

Software Defect Prediction Models for Quality Improvement:

A Literature Study

Mrinal Singh Rawat1, Sanjay Kumar Dubey2

 1 Department of Computer Science Engineering, MGM’s COET, Noida,

Uttar Pradesh, India

2 Department of Computer Science Engineering, Amity University, Noida,

Uttar Pradesh, India

Abstract
In spite of meticulous planning, well documentation and proper

process control during software development, occurrences of

certain defects are inevitable. These software defects may lead to

degradation of the quality which might be the underlying cause

of failure. In today‟s cutting edge competition it‟s necessary to

make conscious efforts to control and minimize defects in

software engineering. However, these efforts cost money, time

and resources. This paper identifies causative factors which in

turn suggest the remedies to improve software quality and

productivity. The paper also showcases on how the various

defect prediction models are implemented resulting in reduced

magnitude of defects.

Keywords: Software Defects, Defect Prediction, Defect

Prediction, Software Quality, Machine Learning Algorithms,

Defect Density.

1. Introduction

Software metrics has been used to describe the complexity

of the program and, to estimate software development time.

“How to predict the quality of software through software

metrics, before it is being deployed” is a burning question,

triggering the substantial research efforts to uncover an

answer to this question. There are number of papers

supporting statistical models and metrics which profess to

answer the quality question. Typically, software metrics

elucidate quantitative measurements of the software

product or its specifications. Defects can be defined in a

disparate ways but are generally defined as aberration

from specifications or ardent expectations which might

lead to failures in procedure. Defect data analysis is of two

types; Classification and prediction that can be used to

extract models describing significant defect data classes or

to predict future defect trends. Classification predicts

categorical or discrete, and unordered labels, whereas

prediction models predict continuous valued functions.

Such analysis can help us for providing better

understanding of the software defect data at large.

A software defect is an error, flaw, bug, mistake, failure,

or fault in a computer program or system that may

generate an inaccurate or unexpected outcome, or

precludes the software from behaving as intended. A

project team always aspires to procreate a quality software

product with zero or little defects. High risk components

within the software project should be caught as soon as

possible, in order to enhance software quality. Software

defects always incur cost in terms of quality and time.

Moreover, identifying and rectifying defects is one of the

most time consuming and expensive software processes. It

is not practically possible to eliminate each and every

defect but reducing the magnitude of defects and their

adverse effect on the projects is achievable.

In year 2008 and 2009, SANS institute conducted a study

to identify the most common and dangerous 25 software

bugs or defects. About 30 organizations gave their

contribution for the study. Commercials software

organizations like Apple, Aspect Security, Breach Security,

CERT, Homeland Security, Microsoft, MITRE, Oracle,

Red Hat and Tata; academic institutes like University of

California, Perdue University etc were among these

organizations. These 25 security problems were classified

into three domains [14] shown in figure 1.

Therefore, defect prediction is extremely essential in the

field of software quality and software reliability. Defect

prediction is comparatively a novel research area of

software quality engineering. By covering key predictors,

type of data to be gathered as well as the role of defect

prediction model in software quality; the interdependence

between defects and predictor can be identified. This paper

gives you intensive insights and future research avenues

about software defect prediction.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 5, No 2, September 2012
ISSN (Online): 1694-0814
www.IJCSI.org 288

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

Fig. 1 Security Problems

Preemptive discovery of software defects in a software

project empowers managers to make appropriate decisions

and plan limited project resources in a more structured and

systematic way. In general, we should focus on the

following different aspects of the problem.

• Defect prevention;

• Defect detection;

• Defect correction;

Since defect prediction is a relatively new domain of

research, in this paper we will be discussing various

prediction models which have been proposed. In the

current prediction models, complexity and size metrics are

used in order to preempt any defects that might occur

during operation or testing phase of the project. In another

model of defect prediction, reliability based models use the

operational profile of a system to predict failure rate that

the project will face. Also in most projects, information

collected in the testing and defect detection is analyzed to

help predict defeats for similar types of projects. However,

since all models of defect prediction have areas where they

come up short, the search for one model that can predict

defects in a wide range of projects has been on. The

multivariate model of defect prediction have been touted

as the model that can solve this issue but still no all

encompassing model has been uncovered as of now. With

the importance of enforcing the highest levels of quality in

systems, it has become imperative to improve defect

prediction techniques so that they can anticipate more

defects at an early stage leading to a quality project

delivery.

