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Abstract 
In this paper, we investigate the notion of quantum secret sharing 

(QSS) schemes based on quantum operations. We present the 

information theoretical model for QSS schemes using reversible 

operations and erase operations at first. We show that in pure 

state schemes, the recoverability requirement and the secrecy 

requirement are equivalent, which is regarded as a variant of no-

cloning theorem.  By establishing a relation between the quantum 

information quantity--coherent information and QSS schemes, 

the upper bound of quantum information rate is given. Finally, 

we propose a pure state threshold scheme with the form of 

quantum operations. The operations formalism of quantum secret 

sharing generalizes the theorey of QSS, and provides a unifying 

framework for the study of these schemes.  

Keywords: Quantum Secret Sharing, Quantum Operation, 

Quantum Information  Theory, Information Security. 

1. Introduction 

A secret sharing scheme [1] is a cryptographic 

protocol to distribute shares of a secret s  among a set of 

participants 1={ ,..., }nP P , such that only authorized 

subsets of  are able to reconstruct the value of s . 

Subsets of   which cannot reconstruct the secret are 

called unauthorized sets. The connection of authorized sets, 

denoted by  ( 2  ), is called the access structure and 

the connection of unauthorized sets, denoted by 

( 2 \  ), is called the adversary structure. 

Quantum secret sharing scheme is a secret sharing 

protocol based on quantum physics, and the security with 

the objective law of quantum physics. QSS was first 

introduced by Hillery, Buźek, and Berthiaume
 
with three-

particle and four-particle GHZ states [2]. Subsequently, the 

connection between QSS schemes and quantum error-

correcting codes was made explicit in the work of Cleve et 

al. [3,4], and in greater depth by Rietjens et al. [5]. Since 

Imai et al. [6] defined the quantum information theoretical 

model of QSS schemes, a few of literature have succeeded 

in employing information theoretic tools, such as Holevo 

information [7], matroids [8,9], and entropic inequalities 

[10], for QSS schemes.  

In this paper, we revisit QSS schemes in an 

information theoretical manner. We treat the authorized 

and unauthorized condition of QSS schemes as the 

reversible and erased condition for the corresponding 

quantum operation. A fundamental relation between the 

reversibility and erasability of quantum operations, and the 

coherent information is established.  

This paper is organized as follows: in section 2, the 

definition of quantum operations formalism of QSS 

schemes is given, and show that recoverability requirement 

of pure state QSS schemes implies the secrecy one. In 

section 3, by using coherent information, we present a new 

proof that the lower bound dimension of each share in a 

QSS schemes. In section 5, we reformulate the (( , ))k n -

threshold QSS scheme [3] for quantum operations 

formalism.  

2. Operations formalism of QSS schemes 

2.1 Definitions 

Let  be finite dimensional Hilbert spaces, ( )  

and ( )  be the totalities of density operators and linear 

operators on , respectively. Suppose a dealer, Alice, 

wants to share a quantum secret S  with a set of players 

1={ ,..., }nP P  according to a given access structure  . The 

quantum secret S  is assumed to be an element of a q -

dimension Hilbert space S , where q  usually is a prime 

power. The encryption/encoding operation of a QSS 

scheme is described as 

1S( ) ( .. ): .
nP PO     

For any subset X  , let 
i iX P X P   be the Hilbert 

space that describes the shares of players in X . The map 

S( ) (: )X XO   is then denoted by \X XO Tr O , 

where \ XTr  is the partial trace of the complement \ X .  

Now the notion of the reversible operations and erase 

operations are defined. When we talk about reversing a 

quantum operation : ( ) ( )L L , we generally do not 

mean that  can be reversed for all ( )L , but rather 

only that for ( )M  , M L , there exist a 

deterministic quantum operation : ( ) ( )L L   such 

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 5, No 3, September 2012 
ISSN (Online): 1694-0814 
www.IJCSI.org 103

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.



 

 

that ( )  . We say that a quantum operation 

(: ( ) )L L  is erased if there exists a density 

operator 
0 ( )L    such that 

0( )   for all   whose 

support lies in a subspace M  of the total state space L .  

2.2 QSS schemes 

Definition 1: A QSS scheme realizing an access structure 

  is described by 
S( ) (: )O   such that: 

(1) Recoverability requirement: for all X  , we have 

that 
\X XO Tr O  is reversible; 

(2) Secrecy requirement: for all Y  2 \( )  , we 

have that \Y YO Tr O  is erased.  

