

Context-Awareness for Service Oriented Systems*

* This work is supported by the FNSRSDT under the CSPT-ICTESAD project

Hatim Hafiddi, Hicham Baidouri, Mahmoud Nassar and Abdelaziz Kriouile

Mobile and Embedded Information Systems Lab., Models and Systems Engineering Team,
National Higher School for Computer Science and Systems Analysis,

Mohammed V Souissi University,
BP 713, Agdal Rabat, Morocco

Abstract
Today, service oriented systems need to be enhanced to sense
and react to user’s context in order to provide a better user
experience. To meet this requirement, Context-Aware Services
(CAS) have emerged as an underling design and development
paradigm for the development of context-aware systems. The
fundamental challenges for such systems development are
context-awareness management and service adaptation to the
user’s context. To cope with such requirements, we propose a
well designed architecture, named ACAS, to support the
development of Context-Aware Service Oriented Systems
(CASOS). This architecture relies on a set of context-awareness
and CAS specifications and metamodels to enhance a core
service, in service oriented systems, to be context-aware. This
enhancement is fulfilled by the Aspect Adaptations Weaver
(A2W) which, based on the Aspect Paradigm (AP) concepts,
considers the service’s adaptations as aspects.
Keywords: Context, Context-Awareness, Context-Aware Service
Oriented Architectures, Aspect Paradigm.

1. Introduction

Today, Service Oriented Architectures (SOA) are being
widely deployed to improve information systems
development and interoperability. Moreover, the
increasing use of mobile devices and infrastructure has
enabled users to access services from any location and at
any time. The convergence of mobile technologies (i.e., in
terms of mobile devices and telecommunication
infrastructures) and software engineering paradigms (i.e.,
especially the service paradigm) has brought about a new
generation of information systems, based on the Context-
Aware Service (CAS) paradigm, known as Context-Aware
Service Oriented Systems (CASOS). CAS driven
development of service oriented systems enables them to
be context-aware and consequently to provide users with
customized and personalized behaviors depending on their
contexts. For example, in an M-tourism system, a context-
aware Restaurants Searching service provides users with
suggestions depending on their locations, preferences and

even the used device capabilities. Generally, this kind of
information is called context.

The ambiguity of the context concept and the multiplicity
of context situations to be considered make CAS hard to
build. Moreover, traditional approaches for CAS
development produce services whose business logics are
tightly coupled with both of context management and
adaptation logics. Consequently, the result of such
approaches is usually complex services whose rate of
evolution and reuse is much reduced. The aforementioned
statements highlight the need of a development approach
[13] and a well designed architecture for efficient CAS
development. In this paper we propose a well-designed
architecture, named ACAS, to support CAS development.
The remainder of this paper is organized as follows. We
first present a scenario that concerns an M-tourism system
which will be used in subsequent sections as an illustrating
example. Section 3 outlines the fundamental layers of the
proposed architecture. In the following sections, we will
outline the layers enabling the enhancement of core
services to be context-aware. Section 8 briefly compares
related works. In Section 9, we give a brief conclusion and
outline our plans for future work.

2. Motivating Scenario

The following Restaurants Searching scenario illustrates
the potential benefits of context-awareness for an M-
tourism system:
“Mr. Joseph, a French tourist, wants to taste the local
gastronomy of Marrakech which he is visiting for the first
time. So he gets connected via his mobile device (e.g.,
PDA, iPhone, BlackBerry, etc.) to a context-aware M-
tourism system in order to obtain a list of restaurants that
may meet his needs. After logging in, he makes a request.
The system then proposes an adequate list of restaurants
(restaurants availability is taken into consideration), close
to his location (taking into consideration the GPS
localization), described in his language (the system will
consider the user’s language) and taking account of his

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 5, No 2, September 2012
ISSN (Online): 1694-0814
www.IJCSI.org 95

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

preferences (e.g., food preferences, restaurants prices,
etc.). Also, let’s note that such a system will resort, if
necessary, to a results pagination mechanism to improve
the responsiveness of the system (considering the device
capacities, the RAM capacity and processor power in this
case) and in case it detects any change in the tourist’s
context (e.g., weak battery or switching of connection
mode from a high mode to a low one), it will automatically
adapt its behavior (e.g., returned restaurants information
will not include photos) for purposes of optimization (i.e.,
reducing latency and saving battery).”

