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Abstract 
Testing is a validation activity used to check the system’s 
correctness with respect to the specification. In this context, test 
based on refusals is studied in theory and tools are effectively 
constructed. This paper addresses, a formal testing based on 
stochastic refusals graphs (SRG) in order to test stochastic 
system represented by maximality-based stochastic labeled 
transition systems (MSLTS). First, we propose a framework to 
generate SRGs from MSLTSs. Second, we present a new 
technique to generate automatically a canonical tester from 
stochastic refusal graph and conformance relation confSRG. 
Finally, implementation is proposed and the application of our 
approach is shown by an example.   

Keywords: formal testing models, refusal graphs, concurrent 
systems, maximality semantics. 

1. Introduction 

Computer  applications  become  increasingly  involved  in  
critical  and  real-time  systems(e.g., automotive, avionic 
and robotic controllers, mobile phones, communication 
protocols and multimedia systems). These systems are 
known by their high complexity. Formal testing allows 
checking their correctness and helps to ensure their 
quality.  
 
In order to use a formal testing technique, we need that the 
systems under study can be expressed in terms of a formal 
language. During the last two decades, the original formal 
languages have become more expressive. Thus, a new 
generation of languages has appeared to allow the explicit 
representation of non-functional aspects of systems (for 
example, the probability to perform a task [1][2] or the 
time consumed by the system to perform task. This time 
can be fixed [3][4] or defined in probabilistic/stochastic 
terms[5][6]). The use of stochastic model such as 
stochastic automata (Network) [8] or stochastic petris net 
[7]...Etc, allows producing more realistic systems. 
However, these models are based on interleaving 
semantics, where the executions of two actions are 
interpreted by their interleaved executions in time. 
Following this semantics don’t hold when considering  
 
 

 
 
action durations with general distributions. We need true 
concurrency semantic.    
 
In this paper, the system is represented by the 
“Maximality-based Stochastic Labeled Transition System 
(MSLTS)” model where actions elapse in time and their 
durations depend on the probabilistic distributed function. 
This model is based on maximality semantics [9] and 
advocates the true concurrency; from this point of view it 
is well suitable for modeling real time, concurrent and 
distributed systems. 
 
In this work we are interested in formal testing approaches 
[10] where the temporal requirements of systems are taken 
into account. The proposed approach is based on stochastic 
refusals. Testing based on stochastic refusals allows the 
comparison between the behavior of the specification and 
the implementation, if the implementation refuses an 
action after each timed trace (time is captured by random 
clock which depends on the probabilistic distributed 
function), the specification also refuses this action. This 
theoretical approach is necessary to generate a canonical 
tester. 
 
In the canonical tester, refusals are found associated with 
transitions that are led to “Fail”  location. So, these 
transitions are labeled by actions which are prohibited by 
the specification. When the tester is in the location “Fail” , 
this means that the test failed. A test case is a possible path 
in the tester. Several algorithms exist in literature for the 
generation of this kind of testers. [11] 

1.1 Contribution  

In this paper we are interested in formal testing approach; 
we propose a new testing architecture based on stochastic 
refusals graph (SRG). SRG results from a new definition 
of refusals. This graph allows us to generate a canonical 
tester by several transformations of specification graph.  
Moreover, we investigate the automatic extraction of test 
cases. The proposed architecture is summarized in Fig.1. 
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Fig. 1.  Test architecture. 

First, we calculate sets of refusals; which decorate each 
state of the specification graph. An important aspect 
considered at this level is the non-determinism which is 
captured by permanent refusals.   

Temporary refusals are induced by the fact that actions 
elapse in time. In the MSLTS model the durations of 
actions are governed by probability distributed functions.  

Second, a framework which creates canonical tester 
from SRG graph and on new conformance relation named 
“confSRG” is proposed. Finally, an implementation for the 
proposed frameworks using MATLAB programming 
language is presented.  

1.2   Organization   

The structure of this paper is as follows: In the next section 
we start with some informal discussion on maximality 
semantics and define the maximality stochastic based 
labeled transition systems model. Section 3 presents 
conformance relation. We define the new conformance 
relation confSRG. Section 4 and 5 define the stochastic 
refusals graph and its extended version. In section 6, the 
canonical tester is proposed and framework for testing is 
discussed. In section 7, tool implementation is briefly 
discussed. Finally, we conclude the paper and discuss 
some open issues in section 8. 

