

Tool for Automatic Discovery of Ambiguity in RequirementsTool for Automatic Discovery of Ambiguity in RequirementsTool for Automatic Discovery of Ambiguity in RequirementsTool for Automatic Discovery of Ambiguity in Requirements

Ayan Nigam1, Neeraj Arya2, Bhawna Nigam3 and Deepika Jain4

 1 Quality and Process Lead, Ideavate Solutions

Indore, Madhya Pradesh 452001, India

2 Institute of Engineering and Technology, Devi Ahilya Vishwavidhyalaya

Indore, Madhya Pradesh 452017, India

3 Institute of Engineering and Technology, Devi Ahilya Vishwavidhyalaya

Indore, Madhya Pradesh 452017, India

4 Institute of Engineering and Technology, Devi Ahilya Vishwavidhyalaya

Indore, Madhya Pradesh 452017, India

Abstract

Requirements are the foundation for delivering quality

software. Often it is found that the short development cycle

lead teams to cut short the time they will spend on

Requirement Analysis. In this work we developed a tool

which can quickly review requirements by identifying

ambiguous words and provide us the possible sources of

wrong interpretation. Currently tool supports identification

of Lexical, Syntactic and Syntax ambiguities. The tool

will assist requirement analysis personnel while reviewing

specifications, highlighting ambiguous words and

providing graphical snapshot to gauge the correctness of

documents.

Keywords: Software Requirements Specification, Ambiguity,

Requirement Engineering, Lexical Ambiguity, Syntactic

Ambiguity, Syntax Ambiguity.

1. Introduction

One of the important phases of Software Development

process is Requirement gathering. Requirements

(functional as well as non functional) are managed in a

document called as Software Requirement Specification

(SRS), which is referred by development team to

understand requirements. If there is short development

cycle of project, then team members don’t spend more

time on Requirement Analysis. Hence the outcome is an

improper SRS document. Another reason for inappropriate

SRS document is that, if requirements are frequently

changing or incomplete requirements are provided from

customer’s side, then document designer may use inexact

words or statements while preparing the SRS. When

stakeholders refer such document, they can interpret the

sentences of SRS in various ways which ultimately results

in “Ambiguity” and affects the quality of the system to be

built.

Researchers have already shown the importance of SRS

and areas of SRS, which are responsible for success or

failure of a software project. For e.g. Don Gause [11] lists

five most important sources, including SRS, that are

responsible for failure of requirements. [24] shows the

roles of SRS document in large systems, and its importance

in coordinating team of multiple persons to ensure that

right system is going to be built. Bertrand Mayer [12]

shows areas of SRS document, where document writer is

more likely to make mistakes. His study presented a

thorough description of such mistakes by classifying them

into seven distinct categories named as “seven sins”. All

these sins deteriorate the quality of an SRS document.

Here Ambiguity is presented as one of the sins.

Ambiguity in Requirement Specification causes numerous

problems that affect the system to be built, because

ambiguity becomes a bug if not found and resolved at early

stages. Common types of bugs are Design Bug, Functional

Bug, Logical Bug, Performance Bug, Requirement Bug

and UI Bug [16]. If these bugs or other types of bugs are

not found until testing, then they are approximately

fourteen times costlier to get fixed [3]. For example, in

early 1970’s, software for payroll system was designed that

uses last two digits for representing a year rather than 4

digits so as to save memory space. But in Year 2000, Y2K

bug arose, that threatened the major industries. Hundreds

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 5, No 2, September 2012
ISSN (Online): 1694-0814
www.IJCSI.org 350

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

of dollars were spent to upgrade this failure [15]. If such

types of bugs are detected in early phase of development,

then it would be easier to fix it. Fig. 1 shows that 56% of

bugs were identified in requirement analysis phase.

Analysis [3] shows that if these issues are not settled at

early stage then cost and development time will be

affected. [4] Shows that the cost of repairing a requirement

error during other phases could cost 10 to 20 times more

than that of repairing the error during requirement and

early design phases. Table 1 shows that relative cost to fix

an error is comparatively less in requirement phase [3].

Fig 1: Distribution of bugs in different phases of

development cycle [3]

Therefore testing of requirements is very important task in

Software Engineering. Requirement Testing means

verification and validation of software requirements [1].

The basic objective of verification and validation of

software requirement is to identify and resolve the software

problems and high-risk issues early in the software life

cycle [2].

Table 1: Relative cost to fix an error [3]

For documentation of software requirement, Software

Engineering Standard Committee of IEEE computer

society presents a guideline using IEEE 830:1998 format

[5]. [6] Proposed alpha-beta procedure to cut off the

branches of requirement tree and reduce the complexity of

tree traversal. Antonio Bertilino discusses different types

of challenges and achievements in software testing [7]. [8]

Develops an algorithm to generate test cases that verify the

requirement of developing a GUI.