This scenario illustrates that CASOS systems differ from
traditional systems since they use sensed information to
adapt their services to the current user context. To that end,
this class of systems is supposed to:

• Sense and compose context information from
different sensors;

• Autonomously detect relevant changes in the
context in order to dynamically adapt their
services;

• Interoperate with third-party service providers
(e.g., weather provider).

3. ACAS Architecture

CAS based development of context-aware systems
involves several challenges. For instance, context
definition (e.g., which context information is relevant for
the adaptation of the application) and acquisition (e.g.,
collection from either native or web sensors) is not an
evident process. In addition, the adaptation process must
be based on mechanisms, in accordance with the best
practices of software engineering (e.g., separation of
concerns), to build well-designed CAS. Figure 1 illustrates
the proposed architecture to tackle the fundamental
challenges of CAS development. Through this architecture,
our main objective is to enable CAS designers and
developers to treat, while separating the concerns, the
different activities related to the enhancement of core
services (i.e., Services Layer) to meet context-awareness
requirements. The proposed architecture is composed of
the following layers:

• Services Layer: contains core services that fulfill
the system business requirements;

• Context Management Layer: aims to deal with the
main context management tasks such as context
specification, representation and acquisition;

• Adaptation Artifacts Layer: provides the key
concepts, necessary for core services adaptation,
such as Adaptation Condition (i.e., situation
involving services adaptation), Adaptation Rule

(i.e., how to perform adaptations), Adaptation,
etc.;

• Context-Aware Services Layer: specifies the
variability of core services according to their use
contexts. The core service and its variability form
the Context-Aware Service;

• Context-Awareness Layer: providing Context
Management and Adaptation Artifacts Layers is
not sufficient to adapt core services to the context.
The Context-Awareness Layer aims to provide a
set of services that enable the adaptation of core
services to the context in a rather abstract way
(i.e., loosely coupling between core services and
context-specific aspects through this layer).

Fig. 1 ACAS architecture.

In the following sections, we will outline the layers
enabling the enhancement of core services to be context-
aware.

4. Context Management Layer

4.1 Context

Context is the information that characterizes the
interactions between humans, applications, and the
environment [5]. Context information is domain specific,
as a type of information might be considered as context
information in one domain but not in another (e.g., weather
may be considered as a context parameter in a travel
planning system but not in a money exchange one). Several
context definitions serving various domains were proposed
in the literature (e.g., [6], [25], [21], etc.). However the
context definition given by Dey and Abowd remains the
most generic. In fact, these authors defined context as “any
information that can be used to characterize the situation

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 5, No 2, September 2012
ISSN (Online): 1694-0814
www.IJCSI.org 96

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

of an entity. An entity is a person, place or object that is
considered relevant to the interaction between a user and
an application, including the user and applications
themselves” [8]. As given in [30], we consider context
parameters as any additional information that can be used
to improve the behavior of a service in a situation. Without
such information, the service should be operable as
normal; but with context information, it is arguable that the
service can operate better or more appropriately [31].

Rather than giving a context formalization, case of figure
for several researches on this topic, sometimes domain
specific and sometimes generic but not very extensible, we
choose to propose a meta-model [12] which is, at the same
time, generic and abstract (Fig. 2). So, in this specification
(see Fig. 1) a context is a set of parameters (e.g., language,
localization, battery, connection mode, etc.) and entities
(e.g., user, device, etc.) that can be structured on sub
contexts. Sub contexts can also be recursively decomposed
into categories. Context may be constituted of simple
parameters (e.g., language), derived parameters (i.e.,
computed from other parameters; for example a distance
parameter can be computed from two GPS positions) and
complex parameters (e.g., GPS) which have
representations (e.g., DMS (Degrees, Minutes, and
Seconds) and DD (Decimal, Degrees) representation for
the localization parameter).

Fig. 2 Context metamodel.

To illustrate our metamodel, let’s project it on the case of
figure of the E-tourism system presented in the second
section. The context for this system is composed mainly of
the following sub contexts (see Fig. 3):
• DeviceSubContext: it contains parameters that describe

the entity Device. It breaks up into two categories which
are the software category (e.g., operating system,
navigator type, supported type of data, etc.) and the
hardware category (e.g., processor type, battery level,
memory size, etc);

• UserSubContext: it is a sub context that contains
parameters describing the entity User (e.g., preferences,
localization, profile, etc);

• EnvironmentSubContext: this sub context contains the
Environment parameters (e.g., time, weather, etc).