1.1 A General Defect Prediction Process:
To construct a prediction model, we must have defect and

measurement data collected from actual software

development efforts to use as the learning set. There exist

compromise between how well a model fits to its learning

set and its prediction performance on additional data sets.

Therefore, we should evaluate a model‟s performance by

comparing the predicted defectiveness of the modules in a

test set against their actual defectiveness [20].

Sunghun Kim et al. [18] have described a common defect

prediction process shown in the figure 2.

Fig. 2 General Defect Prediction Process

Labeling: Defect data should be gathered for training a

prediction model. In this process usually extracting of

instances i.e. data items from software archives and

labeling (TRUE or FALSE) is done.

Extracting features and creating training sets: This step

involves extracting of features for prediction of the labels

of instances. General features for defect prediction are

complexity metrics, keywords, changes, and structural

dependencies. By combining labels and features of

instances, we can produce a training set to be used by a

machine learner to construct a prediction model.

Building prediction models: General machine learners

such as Support Vector Machines (SVM) or Bayesian

Network can be used to build a prediction model by using

a training set. The model can then obtain a new instance

and predict its label, i.e. TRUE or FALSE.

Assessment: The evaluation of a prediction model requires

a testing data set besides a training set. The labels of

instances in the testing set are predicted and the prediction

model is evaluated by comparing the prediction and real

labels. 10-fold cross-validation is broadly used to separate

the training and testing sets.

Interactions

• Poor input validation

• Poor encoding of
output

• SQL query structures

• Web page structures

• Operating system
command structures

• Open transmission of
sensitive data

• Forgery of cross-site
requests

• Race conditions

• Leaks from error
messages

Resource Management

• Unconstrained
memory buffers

• Control loss of state
data

• Control loss of paths
and file names

• Hazardous paths

• Uncontrolled code
generation

• Reusing code without
validation

• Careless resource
shutdown

• Careless initialization

• Calculation errors

Defense Leakages

• Inadequate
authorization and
access control

• Inadequate
cryptographic
algorithms

• Hard coding and
storing passwords

• Unsafe permission
assignments

• Inadequate
randomization

• Excessive issuance of
privileges

• Client/server security
lapses

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 5, No 2, September 2012
ISSN (Online): 1694-0814
www.IJCSI.org 289

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

2. Problem Definition

As we have discussed upon earlier, defect prediction is

vital in nature. Our prime objective is to predict defects

without overrunning the estimated cost as well as without

delaying scheduled delivery of software. However, the

main issue related to this is mainly the plethora of models

which can be used for the same. All models of defect

prediction have their own set of advantages and

disadvantages which makes it hard to understand which

fault prediction model should be used and more

importantly in what type of project. Since every project

tends to be unique, this is hard from a decision making

standpoint. However, we believe thorough model

evaluation can enable project managers to make a more

informed decision.

In our study, we will cover the popular models of defect

prediction and evaluate the pros and cons of each model

along with the situations where the models can be used.

We will evaluate the models based a varied set of criteria

depending on the model being discussed. After evaluation,

we will also include our personal observations and

interpretations on why we think certain decision models

are useful along with substantiating case studies of real

world usage wherever possible.

3. Study of Software Defect Prediction Models

3.1 Prediction Model using size and complexity

metrics

Among the popular models of defect prediction, the

approach that uses size and complexity metrics is fairly

well known. This model uses the program code as a basis

for prediction of defects. More specifically, lines of code

(LOC) are used along with the concept of complexity

model developed by McCabe. Using regression equations,

simple prediction metrics estimates can be obtained using

a dependent variable (D) defined as the sum of defects

found during testing and after 2 months post release.