The main objective of this paper is to describe a tool

named “Ambiguity Detector” that will assist in finding the

words or sentences, responsible for three types of

ambiguities i.e. Lexical ambiguity, Syntactic ambiguity

and Syntax ambiguity. For this purpose, Parts of Speech

Tagger and Corpus of ambiguous words is used.

2. Architecture of Ambiguity Detector

The architecture of Ambiguity Detector is shown in fig. 2.

This tool contains four main components i.e. SRS

document, Algorithm for detecting Ambiguous Sentences,

Corpus of different ambiguous words and Parts of Speech

Tagger which are explained as below:

Fig 2: Architecture of Ambiguity Detector Tool

2.1 SRS Document

The goal of requirement specification is to create a SRS

document, describing what system is to be built. SRS

captures the results of problem analysis and characterizes

the set of acceptable solutions for the problem [24]. SRS

can play many roles:-

2.1.1 The SRS is primary vehicle for agreement between

the developer and customer on exactly what is to be built.

It is a document reviewed by the customer or his

representative and often is the basis for judging fulfillment

of contractual obligations.

2.1.2 The SRS records the result of problem analysis.

Documenting the result of analysis allows question about

the problem to be answered only once during development.

2.1.3 The SRS defines what properties the system must

have and constraints on its design and implementation. It

helps in ensuring that requirement decision is made

explicitly during the requirement phase not implicitly

during programming.

Phase in which error

found
Cost Ratio

Requirements 1

Design 3-6

Coding 10

Unit/ Integration Testing 15-40

System/ Acceptance

Testing
30-70

Production 40-1000

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 5, No 2, September 2012
ISSN (Online): 1694-0814
www.IJCSI.org 351

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

2.1.4 The SRS is basis for estimating cost and schedule. It

is a primary management tool for tracking development

progress and ascertaining what remains to be done.

2.1.5 The SRS is basis for test plan development. It is used

like a testers tool for determining the acceptable behavior

of software.

2.1.6 The SRS provide the standard definition of expected

behavior for the system maintainers and is used to record

engineering changes.

2.2 Corpus

Corpus is the main component of ambiguity detector.

Ambiguous words that result in misinterpreted

requirements are analyzed and stored into the corpus. The

major concern of this tool is to check and validate whether

the data which is a part of SRS document is ambiguous or

not. So SRS is matched with the vague words that are

stored in corpus [9] [10] [15]. Some of the ambiguous

words are introduced here:-

2.2.1 Always, Every, None, Never: This word denotes

something as certain or absolute, make sure that it is

indeed, certain, find out these words and think of cases that

violate them.

2.2.2 Certainly, Clearly, Therefore, Obviously: These

words tend to persuade accepting something as given.

2.2.3 Good, Fast, Small, Cheap, Stable and Efficient:

These are unquantifiable. If they appear in a specification,

they must be further defined to explain exactly what they

want.

2.2.4 Some, Sometime, often, usually, Ordinarily,

Customarily, Most, Mostly: These words are too vague.

It’s impossible to test a feature that operates sometime.

2.2.5 Handled, Processed, Rejected, Skipped,

Eliminated: These terms can hide large amounts of

functionality that need to be specified.

2.2.6 And So Forth, And So On, Such As: Lists that

finish with words such as these aren’t testable. If they

appear in a specification, they must further be defined to

explain so that there’s no confusion as to how the series is

generated and what appears next in the list.

2.2.7 It, They, That, Those: These words contain vague

subjects that can refer to multiple things.

Table 2 shows some other ambiguous words.

Accommodate Capability of Normal

Adequate Capability to Not limited to

And Easy Provide for

As a minimum Effective Robust

As applicable Etc. Sufficient

As appropriate If practical Support

Be able to Maximize These

Be capable of May This

Can Minimize When necessary

Table 2: Words/Phrases that result in misinterpretation

2.3 Parts of Speech Tagger

Part-of-speech (POS) Tagger is very important component

of Ambiguity Detector. POS Tagger tags every word of a

sentence with one of the predefined parts-of-speech. For

example, the words of the sentence “Failure of any other

physical unit puts the program into degraded mode” are

marked in the following way: Failure/NN of/IN any/DT

other/JJ/ physical/JJ unit/NN puts/VBZ the/DT

program/NN IN/into degraded/VBN mode/NN. Here, NN

means a noun, DT a determiner, JJ an adjective, VBZ a

verb, and IN a preposition. With the help of tagger tool,

ambiguity i.e. lexical/syntactic/syntax ambiguity is

detected.