2.  Maximality Based Stochastic Labeled 
Transition System (MSLTS) 

The semantics associated to the specification model allows 
the choice of an adequate representation. In the case of the 
interleaving semantics, the concurrent executions of two 
actions are interpreted by their interleaved executions in 
time. Adopting this semantics, every action is supposed to 
be atomic (structural and temporal) i.e. actions are not 
divisible and may not elapse in time. These hypotheses 
make the associated theory simple and the validation tools 
easy to build. 

 
To escape these hypotheses, true concurrency semantics is 
defined in the literature [12]. Among these semantics, we 
can quote the maximality based semantics [13][9][14].  
 
In order to take into account the stochastic aspects, each 
action of alphabet ���  are coupled with probability 
distributed function that governing its duration.  An 
extended action is represented by a pair (a, f), where a is 
an action type and f is the probability distributed function. 
  
The basic idea is to use clock variables to materialize 
maximum event and to keep track of duration in order to 
control and observe the passage of time.  
 
Since in our context the action durations are random, 
clocks are in fact random variables. Transitions are labeled 
with a clock which represents action’s start and appears in 
the resulting state.                                                   
 
When a clock is reset, it takes a random value whose 
probability depends on the distributed function of the 
action duration. As time evolves, clocks countdown 
synchronously (i.e. all do so at the same rate). When a 
clock has expired (i.e. has reached the value 0), next 
transitions are enabled.   
 
The derivation graph obtained with the use of stochastic 
clocks and by applying the maximality semantics is called 
maximality based Stochastic Labeled Transition System 
(MSLTS). [15] 
 
Let Act be a finite set of actions and let DF be a finite set of 
probabilistic distributed functions ((ℜ→[0, 1]).); H is finite 
set of clocks variables. 
 
Definition 1(MSLTS): A maximality based Stochastic 
Labeled Transition System is a structure   (Ω, ��, �	, 
	 , �	, �	) over Act, where:  

Ω =< �, s�, � >  is a Transition System with S, the 
countable set of states for the system, s0 is the initial state 
and T is a countable set of transitions specifying the states 
changes. We define α and β as the same function on the 
MLTS. 

• �	: T →  (��� × ��) is a labeling function which 
associates to each transition a  pair (a, f) where a is an 
action in Act and  f  is probability distributed function in 
DF.  

• Ψ�: S → P(H) : This function associates to each 
state a finite set of clocks corresponding to the maximum 
events. 

• µ�: T → P(H) : This function associates to every 

transition a finite set of clocks. The expiration of clocks 
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allows the start of this transition. This set corresponds to 
the direct causes of it. 

• ξ�: T →  H  : This function associates at each 

transition, a clock that identifies its occurrence and capture 
duration of actions. 
 
Such that ψ(s₀)=∅  and for the all transitions t, the functions 
above have the same properties of those defined in the 
MLTS model (Subsection 2.1). 
Example: consider the MSLTS associated to E is depicted 
by Fig. 2. After the start of an action a respectively b, the 
state obtained is labeled by {x}, respectively {y}. Since 
actions are independent (parallel), the final state is labeled 
by {x,y}.    
 
 

 

 

 

 

Fig. 2. MSLTS of E. 

2.1   Non-deterministic MSLTSs 

There are several cases to consider when the non-
deterministic behavior in MSLTSs is treated. Let l location 
and (a,f) an extended action. First, if there are two or more 
transitions from l labeled by (a,f)  where all of these 
transitions have the same set of clocks. Second, if there are 
two or more transitions from l labeled by (a,f) where all of 
these transitions have different sets of clocks. Those cases 
require to be detailed. 
Consider two transitions t, t ′ ∈ T: � = (", #, ($, %), &, "′), �′ = (", ', ($, %), (, "")   
where M and N are set of clocks. 
So, 

*# = '                          (1)
M ≠ N /M ∩ N = ∅    (2)M ∩ N ≠ ∅    (3)33                                                 

(1) 
In fact the first case (Equ.1.1) is an effective non-
determinism to consider. The second case (Equ.1.2) is not 
a non-deterministic case, since there is not choice of 
transitions.  The last case (Equ.1.3) is another non 
determinism like the first but it has a different 
significance.  