Famously, Akiyama made 4 equations. We have illustrated

the equation that includes the LOC metric:

Defect (D) = 4.86 + 0.018 Lines of Code (L) (1)

Gaffney deduced above equation (1) into another

prediction equation. He argued that LOC was not language

dependent owing to optimal size for individual modules

with regards to defect density. The regression equation is

given below:

D = 4.2 + 0.0015 L4/3 (2)

The size and complexity models presume that defects are

direct function of size or defects are occurred due to

program complexity. This model ignores the underlying

casual effects of programmers and designers. They are the

human factors who actually commence the defects, so any

attribution for flawed code depends on individual(s) to

certain extent. Poor design capability or problem difficulty

may result in highly complex programs. Difficult problems

might require complex solutions and naive programmers

might create „spaghetti code‟ [6].

3.2 Machine Learning Based Models

Machine learning (ML) algorithms has demonstrated great

practical significance in resolving a wide range of

engineering problems encompassing the prediction of

failure, error, and defect-impulsions as the system software

grows to be more complex. ML algorithms are very useful

where problem domains are not well defined, human

knowledge is limited and dynamic adaption for changing

condition is needed, in order to develop efficient

algorithms. Machine learning encompasses different types

of learning such as artificial neural networks (ANN),

concept learning (CL), Bayesian belief networks (BBN),

reinforcement learning (RL), genetic algorithms (GA) and

genetic programming (GP), instance-based learning (IBL),

decision trees (DT), inductive logic programming (ILP),

and analytical learning (AL)[3].

G. John, P. Langley [4] employed RF method for

prediction of faulty modules with NASA data sets.

Prediction of software quality was introduced by

Khoshgaftaar et al. [5] by using artificial neural network.

In this model they classified modules as fault prone or non

fault prone, using large telecommunication software

system. They compared their end results with another non–

parametric model achieved from discriminant method.

Fenton et al. [6] suggested the use of Bayesian belief

networks (BBN) for the prediction of faulty software

modules. Elish et al. [7] recommended the use of support

vector machines for predicting defected modules with

context of NASA data sets. This model compares its

prediction performance with other statistical and machine

learning models. We have discussed few models in detail

to enhance the understanding of Machine learning based

prediction models.

3.2.1 The Probabilistic Model for Defect Prediction

using Bayesian Belief Network

Fenton, Krause and Neil [6] proposed a probabilistic

model for defect prediction. They recommended a holistic

model rather than a single issue (for e.g. size, or

complexity, or testing metrics, or process quality data)

model, by combining the different factors of casual

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 5, No 2, September 2012
ISSN (Online): 1694-0814
www.IJCSI.org 290

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

evidence in order to successful defect prediction. The

model uses Bayesian Belief Network (BBN) as the

suitable practice for representation of this evidence. The

Bayesian approach causes statistical conclusion to be

improved by expert judgment in those parts of a problem

sphere where empirical data is scattered. Additionally, the

causal or influence organization of the model better

reflects the series of real world events and relations than

any other practice.

BBN can be exploited to support effective decision

making for SPI (Software Process Improvement), by

executing the following steps.

Fig. 3 Bayesian Approach

A BBN represents the joint probability distribution

for a set of variables. This is achieved by defining Directed

acyclic graph (DAG) and Conditional probability tables A

BBN can be employed to deduce the probability

distribution for a target variable (e.g., “Defects Detected”),

which indicates the probability that the variable will

obtain on each of its possible values (e.g., “very

low”, “low”, “average”, “high”, or “very high” for the

variable “Defects Detected”) given the observed values

of the other variables [8, 9].

N. Fenton, M. Neil and D. Marquez [17] reviewed the use

of Bayesian networks to overcome impediments of using

BN‟s for predicting software defects and software quality.

BN tools and algorithms suffered from „Achilles‟ heel.

This compelled modelers to predefine discretization

intervals in advance and resulted in inadequate predictions

for large set of data. To improve this „dynamic

discretization‟ algorithm was used. This algorithm exploits

entropy error as the basis for approximation allowing more

accuracy.