2.4 Ambiguities in SRS

Ambiguity is the possibility to interpret a phrase/word in

several ways. It is one of the problems that occur in natural

language texts. An empirical study by Kamsties et al [12]

depicts that “Ambiguities are misinterpreted more often

than other types of defects. Ambiguities, if noticed, require

immediate clarification”. The Ambiguity Handbook [14]

lists several types of ambiguities, namely lexical, syntactic,

syntax and semantic ambiguities. This tool detects first

three types of ambiguities, which are explained below-

Lexical ambiguity: - Lexical ambiguity occurs when a

word has several meanings. For example “green” means

“of color green” or “immature”. Lexical ambiguity also

occurs when two words of different origin come to the

same spelling and pronunciation. For example “bank”

means “river bank” or “bench”.

Syntactic ambiguity: - Syntactic ambiguity, also called

structural ambiguity, occurs when a given sequence of

word can be given more than one grammatical structure,

and each has different meaning. For example when the

sentence allow different parse trees, like “Small car

factory” that can mean both “(small car) factory” and

“small (car factory)”.

Syntax Ambiguity: - This ambiguity is particular to the

tool developed. This error occurs if a sentence does not

end with a period (.), second if user agent is not specified

in the sentence, then it is regarded as syntax error.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 5, No 2, September 2012
ISSN (Online): 1694-0814
www.IJCSI.org 352

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

2.5 Algorithm for Ambiguity Detection

Ambiguity Detector works on following algorithm. This

algorithm is used to classify the ambiguities as Lexical,

Syntactic or Syntax ambiguity. The steps of algorithm are

as follows:-

Step-1: Read corpus of ambiguous words from a text file,

and store it in data structure named as ‘i'.

Step-2: Read the SRS document (that is to be tested) line

by line.

Step-3: For each line, match all words against the corpus.

If word/words are matched then store the sentence in

another data structure named as ‘j’. Continue this step for

each line of SRS, till the end of SRS document is reached.

Step-4: Match each entry of j with POS Tagger, which

classifies the sentences into Lexical, Syntactic or Syntax

ambiguities, depending upon the types of ambiguous

words/phrases.

Step-5: Count and store the total number of lexical,

syntactic and syntax ambiguities.

Step-6: Calculate the percentage of ambiguities.

2.6 Ambiguity Detector

Ambiguity detector tool is designed to find ambiguities in

SRS document. Fig 3 shows the interface of Ambiguity

detector tool.

Fig 3: Interface of Ambiguity Detector

Ambiguity detector mainly contains three windows - first is

“Editor Window” where SRS is selected and processed

line by line for ambiguity testing. In this window, different

colors are used to highlight the ambiguities in selected SRS

document (green for lexical ambiguity, red for syntactic

ambiguity and blue for syntax ambiguity). Apart from SRS

documents, sentences can directly be written for testing

ambiguities. Second window is “Error Window”. This

window specifies the ambiguities in the statements that are

explicitly written by users where line number and related

ambiguity of complete SRS is displayed in this window.

Fig 4 shows the ambiguity of sample sentence written in

Editor Window. The sentence is “This system must be

reusable”. The ambiguous word is “reusable” which is

highlighted in Editor Window, whose description

(Ambiguous Adjective) is displayed in error window along

with line number (line no. 1).

Fig 4: Snapshot of Sample statement and output ambiguity

in Error Window

For SRS document, different error window is designed,

which will be displayed after clicking the error button.

Third window is the “Result Window”, which shows the

total ambiguities and count of individual ambiguities in the

SRS document using bar graph. Same color schemes

(green, red and blue) are used for graphical representation

of ambiguities.

An option is also given in the tool for Chart Analysis in

which proportion of different ambiguities are shown in the

form of pie chart in a separate window.

Example: Six ambiguous sentences (in bold) are taken

from a sample SRS, which are already matched against

corpus.

The System shall be easy as possible.

Both should be documented.

It must be reusable.

The system should avoid errors normally.

The system provides maximum output.

System works until deadline.

For finding ambiguities, all sentences are tagged one by

one according to parts of speech, using Parts of speech

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 5, No 2, September 2012
ISSN (Online): 1694-0814
www.IJCSI.org 353

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

Tagger. After testing these six sentences, Ambiguity

detector gives following types of results -

1. The system shall be easy as possible.

2. Both should be documented.

3. It must be reusable.

4. The system should avoid errors normally.

5. The system provides maximum output.

6. System works until deadline.

Lexical ambiguity (in green color) arises due to some

unidentified references. For example in sixth line the word

“until” has been reported as lexical ambiguity because

“until” does not specify a particular time.