Fig. 3 Succinct context model for the M-tourism scenario.

4.2 Context Providers

The role of context providers is to gather context
information from different sources such as sensors, web
services, databases, etc. The process of collecting context
information depends on the nature and the sources of
context parameters. For instance, the user profile
information is explicitly provided by the user and so it is
characterized by an infrequent change. However, context
parameters collected from sensors are subject to frequent
changes. Their collection requires interaction with
distributed and heterogeneous software or hardware
sensors.

To abstract CAS developers from sensors and sensed data
variety and complexity, we provide a context provider
specification. In our specification, as illustrated in figure 4,
a context provider (i.e., collector of a given service
execution context) aggregates a set of parameters or
entities providers. Both of these may dispose of an
interface that specifies whether the provider is remote (e.g.,
a web service that provides weather information) or local
(e.g., GPS sensor in a mobile device) and what mode of
requests is supported (i.e., query-based or notification-
based). A provider may use or derive from other providers
to get context information.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 5, No 2, September 2012
ISSN (Online): 1694-0814
www.IJCSI.org 97

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

Fig. 4 Context provider metamodel.

Figure 5 shows the Restaurants Searching context
provider composed of two EntityProviders:
“DeviceProvider” providing context parameters that
describe the device entity and “UserProvider” presenting
context parameters that describes the user entity. It is also
composed of two parameter providers: “TimeProvider”
and “WeatherProvider”. The latter has a provider interface
that specifies its services and the supported mode.

Fig. 5 Succinct Restaurants Searching context provider.

5. Adaptation Artifacts Layer

We introduce in this layer the concept of adaptation
strategy (AdaptationStrategy) as an artifact used to specify
the adaptation policy of a service to its current context of
execution. So, an adaptation strategy (i.e.,
SimpleAdaptationStrategy) (Fig. 6) aggregates a set of
artifacts indicating when (i.e., AdaptationCondition:
classical condition expressed on context parameters) and
how (i.e., AdaptationRule: defines the place in the service
where the dynamic adaptations will be realized) a set of
adaptations (i.e., Adaptation) must be applied, on the core
service, in order to provide the expected behavior
regarding the current execution context.

Fig. 6 Adaptation strategy metamodel.

6. Context-Aware Services Layer

One of the first uses of the term context-aware appeared in
1994 [24]. A service is context-aware if it provides
customized and personalized behavior to users depending
on their contexts [8]. To be context-aware, a service must
be able to dynamically adapt its behavior to its several
execution (i.e., use) contexts. In other words, the service
(i.e., core service) must possess mechanisms so as to
exploit only relevant information of the execution context
and dynamically adapt its behavior. Henceforth, this
appropriate context information relating to a specific
execution situation forms what is termed the ContextView,
and the result of the service adaptation to this ContextView
forms the ContextViewService. Figure 7 presents the
ContextView meta-model. Thus, a ContextView is seen as
a set of context parameters that may aggregate other
ContextViews.

Fig. 7 ContextView metamodel.

The proposed CAS meta-model [13] is shown in figure 8.
Accordingly, CAS is seen as a specific service with a
number of ContextViews. For each, we associate an
adaptation strategy (i.e., CVSAdaptationStrategy) that
specifies the adaptation policy of the service to this
ContextView. The adaptation result forms the
ContextViewService. So, for a given service, the set of its
ContextViewServices (CVSAdaptationStrategies) forms
the CAS (CASAdaptationStrategy).

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 5, No 2, September 2012
ISSN (Online): 1694-0814
www.IJCSI.org 98

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

Fig. 8 CAS metamodel.

For instance, the Restaurants Searching Service has the
following ContextViews:

• User: we associate to this ContextView the
“UserAS” strategy. The latter consists in adapting
the Restaurants Searching service to the tourist
profile and his restaurants preferences;

• Time: we associate to this ContextView the
“TimeAS” strategy. This strategy consists in
filtering the restaurants response, based on time,
to get only available restaurants;

• Location: we associate to this ContextView the
“LocationAS” strategy. This strategy allows to
resort only to restaurants that are close to the
tourist’s location;

• BatteryState (ConnexionMode): we associate to
this ContextView the “BatteryStateAS”
(ConnexionModeAS) strategy. This strategy will
provoke service adaptation by reducing the
amount of data returned whenever the
“batteryState” is low (the “connexionMode” is
changed from a high to a low connectivity).

