the
processor will be more difficult than if the ratio is

close to zero (relatively small λ or slow arrival).

6.2. Performance Evaluation Criteria
The performance metric used in evaluating our

scheduling approach is the acceptance rate of the

tasks on a processor. Acceptance rate is defined as

the ratio of the number of tasks that can be executed

without violating their deadline requirements to the

total number of tasks. We measure the acceptance

rate at different values of mean inter-arrival time

(1/λ) and mean execution time (1/μ) of the tasks

(where λ and μ are the arrival and the departure rates

of the tasks respectively).

6.3. Simulation Results
Figures 8-11 show the acceptance rate vs. traffic
intensity during each of the four experiments. In all

experiments, results show that the proposed

scheduling approach outperform Rialto especially

when the traffic is heavy. Results also show that the

two approaches reject more tasks when tasks arrive

faster than the processor can handle (large values of

λ, heavy traffic). However, our proposed approach is

still superior to Rialto. In contrast, the two

algorithms perform competitively well when the

tasks arrive far apart from each other (small values of

λ, light traffic).

Figure 12 shows the percentage improvement in

acceptance rate achieved by our proposed approach

over Rialto approach at different values of 1/µ and

1/λ. As can be seen in the graphs, the improvement

diminished as λ decreases. This is due to the fact
that the two approaches perform very well for small

values of λ (slow arrivals). The graphs also show

that we achieve higher amount of improvement for

higher values of λ (fast arrivals). Hence, we conclude

that our approach has a major improvement when

tasks arrive at high arrival rate. In this case, the

scheduling process becomes difficult and Rialto-

based approach performs poorly.

As can be seen, the maximum improvement is

achieved at the largest value of 1/µ (slow departure)

and the smallest value of 1/λ (fast arrival). These

results show again that our approach has a major

improvement when the processor is heavily loaded

and where Rialto approach fails.

Table 4: Acceptance and rejection status of the tasks using

Rialto approach and using our approach

Table 3: Acceptance and rejection status of the tasks when using

Rialto and using our approach

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 5, No 2, September 2012
ISSN (Online): 1694-0814
www.IJCSI.org 200

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.33

0.104

57

0.312

50

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

60 70

0.125

0.325

0.2

20

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

20 25 60

0.1

0.33

0.25

0.15

80

0.65

0.55

0.4

Fig.4-a: Reservation mode

at the arrival of T2

Fig.4-b: Execution mode between the arrivals

of T2 and T3

Fig.5-a: Reservation mode at the arrival

of T3

Fig.5-b: Execution mode

between the arrivals of T3 and T4

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.33

35 25

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

60 10

1

0.

9

0.

8

0.

7

0.

6

0.

5

0.

4

0.
3

0.
2

0.
1

25

Fig.3-a: Reservation mode

 at the arrival of T1 Fig.3-b: Execution mode between the

arrivals of T1 and T2

20

PP

t

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 5, No 2, September 2012
ISSN (Online): 1694-0814
www.IJCSI.org 201

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.33

0.104

0.35

71.876

0.07

0.14

20 25 60

0.3

70

0.24

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.33

0.104

0.35

0.07

0.14

20 25 60

0.3

70

Fig.7-a: Execution mode between the departure of T1

and the departure of T2

Fig.7-b: Execution mode after the

departure of T2

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.33

0.104

0.35

0.07

0.14

20 25 60

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.33

0.104

0.23

0.16

0.6

0.53

0.46

0.3

100 50

0.07

0.14

0.312

60 70 80

Fig.6-a: Reservation mode

at the arrival of T4

Fig.6-b: Execution mode between the arrival of T4

and the departure of T1

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 5, No 2, September 2012
ISSN (Online): 1694-0814
www.IJCSI.org 202

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

Fig. 8 Acceptance rate at mean execution time (1/μ) = 10 and different traffic intensity.

Fig. 9 Acceptance rate at mean execution time (1/μ) = 15 and different traffic intensity.