Syntactic ambiguity (in red color) arises due to use of

vague words. Adjectives and adverbs are considered as

vague words, because the words are unclear i.e. these

words can have different interpretations. So in the

example, words like “reusable”, “normally” and

“maximum” are reported as syntactic ambiguities.

Syntax ambiguity (in blue color) arises due to some

missing information. In above example, second line is

marked as syntax ambiguity because of the word “both”.

This sentence does not contain complete information.

Fig. 5 shows the percentage of ambiguities present in the

example in form of pie chart. It shows that highest

percentage of ambiguities present (67%) are syntactic

ambiguities, where as only 16% Lexical and 16% Syntax

errors are found in the example.

Fig 5: Result of Example in form of Pie Chart

Table 3 shows the percentage of error reported in example.

 Lexical

Ambiguity

Syntactic

Ambiguity

Syntax

Ambiguity

Percentage of

error

16 16 67

Table 3: Percentage of ambiguities in Example

3. Experimental Results

In experimental work, four open source SRS documents

were taken and analyzed. Number of lines and source of

sample SRS documents is presented in Table 4.

SRS Number of Lines Source

1. 165 www.scribd.com

2. 245 www.scribd.com

3. 357 www.scribd.com

4. 487 www.scribd.com

Table 4: Description of Datasets

An SRS Document (in .txt format) is selected in the tool

for ambiguity testing. Fig 6 shows the snapshot of tool

when SRS 2 is selected and tested.

Fig 6: Snapshot of tool after selection of SRS 2

Table 5 shows the results of all the datasets. It shows the

total ambiguities present in SRS documents and percentage

of lexical, syntactic and syntax ambiguity for each SRS.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 5, No 2, September 2012
ISSN (Online): 1694-0814
www.IJCSI.org 354

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

Table 5: Results of Different ambiguities for Sample

Datasets

Pie Chart representation of ambiguities for SRS 2 is shown

in Fig 7.

Fig 7: Snapshot for Result of SRS 2 (Chart Analysis)

4. Conclusion and Future Work

One of the most important stages of software development

is requirement gathering. Rest of the project depends upon

this initial step i.e. how requirements are understood,

gathered and specified. If requirements are not properly

understood, or SRS is not properly designed, then the

outcome will be ambiguous SRS document. Ambiguities in

SRS introduces conflicts in the software project, as

different interpretations can be drawn by team members

while understanding requirements, which ultimately affect

the quality of system to be built. One way to solve this

problem is to detect and resolve ambiguities early, i.e. in

the requirement analysis phase. So a tool named Ambiguity

Detector is designed that detects three types of ambiguities

in SRS document namely lexical, syntax and syntactic

ambiguity. This tool also determines the ambiguities in

percentage basis that helps analysts to identify which

ambiguity is present in the highest percentage. For e.g.

experimental results in Table 5 shows that in all the

datasets, percentage of syntactic ambiguity is highest, so

provision will be made to improve the SRS document

accordingly. As ambiguities can easily be found out and

resolved at early stage by communicating again with the

customer, therefore this tool is very helpful in saving cost

and time.

Till now, the tool is detecting Lexical, Syntactic and

Syntax ambiguity. In future work, other types of

ambiguities such as Semantic and Pragmatic ambiguity

will also be considered. Also, detailed description of

word/phrases responsible for ambiguity needs to be

provided. And apart from communication with the

customer, a suggestion module will be designed in the tool

to resolve ambiguities. The suggestion module will

recommend a replacement word for the current ambiguous

word in order to provide better clarity to the statements of

SRS document.

References
[1]. Yonghua Li, Fengdi Shu, Guoqing Wu,

Zhengping Liang “A Requirement Engineering for

Embedded Real-Time Software-SREE,” Wuhan

University Journal of Natural Science, Vol. 11, No.

3, 2006, pp. 533-538
[2]. Bary W. Boehm, TRW, “Verifying and Validating

Software Requirements and Design Specification”, January

1984 IEEE.

[3]. Gery Mogyorodi, Starbase Corporation,

“Requirement-Based Testing: An overview”. 2001 IEEE.

[4]. Weider D. Yu”Verifying Software Requirement: A

Requirement Tracing Mathodology and It’s Software

Tool- RADIX”, 1994 IEEE.