The figure below shows for instance the “BatteryStateAS”
composition.

Fig. 9 BatteryStateAS adaptation strategy.

7. Context-Awareness Layer

7.1 Aspect Adaptations Weaver

The traditional approaches used for CAS design and
development present several problems. In fact, simple core
service duplication for each ContextView is a software
engineering anti-pattern (e.g., high-cost of maintenance),
also integrating adaptation logics into core service makes it
complex and decreases its ability to be reused and
maintained. Therefore, to rationalize the development and
maintenance of CAS, we have to resort to new mechanisms
and strategies that allow core service extension without any
duplication or regression risks. Such mechanisms will
favor loosely coupling between the core service and its
adaptations seen as crosscutting concerns. CAS
development can benefit from Aspect Paradigm (AP). AP
[15] allows the modification of applications with so-called
aspects. Aspects are modular units of functionality, used
across the application code and woven at so-called
pointcuts, which allow to transparently extend system
functionalities. In our approach, the adaptations of a given
service to its use contexts are seen as aspects. Thereby, the
core service focuses only on business logic and all of its
adaptations related to its ContextViews will be defined
separately as aspects called Adaptation Aspects. These
Adaptation Aspects will be dynamically woven at runtime
into the core service, by our tool named Adaptation
Aspects Weaver (A2W), to produce the expected
ContextViewService.

Figure 10 illustrates the mechanism behind the A2W tool.
The Request Notifier notifies, in a synchronous or
asynchronous mode, the Decision Maker with the executed
service id and the execution context in order to recuperate
the adequate CASAdaptationStrategy. Then, the Decision
Maker inspects it in order to retrieve, based on context

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 5, No 2, September 2012
ISSN (Online): 1694-0814
www.IJCSI.org 99

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

information availability, the current pertinent
CVSAdaptationStrategy. The interpretation mechanism,
operated by the Service Reconfigurator, consists in
checking the AdaptationConditions to dynamically weave
the required Adaptation Aspects, following a set of
AdaptationRules, into the core service to produce the
corresponding ContextViewService.

Fig. 10 A2W architecture.

As shown in figure 11, once the tourist has requested a
proposition of restaurants, the Restaurants Controller (i.e.,
the entry of the system in a MVC pattern) gets the context
of the executing service from the Context Manager, and
then forwards the request with the recuperated context to
the Request Notifier. This last notifies the Decision Maker
with the appropriate serviced and context. Based on this
information, the Decision maker retrieves the pertinent
CVSAdaptationStrategy which will be used by the Service

Reconfigurer in purpose to adapt the core service and
provide a relevant response to the tourist expectations.

Figure 12 shows, for instance, two views for the restaurant
searching service depending on the context state. Let us
note that the user is a French tourist; in such a case, the
screens are displayed using the French language. Once the
user is authenticated, he has a set of services via the tab
bar. For example, the user can consult a list of restaurants
that suit his context through the “Restaurants” tab. Screen
“a” shows the list of results in normal functioning
conditions while Screen “b” shows the result in an
optimization mode (without restaurants’ pictures). This
mode is activated, for instance, during a detection of a low
“batteryState” or a low “connexionMode”. The user can
also sort results by relevance (i.e., pertinent restaurants),
distance (i.e., distance between user and restaurant) or
restaurant specialty. The result of the restaurants searching
service is adapted based on context parameters such as
time, device capabilities, weather, user profile, restaurants
preferences and location.

7.2 Tools and Frameworks Support

The A2W tool is developed using Spring AOP framework
[28]. The latter provides an API for the development of
AOP concepts (e.g., aspect, advice, pointcut, etc.) and
allows dynamic weaving. A2W plays the role of a mediator
for dynamic adaptation of services to their execution
contexts.

Fig. 11 Sequence diagram for the Restaurants Searching Service.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 5, No 2, September 2012
ISSN (Online): 1694-0814
www.IJCSI.org 100

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

 a b

Fig. 12 Full and reduced views for the Restaurants Searching Service.