3.2.1 The Probabilistic Model for Defect Prediction

using Bayesian Belief Network

The Fuzzy Logic model is based on the concept or

reasoning and works on a value that is approximate in

nature. It is a step up from conventional Boolean Logic

where there can only be True or False. In case of Fuzzy

logic, the truth of any statement is degree and not an

absolute number. Modeled on human intuition and

behavior, the biggest plus point of Fuzzy logic is that as

opposed to the traditional yes – no answers, this model

factors in the degree of truth and hence makes allocation

for the more human like answers.

Previously in this report, we have elaborated on why it is

important to identify software quality issues at an early

stage. Ajeet Kumar Pandey and N. K. Goyal [10]

suggested the model of Fuzzy Logic and the software

metrics as well as process maturity, the model can be

constructed as follows:

Fig. 3 Fuzzy Logic Approach

This model uses inputs and puts them in a range system.

After this, a set of rules is defined that dictates and

influences how inputs will be utilized in getting the output

as well as finding the definitive value in the fuzzy set. The

model has a set of metrics or reliability relevant metric

(RRML) list which is made from the available software

metrics. The metrics are pertinent to their respective

phases in the software development life cycle.

Requirement Phase Metrics - As you can see the model

has uses three requirements metrics (RM) i.e.

Requirements Change Request (RCR), Review, Inspection

and Walk through (RIW), and Process Maturity (PM) as

input to the requirements phase.

Design Phase Metrics – similar to the above phase, three

design metrics (DM) i.e. design defect density (DDD),

fault days number (FDN), and data flow complexity (DC)

have considered as input.

Identification of variables
(Hypothesis , Information or

Mediating variables)

Defining the accurate
relationships among variables

Achieve a probability
distribution for each variable in

the BBN

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 5, No 2, September 2012
ISSN (Online): 1694-0814
www.IJCSI.org 291

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

Coding Phase Metrics – In this phase, two coding metrics

(CM) such as code defect density (CDD) and cyclomatic

complexity (CC) have been taken as input at coding phase.

The outputs of the model will be the number of faults at

the end of Requirements Phase (FRP), number of Faults at

the end of Design Phase (FDP), and number of Faults at

the end of Coding Phase (FCP).

3.2.3 Defect Prediction Models Based on Genetic

Algorithms

Genetic Algorithms is an approach to machine learning

which behaves similarly to the human gene and the

Darwinian theory of natural selection. It is a part of the

Evolutionary Algorithms which generate solutions based

on the techniques more commonly found in nature like

mutation, selection, crossover etc.

Genetic Algorithms are implemented beginning with an

individual population that is usually represented in the

form of trees. A possible solution is represented by each

tree or say chromosome in this case. Nodes on the tree

signify particular traits that relates to the problem for

which the solution is being searched. Collectively, the set

of potential solutions to the problem is (represented by the

chromosomes) as known as the population.

Where genetic algorithms come into place is when you

need to solve problems which can have many solutions.

Here, genetic algorithms are being used to cluster the

classes defined as per object oriented metrics into

subsystems or commonly known as components of

software. As elaborated earlier, genetic algorithm uses an

approach akin to Charles Darwin‟s “Survival of the

Fittest” or natural selection. The reason this approach is

being considered is because the large solutions set which

provide a number of possible solutions to a problem.

When applying a genetic algorithm to a problem, there are

a few implications which are made. The same are as

follows

a) There must be a fitness function present for the

evaluation of weather a solution is a possible one

or not

b) Whenever there is a solution found, there should

a representation of it made by a chromosome.

c) Whichever genetic operators will be applied must

be established

Additionally the definition of a solution in this case would

be one which would be both complete as well as valid. In

terms of a representation, there is the assumption that the

possible solutions have been encoded in the solutions

space.

How do Genetic Algorithms work?