Non-determinism introduces some additional issues: 
Observability of every possible trace associated with a 
particular action sequence and the existence of non-
equivalent reachable locations. 
Definition 2 (deterministic MSLTS): maximality 
stochastic based labeled transition system Sys is non-
deterministic iff:     ∃t, t′ ∈ T: 5(�) = 5(� ′), � (�) = � (� ′)  $67 
(�) ∩
(� ′) ≠ ∅                    (2)                                                                

An example is presented in Fig.3. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

Fig. 3. A Determinized MSLTS. 

2.2   Determinization of MSLTSs 

The determinization application is done in three steps, 
formally defined in [16].  
First step, nondeterministic edges are selected and their 
clocks sets are determinized two by two. 
Second step, a new edge is created and it is labeled by the 
conjunction of nondeterministic clocks sets. 
Third step: outgoing edges of all nondeterministic edges 
are duplicated and are out coming from the new edge. 

S0 

  S3 

S2  S1 

   ∅ (a, f) :  

 
   ∅ (b, f′) =  

 

 ∅ (a, f) :  

 
 ∅ (b, f′) = 

∅ 

>(? 
 

>&? 

>&, (? 

 @,=  ($, %) :A 

 
 :,B  ($, %) :C 
 

 :A (�, %") = 
 :A (D, %′) B  
 

 :C (7, E) F  
 

S0 { x,y,z} 

S1 { x1} S4 { x2} 

S2 { z} 
S3 { y} 

S5 { t} 

 >:,=,˥B? ($, %) :A  >:,B,˥=? ($, %) :C  

 :A (�, %") =  :A (D, %′) B  
 

 :C (7, E) F  
 

 >:,=,B? ($, %) :H 

 :H (D, %′) B  
 

 :H (�, %") = 

S0 { x,y,z} 

S1 { x1} S4 { x2} 

S2 { z} S3 { y} 

S5 { t} 

S1 { x1} 

 :H (7, E) F  
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3. Conformance Relation 

In this work we extend the conformance relation conf 
initially defined in [17] and mostly adopted for testing 
implementations [18].  
Conf relation: Let I and S be LTSs, then:  

                    I �J6% � ≝  ∀M ∈ �N$�OP(�), QO%(I, M) ⊆QO%(�, M).                                    (3) 

Intuitively, the conf relation holds between an 
implementation I and a specification S if, for every trace in 
the specification, the implementation does not contain 
unexpected deadlocks. That means that if the 
implementation refuses an event after such trace, the 
specification also refuses this event. 
To test whether an implementation is conformed to its 
specification, the notion of canonical tester has been 
introduced in [8]. A canonical tester for conf relation is a 
labeled transitions system with the same traces as the 
specification. Moreover, every deadlock of the conformant 
implementation when it is executed concurrently with the 
canonical tester has to be a deadlock of the canonical tester 
[19]. 

Definition 2: Given an LTS S = (Q, q0, L, →), the 
canonical tester T(S) is defined as follows: 

* �N$�OPS�(�)T =  �N$�OP(�) ∀ I, I �J6% � ⇔ ∀M ∈ �N$�OP(�),V ∈ QO%(I‖�(�), M)3 ⇒ V ∈ QO%(�(�), M)3                                           

(4) 

The operator ∥  denotes the synchronous (observable 
events) composition of the LTSs. 
Every trace of tester T(S) corresponds to one test case. An 
execution of T(S) concurrently with an implementation I 
corresponds to a trace of   I‖�(�)3 . In order to test 
conformance, the tester has to be re-executed until all of 
the traces are passed. 

 Consequently, before creating a canonical tester, it is 
necessary to decide when an implementation accord to a 
specification. For that, we use an implementation relation, 
and the system is valid when the relation is respected.  
All previous approaches are based on interleaving 
semantics where actions are instantaneous and refusals are 
permanent. 
However, in MSLTS actions have durations and they are 
governing with probabilities distributed function i.e. the 
time is stochastic.    
The use of stochastic time introduces several technical 
difficulties in testing. For example the same action may 
take different amount of time in different run of the system 
(i.e. the time that system takes to perform actions may 
vary). So, the conformance relation must be reformulated, 
we have to take into account actions that system performs 
and temporal requirements. 

One of the possibilities is to consider that any trace of the 
specification that can be performed by the implementation 
must have the same duration, that is, an identically 
distributed random variable. However, in a black-box 
testing framework, we cannot access to the random 
variables of the implementation. Consequently, if we 
consider equivalence of random variables, we need an 
infinite number of observations from a random variable of 
the implementation (with an unknown distribution) to 
insure that it has the same distribution as another random 
variable from the specification (with a known distribution). 
Thus, we have to give more realistic implementation 
relations based on a finite set of observations.  