The client side supporting the motivating scenario is
developed using the following development and
deployment tools, and frameworks:

 - Development and Deployment tools:

• Eclipse EDI [10] for the development of the
server side;

• iOS SDK [3] for the development of the client
side on iPhone and iPod devices;

• Apache Tomcat 6 [1] integrated within the eclipse
platform and used to deploy the server side;

 - Frameworks:

• Spring 2.5 [28] used as an IoC (Inversion of
Control) container to link all the components of
the system and also for transactions management;

• Hibernate 3.3 [20] for persistence management;
• CXF 2.2 [2] is the soap middleware that manage

the communication between the client side and
the server side using Web Services technology;

• Configuration files (such as
CASAdaptationStrategies) written using XML are
parsed using JAXB2 OXM [18].

8. Related Work

As long as ACAS architecture combines a set of meta-
models, a framework and a lightweight middleware for
enabling context-awareness of services, we deal in this
section with three categories of research works.

Several context models have been defined (e.g., Key-value
pairs [23], databases (e.g., CML [14]), ontologies (e.g.,
CMF [17]), profiling (e.g., CC/PP [16]), etc.) and various
context-aware middleware and frameworks have been
developed (e.g., context Toolkit [22], CoBrA [7], K-
Components [9], CORTEX [27], etc.) to handle context-
aware applications development. In the one hand, the main
objective of context modeling research works is to provide
an abstraction of context information to permit easy
context management. These research works do not deal
with the adaptation of applications to the context. On the
other hand, researches that focus on frameworks and
middleware development try to simplify the development
of context-aware applications by providing a set of
services such as messaging, distribution, context
management, etc. These research works do not deal with
the modeling of context-awareness of applications and
most of them suffer from the limited number of available

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 5, No 2, September 2012
ISSN (Online): 1694-0814
www.IJCSI.org 101

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

context information, and the triggering of operations and
context monitoring are defined statically at compilation
time. So, due to the variety of context parameters to be
collected and situations to be considered, we argue that
context-awareness management needs the support of
abstract context-awareness modeling.

In this context, some other works suggest the employment
of model driven approaches for the development of
context-aware applications. Authors in [29] define meta-
models for modeling context-aware applications by
planning several model views that model system context
sensitivity, but they do not deal with adaptability. In our
approach, service adaptability to the context is carried out
through the CASAdaptationStrategy artifact and the A2W
tool. Ayed [4] specifies an MDD (Model Driven
Development) approach and a UML profile to design
context-aware applications independently of the platform.
He also proposes a design process that models the contexts
that impact an application and its variability. The proposed
approach does not deal with applications adaptation to the
context. Grassi and Sindico provide support for context
adaptation in [11] by decoupling the adaptation process
from the application business logic. For this purpose they
define a framework based on model-driven and aspect-
oriented software development (AOSD). The proposed
approach does not introduce the concept of entity in the
context meta-model, and the underlying adaptation
mechanism is not defined. In ContextUML project [26],
Sheng and Benatallah define an approach for modeling
context-aware Web Services. Context in ContextUML is
specialized into “AtomicContext” and
“CompositeContext”, so the proposed meta-model does
not refine context information. Moreover, authors do not
specify the mechanism used to fulfill CAS adaptation.
Authors in [32] focus on the context-aware development of
web services oriented applications. They propose the use
of model driven engineering and aspect oriented paradigm
to separate concerns (i.e., business, context, context-
awareness) in different models. The context meta-model
proposed is domain specific and the use of AOP is limited
to the composition of models but not for dynamic
adaptation of services. Another important domain concerns
Product Line Engineering (PLE) that has a great potential
in modeling service variability. An important work is the
one conducted in CAPPUCINE project [19]. Authors focus
on context-aware adaptation in Dynamic Service-Oriented
Product Line (DSOPL) rather than context modeling, and
propose two different processes for the initial and iterative
phases of product derivation. The main challenge to be
faced in this work is to reduce non-deterministic behaviors
when non deterministic context-aware assets are
introduced. In our work, this challenge is faced by the

execution of an ordered set of adaptations (i.e., priority
management).

9. Conclusion

In this paper, we proposed an architecture for context-
awareness of services named ACAS. The main purpose of
this architecture is to cope with the fundamental challenges
inherent in the enhancement of core services, in service
oriented systems, to be context-aware. To make up for this
limitation, we designed four layers: Context Management,
Adaptation Artifacts, Context-Awareness and Context-
Aware Services. To deal with these layers development,
we proposed a set of meta-models. Thus, we presented a
context meta-model which is generic and open to allow its
extension to various domains depending on needs, and a
context provider meta-model serving to abstract from the
huge variety of context parameters and the complexity of
context sensors. Then, we put forward a CAS meta-model
and an adaptation mechanism, based on the Aspect
Paradigm, which considers the adaptations of a service to
its execution context as Adaptation Aspects dynamically
woven by the A2W tool at runtime.