Fig. 10 Acceptance rate at mean execution time (1/μ) = 20 and different traffic intensity.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 5, No 2, September 2012
ISSN (Online): 1694-0814
www.IJCSI.org 203

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

Fig. 11 Acceptance rate at mean execution time (1/μ) = 25 and different traffic intensity.

Fig.12 Improvement in the acceptance rate at different values of 1/μ and 1/λ.

7. Conclusions

This paper presented a new approach for processing

power reservations that efficiently utilizes the

processor and improves the schedulability of real-

time independent tasks on a uni-processor. In

addition it improves the reliability of the tasks by

reducing their execution times. We compared our

approach to a traditional one ,called Rialto, and it is

found that our approach is superior in terms of both

acceptance rate and reliability. Moreover, we expect

that our approach may help in reducing the power

consumption in processors with dynamic voltage

scaling. As Aydin [4] and Yang [2] mentioned that

optimal solution for energy efficient scheduling of

periodic real time tasks; when they are executed at

constant speed such that utilization is 100% or at

minimum speed with utilization less than 100%. We

are currently investigating energy saving issue when
using our proposed approach.

References

[1] B. Ford and S. Susarla, “CPU inheritance
scheduling”, operating systems review, vol. 30, 1996,
pp. 91-105.

[2] Chuan-Yue Yang, Jian-Jia Chen ; Tei-Wei
Kuo ; Lothar Thiele, “An approximation scheme for
energy-efficient scheduling of real-time tasks in
heterogeneous multiprocessor systems”, In
Proceedings of Design, Automation &test in europe
conference &exhibition, Date’09, 2009, pp. 694 - 699

[3] G. Birkenheuer and A. Brinkmann, Reservation based
overbooking for HPC clusters, 2011 IEEE
International Conference on Cluster computing, 2011.

[4] H. Aydin, R. Melhem, D. Mosse and P.Meja-Alvarez,
“Dynamic and Aggressive Scheduling techniques for
power-aware real-time systems”, In Proceedings of
the 22nd IEEE Real-Time systems Symposium, 2001,
pp. 95-105.

[5] I. Stoica, H. Abdelwahab, K. Effay, S.K. Baruah, J.E.
Gehrke, and C.G. Plaxton, “A proportional share
resource allocation algorithm for real-time, time-
shared systems”, presented at proceedings in 17th
IEEE real-time systems symposium, Los Alamitos,
CA, USA, 1996.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 5, No 2, September 2012
ISSN (Online): 1694-0814
www.IJCSI.org 204

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Chuan-Yue%20Yang.QT.&newsearch=partialPref
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Chuan-Yue%20Yang.QT.&newsearch=partialPref
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Tei-Wei%20Kuo.QT.&newsearch=partialPref
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Tei-Wei%20Kuo.QT.&newsearch=partialPref
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Thiele,%20L..QT.&newsearch=partialPref

[6] J. Regehr, J. and J.A. Stankovic. Augmented CPU
reservations: Towards predictable execution on
general-purpose operating systems. in Real-Time
Technology and Applications – Proceedings,Taipei,
Taiwan,2001.

[7] Michael B. Jones, Daniela Roşu, Marcel-Cătălin
Roşu, CPU Reservations and Time Constraints:
Efficient, Predictable Scheduling of Independent
Activities. In Proceedings of the 16th ACM
Symposium on Operating System Principles, St-
Malo, France,Oct. 1997, pp. 198-211.

[8] Michael B. Jones, Two case studies in predictable
application scheduling using Rialto/NT , In Proc. of
the 7th Real-Time Technology and Applications
Symposium (RTAS 2001), 2001

[9] Michle Lombardi, Michela Milano, Luca Benini,
“Robust Scheduling of Task Graphs under Execution
Time Uncertainty”, IEEE transactions on computers,
2011

[10] Martin Niemeier, Andreas Wiese,, Sanjoy Baruah,
Partitioned real-time scheduling on heterogeneous
shared-memory multiprocessors, Proceedings of the
23rd Euromicro Conference on Real-Time Systems
(ECRTS 2011) , 2011.