3.1   Conformance Relation confSRG 

We define a new conformance relation confSPR which is 
based on the traces and failures of the MSLTS. The 
extended conformance relation confSRG introduce new 
types of refusals in addition to the classical refusals 
defined as a set of actions which cannot be permitted from 
one state. Those refusals are named forbidden actions 
(Forb) to avoid ambiguity. However, the two new kinds of 
refusals are named: permanent and temporary refusals. 
The Permanent refusals are generated by the non-
determinism in system behavior after the operation of 
determinization. It is noted  ($, %′)ZZZZZZZZ([) 
 The temporary refusals are provoked by actions which 
elapsed in time. Those refusals are quantified with certain 
probability, since in MSLTS action duration is governed 

by probabilistic distributed function. It is noted ($, %′)ZZZZZZZZ\\\\\\\\([) 
Given the fact that action duration are represented by a 
random variable &]  ,  the proposed extended conformance 
relation is parameterized with definition of ≤  , this 
definition means that a distribution in the implementation 
is conform to a distribution in the specification. Via this 
parameter, we can allow different choices for  ≤ , as 
example, we may require the distributions to be equivalent 
or have the same mean. [20] 

Definition 3: Let I and S be MSLTSs QO%_`a(E) ≝ QO%b(E) ∪ QO%d(E)
/QO%b(E) ≝ �OefJN$N( NO%gP$"PQO%d(E) ≝ fONe$6O6� NO%gP$"P3                                                             

(5) 

So,        I �J6%_`a � ≝ ∀M ∈
�N$�OP(�) * S�JND(I, M) ⊆ �JND(�, M)T$67SQO%_`a(I, M) ⊆ QO%_`a(�, M) such that  &k ≤ &	     T 3

   

(6) 
Such as  &l  is a random variable representing actions 
duration of implementation and &	  is random variable 
representing actions duration of specification. 
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The use of the ≤ operation between random variables 
constitutes a general framework that can be instantiated, 
by giving a specific definition of ≤, when needed [20].  

4   Stochastic Refusal Graph 

In this section we define a Stochastic Refusals Graph 
(SRG) as structure for testing stochastic non-deterministic 
systems.     
Definition 4: A Stochastic Refusals Graph is a 
deterministic bi-labeled graph structure of MSLTS: 
SRG=(Ω′, ��, �	, 
	, �	, �	) over an alphabet of extended 
actions m = (��� × ��), where:  
Ω’= (G, g0, ∆, RefSRG) is a Transition System with:  

- G a finite set of localities.  
- g0 ∈ G is the initial locality.  
- ∆ ∈ (G×Q×G) is a transition relation. A 

transition (E, n, E′) ∈ ∆ will also be noted E p⇒ E′ . 
- QO%	qr : s → t utSmZvm\Tw, is an application that 

associates for any g∈ s a set of refusals where: 

 mZ = >nZ([): n ∈ m, [ ∈ x $67 ? $67 m\ = >n\([): n ∈
m, [ ∈ x ?                                                                                                                                                          

The semantic of the set, t utSmZvm\Tw is as follows: Let g 

be a locality, E ∈ s, � ∈ QO%	qr(E) 
1. nZ = ($, % ′)ZZZZZZZZ([) ∈ �  : is a permanent refusal. It 

means that an action may be refused permanently to the 
locality g, this refusal is possible but not certain. This 
certitude will take place after the termination of the actions 
indexed by (X). See Fig.5.  

2.  n\ = ($, %′)\\\\\\\([) ∈ � : Means that actions are 
refused during (X) laps of time. This type of refusals 
occurs due to the durations of actions. In this case clocks 
are initialized by a probability distributed function. 

As illustration, let consider the maximality based 
stochastic labeled transition system A depicted by Fig.4.  

 

 

 

 
 

 

Fig. 4.   MSLTS A. 

 
 

 
 
 
 
 

 

 
 
 
 

Fig. 5.  SRG associated to MSLTS A.  