We focused in this paper on proposing a well-designed
architecture to enable context-awareness of service
oriented systems. We project to use the proposed meta-
models for transformation purposes. So, both business and
context-awareness models, in conformance with the
proposed meta-models, can be transformed into platform
specific models. The transformation process will rely on
meta-models mapping and PIM (Platform Independent
Model) to PSM (Platform Specific Model) transformation
rules. We also plan to include our meta-models (context,
context provider, CAS) in the Eclipse Modeling
Framework (EMF), use the Graphical Modeling
Framework (GMF) to build a graphical editor that will
allow designers to model context management and CAS
artifacts, and develop a transformation rules plugin to
automate code generation.

References
[1] Apache, http://tomcat.apache.org/
[2] Apache CXF, http://cxf.apache.org/
[3] Apple, http://developer.apple.com/devcenter/ios/index.action
[4] D. Ayed, D. Delanote, and Y. Berbers, “MDD Approach for

the Development of Context-Aware Applications”, in 6th
International and Interdisciplinary Conference on Modeling
and Using Context (CONTEXT’07), 2007.

[5] P. Brezillon, “Focusing on context in human-centered
computing”, IEEE Intelligent Systems, Vol. 18, No. 3, 2003,
pp. 62-66.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 5, No 2, September 2012
ISSN (Online): 1694-0814
www.IJCSI.org 102

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

[6] G. Chen, and D. Kotz, “A Survey of Context-Aware Mobile
Computing Research”, Technical Report, Issue: TR2000-
381, Dartmouth College, 2000.

[7] H. Chen, “An Intelligent Broker Architecture for Pervasive
Context-Aware Systems”, PhD thesis, University of
Maryland, Baltimore County, 2004.

[8] A. K. Dey, and G. D. Abowd, “Towards a Better
Understanding of Context and Context-Awareness”,
Technical Report GIT-GVU-99-22, GVU Center, Georgia
Institute of Technology, 1999.

[9] J. Dowling, and V. Cahill, “The K-Component Architecture
Meta-model for Self-Adaptive Software”, in 3rd International
Conference on Meta-level Architectures and Separation of
Crosscutting Concerns (REFLECTION’01), 2001.

[10] Eclipse, http://www.eclipse.org/
[11] V. Grassi, and A. Sindico, “Towards model driven design of

service based context-aware applications”, in Int. Workshop
on Engineering of software services for pervasive
environments, 2007.

[12] H. Hafiddi, M. Nassar, H. Baidouri, B. El Asri, and A.
Kriouile, “Context-Aware Service Centric Approach for
Service Oriented Architectures”, in 13th International
Conference on Enterprise Information Systems (ICEIS'11),
2011.

[13] H. Hafiddi, M. Nassar, and A. Kriouile, “How Can Service
Oriented Systems Make Beneficial Use of Model Driven
Architecture and Aspect Paradigm”, in 6th IEEE
International Symposium on Service Oriented System
Engineering (SOSE'11), 2011.

[14] H. Henricksen, and J.Indulska, “Developing context-aware
pervasive computing applications: Models and approach”,
Pervasive and Mobile Computing, Vol. 2, No. 1, 2006, pp.
37-64.

[15] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. V.
Lopes, J. M. Loingtier, and J. Irwin, “Aspect-Oriented
Programming”, in ECOOP’97, 1997, Vol. LNCS 1241, pp.
220-242.

[16] G. Klyne, F. Reynolds, C. Woodrow, H. Ohto, J. Hjelm, M.
H. Butler, and L. Tran, “Composite Capability/Preference
Profile (CC/PP): Structure and vocabularies 2.0”, Technical
report, W3C recommendation, 2007.

[17] P. Korpipää, and J. Mäntyjärvi, “An ontology for Mobile
Device Sensor-Based Context Awareness”, in 4th
International and Interdisciplinary Conference on Modeling
and Using Context (CONTEXT’03), 2003.

[18] Oracle, http://jaxb.java.net/
[19] C. Parra, X. Blanc, and L. Duchien, “Context Awareness for

Dynamic Service-Oriented Product Lines”, in 13th
International Software Product Line Conference (SPLC'09),
2009.