In the beginning, the Genetic Algorithms start with a large

population. In that population, each individual represents a

plausible solution to the problem. These individuals in the

population are then encoded in a binary string that is called

a chromosome. After that, the group of the individuals will

compete so that they can reproduce and then formulate the

next generation. However, there is a function called the

fitness function that determines which of the competing

individuals will gain the right to reproduce. Having the

fitness function in place makes sure that only the best

individuals of the population will be able to carry over

their offspring into the next generation. The next

generation is formed by the following activities taking

place.

a) Reproduction – reproduction process takes place

when two chromosomes exchange a portion of

their code to form the new individuals. The

crossover points (where the bits of the code will

exchange) are selected by random (for a simple

version of the algorithm). At the crossover point,

the chromosomes exchange the data keeping the

original data up to that point.

b) Mutations – this comes in to introduce variation

in the next generation which prevents the

reaching of local minima. Whereas crossover

alters the genes after a randomly selected

crossover point between 2 chromosomes,

mutation selects on node in the tree of one

chromosome and changes the genetic material.

This process repeats itself until there is a perfect solution

set reached (optimal fitness level). However, there are

occasions when this does not happen. In such cases, the

program terminates after a set of iterations. The iterations

of the proceeds are also known as generations.

Example of using Genetic Algorithms in a Web Fault

Prediction

Research on Genetic Algorithms being applied is few

since this is a relatively new domain. In the following, we

show how it can be applied to an online web application,

proposed by Marshima M. Rosli et al. [16].

Namely, there is the requirement of three components to

build the model of Fault prediction using Genetic

Algorithms. They are as follows

a) Software Metric Extractor

b) Fault Classes Detection System

c) Genetic Algorithm Generator

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 5, No 2, September 2012
ISSN (Online): 1694-0814
www.IJCSI.org 292

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

The model can be represented diagrammatically as

follows:

Fig 5 Genetic Algorithm Approach

How this model would work is that the information about

metrics would be extracted from source files as well as the

logs. Then the optimal metrics can be found by the GAG

part of the model which will subsequently use

reproductions and mutations to create new generation of

populations until the optimal set of metrics are found.

3.2.4 Software Defect Prediction Models using

Artificial Neural Network

The artificial neural network is based on the human

biological system in its architecture and design. It

processes information in a way similar to the human brain

using an intricate system of interconnected neurons to

solve highly complex problems. The artificial neural

networks work in a similar fashion and use a trial and error

process to construct models of the problem space. Using

“guesses” of what the desired output should be, the actual

result and the predicted result (guesses) are compared and

if there is a difference, that value is passed on to the

network as feedback so that internal adjustments can be

made to get a better quality of results in the future. Over a

period of time, this process continues as the network is

presented with other sets of data until it gives an accurate

model of the process.

As told in the introduction, the artificial neural network

has a set of elements which perform the computations

required on the problem set. In this case, the feed forward

as well as the back propagation training algorithm have

been used for the purposes of defect prediction. The

architecture of the network is such that there are two

neurons in the output layer (basically fault and non fault).

The output that has the greatest value is selected thereafter.

The learning process happens by finding a vector of the

connection weights which lower the error sum squared on

the training set. The training of the network happens with

the continuous back propagation and the weights are

adjusted after each observation which is then fed forward

for each of the classes (fault and non fault).

Neha Gautam, Parvinder S. Sandhu, Sunil Khullar [11]

recommended to use Multilayer Perceptron and RBF based

Neural Network approaches for the identification of the

relation between the several qualitative as well as

quantitative factor of the modules. These approaches also

identify the number of defects existing in the module that

will be beneficial for the prediction of defects. The

methodology consists of the following steps:

1. Find the Qualitative and Quantitative attributes of

software systems

2. Select the suitable metric values as representation

of statement

3. Analyze, refine metrics and normalize the metric

values and Explore different Neural Network

Techniques

3.3 Defect Density Prediction Model

Defect density is a measure of the total confirmed defects

divided by the size of the software entity being measured.