4.1   Stochastic Refusals Graphs Generation 

In this section we propose a framework to create stochastic 
refusals graphs from MSLTS specifications. 
Let � = (Ω, �, 
, �, �) be an MSLTS, the construction of 
the SRG associated to A consists to determinize A and 
decorate all of locations by refusals sets, this requires 
computing QO%	dq =  z⋃ (>tNO%(E]) ∪ �NO%(E])?) ∶a} E] ∈ s? as follows: 
 For all location g and for all edges t starting in g:  

1. If t is deterministic so: 
QO%	qr(E) =

/�NO%(E) = >n\(#)|n ∈ � $67 
(�) = # ≠ 3∅?
∪  tNO%(E) = ∅                                  �                            

(8) 
2. Otherwise: (i.e t is nondeterministic) �p(E) is a 

set of non deterministic ti starting in g and 
labeling by q.  

- Deteriminize �p(E)  and decorate locations by 
refusals sets as fellows: 

- In step 1 of determinization 
(subsection2.3), we apply formula Equ.8 

- In step 3 of determinization, let 
(g,N,q,y,g’) be the new edge. We 
decorate the location g’ by : 

QO%	qr(E′) = ⋃ �z⋃ n\�] (#�]� � ∪ z⋃ nZ�
�(')��]∧ � ��F}   ∶

%JN $"" �� ∈ �n(E) $67 �(��) = E� $67 ��� =
SE, #�� , n�

� , &, E�T ∈ �SE�T                                (9) 

4.2   Stochastic Refusals Graphs Minimization 

For minimizing stochastic refusals graphs SRGs, we 
precede by minimizing refusals sets QO%	qr(E) . The 
minimization procedure of refusals sets eliminates 
redundant information about refusals at any locality. 
Definition 5: Let  Ω′ =< s, g�, ∆, QO%	qr > be a stochastic 
refusals transition system of SRG, g an element of G and 
let A, B be elements of  QO%	qr(E) : 

∅ 

>&?  >&? 

>�? >�? >(? 

S0   

S1 

S2 S3 

 
 S5 

S4 

  ∅ (f, %) :  

 
 ∅ (f, %) : 

 :  (�, %") B 
 

 :  (�, %′) =  
 

 :  (�, %") B  
 

QO%	qr = > ? 
 

QO%	qr = > ? 
 

QO%	qr = > ? 

       QO%	�r =    /�(�, %")\\\\\\\\ (&), (�, %′)\\\\\\\\ (&)� , z(�, %′)ZZZZZZZZ(&), (�, %")\\\\\\\\(x )� �  

 ∅ (f, %) :  

 

 :  (�, %′) =  

 
 :  (�, %") B 

 

S0 

s1 
 

S2 S3 
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� ⋐ � if   ∀$Z ∈ � , $Z ∈ � $67 ∀$\ ∈ � O��ℎON $\ ∈
� JN $Z ∈ �.               (10) 
The minimization of refusals set A produces a new set A’ 
calculated for any state E ∈ s is as follows: 

1. ∀� ∈ QO%	qr(E)�%  $Z ∈ � $67 $\  ∈ � then 
remove   $\ from A  

2. Minimize QO%	qr(E) with respect to the relation 
⋐. 
In fact, if a set A of refusals is an element of QO%	(E), and 
both permanent and temporary refusals on action a are in A. 
It means that a system may be in a state when action a is 
definitely refused or temporary refused. Then, no way 
permits to ensure that action a will be offered after a laps of 
time. Which justifies the remove of temporary refusals of 
action a in the set A. In the second step, if � ⋐ � so A is 
removed. In fact, the refusals in B contain the refusals in A.  
The stochastic refusals graph SRG is said minimal if the 
refusals set QO%	 remains unchangeable by the application 
of Step1 and Step2 for any locality E ∈ s. 

5. Extended Stochastic Refusals Graph  

Extended refusal set is defined as the extension of location 
refusals sets QO%	qr  by forbidden actions. Forbidden 
actions are actions which aren’t permitted from one 
location.  

Definition 8: Let �Qs(�) = (Ω′, ��, �	, 
	, �	, �	) , the 
extended transition system of �’  is �’ ! = (s, E�, �, QO%!)  
defined as the extension of refusals sets of state QO%_`a by 
forbidden actions: QO%!(E) = SQO%_`a(E) ∪ �JND(E)T                                
The �Qs!(�) = (�′!, ��, �	, 
	 , �	, �	) is named extended 
stochastic refusals graph. 