[20] RedHat, http://www.hibernate.org/
[21] N. Ryan, J. Pascoe, and D. Morse, “Enhanced Reality

Fieldwork: the Context-Aware Archaeological Assistant”, in
Computer Applications in Archaeology, 1997.

[22] D. Salber, A. K. Dey, and G. D. Abowd, “The Context
Toolkit: Aiding the Development of Context-Enabled
Applications”, in Conference on Human Factors in
Computing Systems (CHI’99), 1999.

[23] B. N. Schilit, M. M. Theimer, and B. B. Welch,
“Customizing mobile applications”, in USENIX Symposium
on Mobile and Location-Independent Computing, 1993.

[24] B. Schilit, and M. Theimer, “Disseminating Active Map
Information to Mobile Hosts”, IEEE Network, Vol. 8, No. 5,
1994, pp. 22-32.

[25] A. Schmidt, M. Beigl, and H. W. Gellersen, “There is more
to context than location”, Computers and Graphics, Vol. 23,
No. 6, 1999, pp. 893-902.

[26] Q. Z. Sheng, and B. Benatallah, “ContextUML: A UML-
based modeling language for model-driven development of
context-aware web services”, in 4th International Conference
on Mobile Business (ICMB’05), 2005.

[27] C. F. Sorensen, M. Wu, T. Sivaharan, G. S. Blair, P.
Okanda, A. Friday, and H. Duran-Limon, “Context-aware
Middleware for Applications in Mobile Ad Hoc
Environments”, in 2nd workshop on Middleware for
pervasive and ad-hoc computing, 2004.

[28] SpringSource, http://www.springsource.org/
[29] C. Taconet, and Z. Kazi-Aoul, “Building context-awareness

models for mobile applications”, Digital Information
Management, Vol. 8, No. 2, 2010, pp. 78-87.

[30] H. L. Truong, and S. Dustdar, “A survey on context-aware
web service systems”, Web Information Systems, Vol. 5, No.
1, 2009, pp. 5-31.

[31] H. L. Truong, and S. Dustdar, Enabling Context-Aware
Web Services: Methods, Architectures and Technologies,
London: Chapman and Hall/CRC, 2010.

[32] S. Vale, and S. Hammoudi, “Model Driven Development of
Context-aware Service Oriented Architecture”, in Int. Conf.
on Computational Science and Engineering - Workshops,
2008.

Hatim Hafiddi received the Engineer of state degree in Software
Engineering from National High School of Computer Science and
Systems Analysis (ENSIAS) in 2007. He also received his PhD in
Computer Science from the same School in 2012. His research
interests are Context-Aware Service-Oriented Computing, Aspect
Oriented Engineering, Mobile Information Systems Engineering,
and Model-Driven Engineering.

Hicham Baidouri received the Engineer of state degree in
Software Engineering from Mohammadia School of Engineers
(EMI) in 2007. He is currently a PhD student in the IMS (Models
and Systems Engineering) Team of SIME Laboratory at ENSIAS.
His research interests are Context-Aware Service-Oriented
Computing, Aspect Oriented Engineering, Mobile Information
Systems Engineering, and Model-Driven Engineering.

Mahmoud Nassar is Professor and Head of the Software
Engineering Department at National Higher School for Computer
Science and Systems Analysis (ENSIAS), Rabat, Morocco. He is
also Head of IMS (Models and Systems Engineering) Team of
SIME Laboratory. He received his PhD in Computer Science from
the INPT Institute of Toulouse, France. His research interests are
Context-Aware Service-Oriented Computing, Component based
Engineering, and Model-Driven Engineering. He leads numerous
R&D projects related to the application of these domains in
Embedded Systems, e-Health, and e-Tourism.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 5, No 2, September 2012
ISSN (Online): 1694-0814
www.IJCSI.org 103

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

Abdelaziz Kriouile is a full Professor in the Software engineering
Department and a member of SI2M Laboratory at National Higher
School for Computer Science and Systems Analysis (ENSIAS),
Rabat. He is also a Head of the SI3M Formation and Research
Unit. His research interests include integration of viewpoints in
Object-Oriented Analysis/Design, Service-Oriented Computing,
and speech recognition by Markov models. He has directed
several Ph.D thesis in the context of Franco-Moroccan
collaborations.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 5, No 2, September 2012
ISSN (Online): 1694-0814
www.IJCSI.org 104

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