The Number of Known Defects is the count of total

defects identified against a particular software entity,

during a particular time period. Defect to date since the

creation of module, defects found in a program during an

inspection, defects to date since the shipment of a release

to the customer are examples of most commonly known

defects. Size is like a normalizer that permits comparisons

between various software entities (i.e., modules, releases,

products). Size is normally measured either in Lines of

Code or Function Points [21]. Defect density is useful for

the comparison of defects in different software

components in order to identify high-risk components and

associated resources. Moreover, it can also used for

comparison among various software products in term of

quality.

3.3.1 Constructive Quality Modeling for Defect

Density Prediction (COQUALMO)

Sunita Chulani [12] presented Constructive Quality

Modeling for Defect Density Prediction (COQUALMO), a

quality prediction model. This software model focuses on

the prediction of defect density and is hence an estimation

model. The COQUALMO model is generally applied to

the early phases of the software lifecycle such as the

activities of analysis and design. However, this model can

also be applied to the later stages of the SDLC helping in

refining the defect density estimate when a larger set of

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 5, No 2, September 2012
ISSN (Online): 1694-0814
www.IJCSI.org 293

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

information is available. The COQUALMO model enables

project managers to get an estimate with relation to metrics

like shipping time as well as the payoffs for investing in

quality as well as a better understanding of the interactions

involved with respect to quality strategies.

This model comprises of two main phases namely

1. Defect Introduction Model – this model deals

with the basis that defect can be introduced in any

stage of the SDLC and the classification is done

based on the origin of the defects. Conceptually,

this model can be through of being similar to a

tank with specific pipes. These pipes relate to the

origin of defects which in this case can be of

three types, namely requirements, design and

coding. The same has been illustrated in the given

model.

As you can infer, the defects can be of different

types. Critical defects would require the most

attention since they could case the system to

crash or cause serious damage. The High level

would be responsible for loss of system‟s critical

functions without any measures for a

workaround. Medium level is similar to the high

level with the only difference being that a

workaround solution will exist in this case.

Fig. 6 COQUALMO

2. Defect Removal Model - similar to the Defect

Introduction model, the DR model estimates the

defects in requirements, design and coding which

are introduced into the product or system under

development. This model aims to estimate the

removed defects. Classification of the defect

removal activities falls into 3 techniques namely :

 Very low

 Low

 Nominal

 High

 Very high

 Extra high

The “very low” level is the least effective defect removal

method and the extra high is the most effective defect

removal method.

3.3.2 Defect Prediction Model based on Six Sigma

Metrics

Muhammad Dhiauddin Mohamed Suffian and Suhaimi

Ibrahim [12] suggested Six Sigma approach, which is a

structured and systematic way to construct the

mathematical model for prediction of functional defects in

system testing. It focuses on those software projects that

follow V-Model software development process. Six Sigma

methodology provides analysis of key factors in phases

earlier to testing phase that have explicit effect in the

detection of defect in system testing. This prediction

model is organized in to five phases; Define, Measure,

Analyze, Design and Verify phases. These phases exhibit

the progression and relationship between the outputs of

each phase towards building the model.

• Define phase: It involves creating project definition and

collecting primary requirements of the project.

• Measure phase: It uses Measurement System Analysis

(MSA) to validate the repetition and reproduction of

defects.

• Analyze phase: During this phase, data collected earlier,

is used to run regression analysis.

• Design phase: In this phase, additional refinement is

carried out in the previous equation. The predictors

used earlier have been revised in order to select only

logical predictors. It is done by filtering metrics that

include only legitimate data. It produces logical

connection with functional defects. Fresh data set are

used to generate new regression equation.

• Verify phase: In this final phase, reliability of the

prediction model is evaluated using statistical method.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 5, No 2, September 2012
ISSN (Online): 1694-0814
www.IJCSI.org 294

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

Capability flow-up and scorecard are performed to

ensure customer requirements are fulfilled.

 The Design for Six Sigma (DfSS) methodology also

provides a Control plan that guides on subsequent action

when the genuine functional defects discovered do not

occur within the range of prediction interval. The Six

Sigma method of building defect prediction models is a

good fit of software defect prediction. The processes and

methodologies proposed in Six Sigma provide ample

opportunities to formulate a clear outline of issues to be

addressed, the data collection as well as measurement

along with model generation, construction and validation.