6. Canonical Tester 

A canonical tester with respect to confSRG is able to detect 
every implementation that disagrees with a specification, 
thus if the implementation refuses an action after each 
timed trace, the specification also refuses this action. That 
means, I and S have the same refusals sets and the same 
timed traces.  This theoretical approach is necessary to 
generate a canonical tester. In the proposed canonical 
tester, three verdicts >f$PP, �6�J6, %$�"? are used. At every 
step of the test computation if a locality is reachable so it 
is decorated by pass verdict. The inconclusive verdict 
incon is produced by the non-determinism present in the 

system, and captured by permanent refusals set. Fail is a 
new locality introduced to canalize transitions labeled by 
actions which are not permitted. Two cases of actions are 
not allowed: first, when an action is in the forbidden set of 
state. The second case, when an action is offered without 
respecting the set of clocks that it depends to. This action 
is in temporary refusals set. 
A framework for creating the canonical tester of MSLTS 
follows these steps: 

- First, we generate SRG from MSLTS as define in 
the previous section 

- Then, we generate the extended stochastic 
refusals graph �Qs!.  

- Finally, the canonical tester is constructed 
over �Qs!. All traces of the canonical tester are 
considered as test cases. 

The canonical tester M” associated to SRG of Fig. 5 is 
depicted by Fig. 6.  
Fig.7 represents an example of a test case with 
inconclusive verdict. 

 

 

 

 

 

 

 

 

 

Fig. 6.  Canonical tester associated to SRG.  

 

 

 
 

Fig. 7.  Test case associated to the canonical tester M”. 
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7. Implementation 

The proposed approach was implemented in MATLAB 
language. The choice of this language is motivated by the 
easy and efficient manipulation of vectors and matrices 
which are the effective representation of SRG. A lot of 
resourceful toolboxes exist particularly a TORSCHE 
Scheduling toolbox [21] which contains predefined 
functions, facilitates the manipulation of interesting data 
structures also it proposes a useful graphical editor. 

 To explain how the tool works, let as propose the example 
of ATM system.  This machine allows withdrawing money 
from account. Its behavior is as follow.  Customer has to 
insert card in machine. After he has to type a code, if code 
is correct the machine delivers money and card. If the code 
is wrong, the machine can keep card or reject it. 

This machine is depicted by the Fig. 8. Fig.9 presents the 
same example edited by the graph editor. 

We use the implemented tool to generate canonical tester 
depicted by Fig. 11 over the extended stochastic refusals 
graph, Fig.10. 

In Fig.10, we notice that every locality is decorated. We 
take the example of the location S4.the location is 
decorated as follow: 

'S4','y1','[(keepcart,g4)`(y1)`,(rejectcart,g2)(y1),][(rejectcar
t,,g2)`(y1)`,(keepcart,,g4)(y1),]','(incart,f),(valide,f1),(code
notok,g),(codeok,g1),(outcart,g5),(take,g6)' 

Where 'S4' is the name of localitie, 'y1' is the set of clocks, 
'[(keepcart,g4)`(y1)`,(rejectcart,g2)(y1),][(rejectcart,g2)`(y1)`,(ke
epcart,g4)(y1),]' is QO%_`a  and 
',(incart,f),(valide,f1),(codenotok,g),(codeok,g1),(outcart,g5),(tak
e,g6)'  is Forb set. 

 
 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

Fig. 8. STEM of ATM example. 
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Fig. 9. MSLTS edited by the graph editor. 

 

Fig. 10.  Extended stochastic refusals graph 
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Fig. 11. Canonical tester, CanTes. 

 

In Fig.11 we notice that every location is decorated with 
verdicts (pass, incon) and new locality is created which is 
decorated with fail verdicts. The new locality Fail is 
introduced to canalize transitions labeled by actions which 
are not permitted such as those on   Forb set. The 
framework used to generate this tester is presented in 
section 

  

 

Fig. 12.  Test case. 

Fig. 12 is test cases. Test case is path of tester. It is 
generated randomly 

8. Conclusion 

In this paper, , we have proposed an approach for testing s 
stochastic systems modeled in Maximality based 
Stochastic Labeled Transition System (MSLTS). First, we 
have proposed a stochastic refusals graph for MSLTS 
specifications. In this variant of refusals graphs, temporary 
refusals are quantified with a certain probability, because 
the duration of actions are represented with a probability 
distributed function. Next we propose framework to 
generate a canonical tester with automatic extraction of 
test cases. Finally, an implementation is proposed using 
MATLAB programming language. 

As perspectives, we plan to complete this work by strategy 
for choosing which of test cases are sufficient for insuring 
some completeness guarantees. A related problem is how 
to measure the "goodness" of a set of test cases and how to 
select test suites with some good coverage measure. 
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