[5]. Software engineering standard committee of IEEE

Computer Society. IEEE Recommended practice for

Software Requirement Specification, IEEE Inc. NY, USA,

1998

[6]. Gang Liu, Shaobin Huang, Xiufeng Piao, “Study on

Requirement Testing Method Based On Alpha-Beta Cut-

off Procedure” Collage of computer Science and

Technology, Harbin Engineering University, Harbin,

Heilongjiang, China, 2008 IEEE.

[7]. Antonio Bertolino, “Software Testing Research:

Achievements, Challenges, Dreams” Institute of Science

and Information Technology, Pisa, Italy .Future of

Software Engineering 2007 IEEE.

[8]. Ravi Prakash Verma, Bal Gopal, Md. Rizwan Beg,

”Algorithm for Generating Test Case for Prerequisites of

Software Requirement” Department of Computer Science

and Engineering, Integral University. International Journal

of Computer Application, September 2010 IEEE.

[9]. Donald Firesmith “Specifying Good Requirements”,

Software Engineering Institute, U.S.A., Journal of Object

Technology, Vol.2, No. 4, July-August 2003.

[10]. Ronald Kirk Kndt “Software Requirement

Engineering: Practice and Techniques”, Jet Propulsion

Laboratory, California Institute of Technology, November

7, 2003.

[11]. Gause, D.C., “User DRIVEN Design—The Luxury

that has Become a Necessity, A Workshop in Full Life-

S

R

S

Total

Ambiguities

Lexical

Ambiguity

Syntactic

Ambiguity

Syntax

Ambiguity

1 61 21% 53% 26%

2 86 15% 53% 32%

3 60 15% 11% 74%

4 92 23% 35% 42%

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 5, No 2, September 2012
ISSN (Online): 1694-0814
www.IJCSI.org 355

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

Cycle Requirements Management”, ICRE 2000 Tutorial

T7, Schaumberg, IL (23 June 2000).

[12]. Meyer, B. (1985) “On Formalism in Specifications”.

IEEE Software, 2(1), January 1985, 6–26.

[13]. Kamsties, E., Knethen, A.V., Philipps, J., Sch¨atz, B.:

An empirical investigation of the defect detection

capabilities of requirements specification languages. In:

Proceedings of the Sixth CAiSE/IFIP8.1 International

Workshop on Evaluation of Modelling Methods in

Systems Analysis and Design (EMMSAD’01). (2001)

125–136

[14]. Berry, D.M., Kamsties, E., Krieger, M.M.: From

contract drafting to software specification: Linguistic

sources of ambiguity (2003)

http://se.uwaterloo.ca/˜dberry/handbook/ambiguityHandbo

ok.pdf, accessed 27.12.2009.

[15].Software Testing by Ron Patton, Sams Publishing,

July 26, 2005.

[16].Ayan Nigam, Bhawna Nigam, Chayan Bhaisare,

Neeraj Arya : Classifying the Bugs Using Multi-Class

Semi Supervised Support Vector Machine, Proceedings of

the International Conference on Pattern Recognition,

Informatics and Medical Engineering, March 21-23, 2012

[17]. Boehm, B. Tutorial: Software Risk

Management(1989), IEEE Computer Society Press.

[18].Rupp, C.: Requirements-Engineering und -

Management. Proceedings of the 42nd Annual Meeting on

Association for Computational Linguistics, Morristown,

NJ, USA, Association for Computational Linguistics

(2004) .

[19]. Sawyer, P., Rayson, P., Cosh, K.: Shallow knowledge

as an aid to deep understanding in early phase

requirements engineering. IEEE Trans. Softw. Eng. 31

(2005).

[20]. Fuchs, N.E., Schwertel, U., Schwitter, R.: Attempto

Controlled English (ACE) language manual, version 3.0.

Technical Report 99.03, Department of Computer Science,

University of Zurich (1999).

[21]. Schiller, A., Teufel, S., St¨ockert, C., Thielen, C.:

Guidelines f¨ur das Tagging deutscher Textcorpora mit

STTS. Technical report, Institut fur maschinelle

Sprachverarbeitung, Stuttgart (1999).

[22]. Goldin, L., Berry, D.M.: AbstFinder, a prototype

natural language text abstraction finder for use in

requirements elicitation. Automated Software Eng. 4

(1997).

[23]. Ronald Kirk Kndt “Software Requirement

Engineering: Practice and Techniques”, Jet Propulsion

Laboratory, California Institute of Technology, November

7, 2003.

[24]. Stuat R. Faulk “Software Requirements: A Tutorial”,

Software Requirement Engineering 2
nd

Edition, R. Thayer.

M. Dorfman, Eds., IEEE Computer Society press, 1997.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 5, No 2, September 2012
ISSN (Online): 1694-0814
www.IJCSI.org 356

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