Equations formulated by the model give a good idea on

what could be the possible factors which contribute to

defects.

4. Conclusions

Prediction is the task of predicting continuous or ordered

values for given input. However, as we have seen, some

classification techniques such as Bayesian belief networks,

neural network and genetic algorithms can be adapted for

prediction. Training a classifier or predictor is not enough;

we would like an estimate of how accurately the classifier

can predict the deviating behavior of future defects, that is,

future defect data on which the classifier has not been

trained. We have observed various methods to construct

more than one classifier (or predictor) and now we want to

estimate their accuracy. We can use Predictor error

measures in techniques for accuracy estimation, such as

the holdout, random sub sampling, k-fold cross-validation,

and bootstrap methods.

Software defect prediction is the process of tracing

defective components in software prior to the start of

testing phase. Occurrence of defects is inevitable, but we

should try to limit these defects to minimum count. Defect

prediction leads to reduced development time, cost,

reduced rework effort, increased customer satisfaction and

more reliable software. Therefore, defect prediction

practices are important to achieve software quality and to

learn from past mistakes. Size or complexity measures are

simple regression models, which normally assume simple

relationship between defects and program complexity.

These models are not subjected to the controlled statistical

testing required to set up a causal relationship. Fenton and

Neil advocate that these models fall short to take account

of all the causal or explanatory variables necessitated in

order to construct the models generalizable. They

presented probabilistic model based on Bayesian belief

networks to overcome this problem.

Furthermore, we have presented the use of various

machine learning techniques for the software fault

prediction problem. The unfussiness, ease in model

calibration, user acceptance and prediction accuracy of

these quality estimation techniques demonstrate its

practical and applicative magnetism. These modeling

systems can be used to achieve timely fault predictions for

software components presently under development,

providing valuable insights into their quality. The software

quality assurance team can then utilize the predictions to

use available resources for obtaining cost effective

reliability enhancements.

There are number of software defect prediction models

available but in our study we have arrived on this

conclusion that these models heavily depends on the

nature ,volume of the defect data and accuracy of classifier

and predictors. Most of the researches were carried out

with the help of NASA defect data sets. We would like to

express gratitude to the NASA MDP organization for

making their defect data sets publicly available.

References
[1] Clark, B. and Zubrow, D., “How Good Is the Software: A

Review of Defect Prediction Techniques”, Software

Engineering Institute, SEPG 2002 Conference.

[2] N. Fenton and M. Neil “A Critique of Software Defect

Prediction Research”, IEEE Trans. Software Eng., 25, No.5,

1999.

[3] Du Zhang, “Applying Machine Learning Algorithms in

Software Development” The Proceedings of 2000 Monterey

Workshop on Modeling Software System Structures, Santa

Margherita Ligure, Italy, pp. 275-285.

[4] L. Guo, Y. Ma, B. Cukic, H. Singh, “Robust prediction of

fault proneness by random forests,” In: Proceedings of the

15th International Symposium on Software Reliability

Engineering (ISSRE‟04), pp. 417–428, 2004.

[5] T.M. Khoshgaftaar, E.D. Allen, J.P, Hudepohl, S.J. Aud,

Application of neural networks to software quality modeling

of a very large telecommunications system,” IEEE

Transactions on Neural Networks, vol. 8, no. 4, pp. 902-

909, 1997.

[6] Norman Fenton, Paul Krause and Martin Neil, “A

Probabilistic Model for Software Defect Prediction”, IEEE

Transactions on Software Engineering, 2001.

[7] K. Elish, M. Elish, “Predicting defect-prone software

modules using support vector machines,” Journal of System

and Software, vol. 81, pp. 649-660.

[8] T. Mitchell, Machine Learning, McGraw-Hill, 1997.

[9] F.V. Jensen, “An Introduction to Bayesian Networks”,

Springer, 1996.