[11] M. Hamza, S.M. Fakhraie and C.Lucas “Soft Real
Time Fuzz Task Scheduling for Multiprocessor
Systems ” World Academy of Science, Engineering
and Technology, 2007.

[12] N. R. Satish, K.Ravindran, K. Keutzer, Scheduling
task dependence graphs with variable task execution
times onto heterogeneous multiprocessors, In
EMSOFT '08 Proceedings of the 8th ACM
international conference on Embedded software,
2008, pp. 149-158.

[13] R. Ammar, A. Alhamdan, “Scheduling real-time fork-
join structures in cluster computing”, Int. J. of High
Performance Computing and Networking , Vol.3,
No.4, 2005, pp.262 – 271.

[14] R. Gioiosa, S. A. McKee, M. Valero, Designing OS
for HPC Applications: Scheduling, 2010 IEEE
International conference on cluster computing, 2010.

[15] S.Baskaran, P. Thambidurai, Energy efficient real-
time scheduling in distributed systems, IJCSI
International journal of computer science issues,
vol.7, issue 3, No.4, May 2010.

[16] W. Y. Lee, Energy-Efficient Scheduling of Periodic
Real-Time Taks on Lightly Loaded Multicore
Processors, IEEE Transactions on Parallel and
Distributed Systems, Vol. 23, No. 3, March 2012.

[17] W.Y. Lee, S.J. Hong, J. Kim, On-line scheduling of
scalable real-time tasks on multiprocessor systems,
Journal of Parallel and Distributed Computing vol.63,
No.12, 2003,pp. 1315_1324

[18] Xuan Lin, Anwar Mamat, Ying Lu_, Jitender Deogun,
Steve Goddard , Real-time scheduling of divisible
loads in cluster computing environmentsI, J. Parallel
Distrib. Comput.Elsevier, 2010, pp. 296_308

[19] Xiaomin Zhu, Xiao Qin, Meikang Qiu, “QoS- Aware
fault-Tolerant Scheduling for Real Time Tasks on
Heterogeneous clusters” IEEE transactions on
Computers,Volume 60, Issue 6,June 2011, pp.800-
812.

[20] Xiaomin Zhu,Jianghan Zhu,Manhao Ma, Dishan Qiu,
“SAQA: A self adaptive QoS-aware Scheduling
Algorithms for Real Time Tasks on Heterogeneous
Clusters” Proceedings of the 10th IEEE/ACM
International Conference on Cluster, Cloud and Grid
Computing, 2010, pp.224-232.

[21] Xiaomin Zhu, Chuan He, Kenli Li, Xiao Kin,
“Adaptive energy-efficient scheduling for real-time
tasks on DVS-enabled heterogeneous clusters” ,
Journal of parallel and distributed computing, volume
72, Issue 6,2012, pp. 751-763.

[22] Yves Caniou, Ghislain Charrier, Frederic Desprez
“Analysis of tasks reallocation in a dedicated grid
environment” 2010 IEEE international conference on
cluster computing, crete,2010.

Z. Deng, J.W.-s Liu, and S. Sun, “Dynamic
scheduling of hard real-time applications in open
system environment” presented at the real-time
systems symposium, Washington, DC, 1996.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 5, No 2, September 2012
ISSN (Online): 1694-0814
www.IJCSI.org 205

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

http://citeseerx.ist.psu.edu/viewdoc/summary?cid=1639154
http://citeseerx.ist.psu.edu/viewdoc/summary?cid=1639154
http://www.inderscience.com/jhome.php?jcode=ijhpcn
http://www.inderscience.com/jhome.php?jcode=ijhpcn
http://www.inderscience.com/info/inarticletoc.php?jcode=ijhpcn&year=2005&vol=3&issue=4
http://www.inderscience.com/info/inarticletoc.php?jcode=ijhpcn&year=2005&vol=3&issue=4