[10] Ajeet Kumar Pandey & N. K. Goyal, “A Fuzzy Model for

Early Software Fault Prediction Using Process Maturity and

Software Metrics” International Journal of Electronics

Engineering, 1(2), 2009, pp. 239-245.

[11] Parvinder S. Sandhu, Satish Kumar Dhiman, Anmol Goyal,

“A Genetic Algorithm Based Classification Approach for

Finding Fault Prone Classes”, World Academy of Science,

Engineering and Technology, 2009.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 5, No 2, September 2012
ISSN (Online): 1694-0814
www.IJCSI.org 295

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

[12] Sunita Chulani, “Constructive Quality Modeling for Defect

Density Prediction: COQUALMO”, IBM Research, Center

for Software Engineering, 1999.

[13] Muhammad Dhiauddin Mohamed Suffian, Suhaimi Ibrahim,

“A Prediction Model for Functional Defects in System

Testing Using Six Sigma”, ARPN Journal of Systems and

Software, Vol.1 No.6, pp.219-224, 2011.

[14] Software Engineering Best Practices: Lessons from

Successful Projects in the Top Companies, the McGraw-Hill

Companies, 2010, ISBN: 9780071621618.

[15] Sultan H. Aljahdali, Mohammed E. El-Telbany, “Software

Reliability Prediction Using Multi-Objective Genetic

Algorithm” IEEE, 2009.

[16] Marshima M. Rosli, Noor Hasimah Ibrahim Teo, Nor

Shahida M. Yusop and N. Shahriman Mohamad ,“Fault

Prediction Model for Web Application Using Genetic

Algorithm”, International Conference on Computer and

Software Modeling IPCSIT vol.14 (2011) IACSIT Press,

Singapore.

[17] N Fenton, M Neil and D Marquez, “Using Bayesian

Networks to Predict Software Defects and Reliability”,

Proceeding of the Institution of Mechanical Engineers, Vol.

222 Part O: Journal of Risk and Reliability, 2008.

[18] Sunghun Kim, Hongyu Zhang, Rongxin Wu and Liang

Gong, “Dealing with Noise in Defect Prediction”, CSE‟11,

Waikiki, Honolulu, HI, USA, ACM 978-1-4503-0445-

0/11/05, 2011.

[19] Yogesh Singh, Arvinder Kaur, Ruchika Malhotra, “Software

Fault Proneness Prediction Using Support Vector

Machines”, Proceedings of the World Congress on

Engineering 2009 Vol I WCE 2009, July 1 - 3, 2009,

London, U.K.

[20] A. Güneş Koru and Hongfang Liu ,“Building Effective

Defect-Prediction Models in Practice” IEEE, Vol. 22, No. 6

November/December 2005.

[21] Linda Westfall, Defect Density

http://www.westfallteam.com/Papers/defect_density.pdf.

[22] Yue Jiang & Bojan Cukic & Yan Ma ,“Techniques for

evaluating fault prediction models” , Journal Empirical

Software Engineering ,Volume 13, Issue 5, pp 561 – 595,

October 2008 .

[23] Tibor Gyimothy, Rudolf Ferenc, and Istvan Siket

,“Empirical Validation of Object-Oriented Metrics on Open

Source Software for Fault Prediction”, IEEE Transactions

on Software Engineering, Vol. 31,No. 10,October 2005

Ms. Mrinal Singh Rawat is Assistant Professor in the Department
of Computer Science and Engineering in MGM‘s COET, Noida,
UP, INDIA. Her Research activities are based on Software
Engineering, Artificial Intelligence and Data Mining. She is
pursuing her M.Tech in Computer Science and Engineering from
Amity University.

Mr. Sanjay Kumar Dubey is working as Assistant Professor in
Department of Computer Science and Engineering in Amity
University Noida, UP, INDIA. His Research area includes Software
Engineering and Usability Engineering. He is pursuing his Ph.D in
Computer Science and Engineering from Amity University.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 5, No 2, September 2012
ISSN (Online): 1694-0814
www.IJCSI.org 296

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

http://www.westfallteam.com/Papers/defect_density.pdf