Remark: (1) If any set X   is either a authorized set or 

a unauthorized set, i.e., 2 \ = , we call the scheme O  

as a perfect scheme. A QSS scheme O  is called a non-

perfect scheme if 2 \  , that is, there exists a set 

X    such that X   and X  . This paper 

focuses on perfect schemes only. (2) The access structure 

  of O  satisfies the monotonicity, which means that the 

access structure   is upward-closed under inclusion, that 

is,   
( and )X N X N      

The operation S( ) ( ) :N NO  is then reversible. 

The adversary structure  of O  satisfies the anti-

monotonicity, which means that the adversary structure  

is downward-closed under inclusion, that is,  

( and )X N N X      

The operation XO  is then erased.  

A quantum operation  is called a pure state 

operation if ( )  is a pure state for any pure state  . A 

QSS scheme O  is called a pure state scheme if operation 

S( ) (: )O   is a pure state operation. Otherwise, 

it is called a mixed state scheme. For pure state schemes, 

we have the following variant of no-cloning theorem. 

Theorem 2 [6]: In a pure state QSS scheme O , the 

recoverability requirement and the secrecy requirement are 

equivalent.  

Proof: Suppose the QSS scheme
 

S: ( ) ( )YX XYO     realize an access structure 

 . Let =X Y XYO Tr O , =Y X XYO Tr O , and X  . By the 

Stinespring dilatation theorem, pure state operation 

( )XYO   can be represented as †( )XYO U U  , where U  

is a unitary operator. Let { }i  be an orthonormal basis on 

Y . It follows from the fact that XO  is reversible, then 

, { }i j i  [12] 

† 2( )X XY X ijU I i j O I j i U c           (1) 

where 
ijc  is a Hemitian matrix of complex numbers. We 

perform the local measurement described by the POVM 

{ }mE  on the state ( )YO   such that S( )  ,  

†

†

( ( ) ) ( ( )( ))

( ( )( ) )

( ( ) )

Y m YX XY X m

XY X m

X m

m

Tr O E Tr O I E

Tr U O I E U

Tr U I E U

c

 





 

 

 



           (2) 

where the last equality follows from Eq.(1), and 
mc  is a 

constant depending on subscript m  of measurement 

operators { }mE . Therefore, there is no information about 

the input state   can be gained by performing arbitrary 

measurement on the state ( )YO  . This is also implies that 

in a pure state QSS scheme O  if XO  is reversible, then 

\ XYO   is erased, which is a variant of no-cloning theorem. 

Gottesman [4] showed that a mixed state QSS scheme 

can be described as a pure state scheme with one share 

discarded. Therefore, it actually suffices to only consider 

pure state schemes. In next section, we will establish a 

relation between the coherent information and pure state 

QSS schemes.  

3. Coherent information and QSS schemes 

Let ,A B  are two quantum system, and given a 

quantum operation ( )B  and a state ( )B . 

The coherent information is defined as  

( , ) ( ( )) (( ) )c AI S S I                      (3) 

where   is any purification of   into system AB , and 

( , ) (( ) )AS S I       is the entropy exchange of the 

operation   upon input of  . In fact, the entropy 

exchange ( , )S    may also be identified with the amount 

of entropy introduced by the operation   into an 

environment C , initially in a pure state   . The reason 

is because from the Stinespring dilatation theorem, every 

quantum operation ( )B  can be represented as 

†( ) ( ( ) )C BC BCTr U U                     (4) 

where BCU  is a unitary acting on B C . The state on 

A B C     after the interaction is a pure state  

†( )A BC A BCI U I U                 (5) 

Let ( )A BTr     be the state of environment C , and 

thus ( )= ( , )S S   . Particularly, if   is a pure state 

operation, there is no interaction between the principal 

system AB  and the environment C , i.e.,   is a unitary 
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operator. In this case, the entropy exchange ( , )S    equals 

zero.  

With respect to the state   , we have  

( )= ( ( ))AS S Tr   , ( ( )) ( ( ))C AS S Tr     , and  

( ) ( ( ))B AS S Tr    . Applying Araki-Lieb inequality 

[14], we get  

    0 ( ( )) ( ) ( )S S S                        (6) 

and in fact, ( ( )) ( ) ( , )cS S I      , so  

     0 ( , ) ( )cI S                                (7) 

In [15] it was shown that there exists a quantum operation 

̂  such that  

ˆ( )AI                               (8) 

if and only if the right-hand side of Eq. (7) holds, that is 

( , ) ( )cI S   . On the other hand, when the left-hand 

side of Eq. (7) holds, that is ( , )=0cI   , which means that 

the entropy exchange is greater than the output entropy [16, 

17]. Correspondingly, the noise introduced by the channel 

completely nullifies the input information. Thus, for any 

( )B , operation   with the same output. 

Theorem 3: Suppose a quantum secret sharing scheme O  

realize an access structure  , 

(1) X  , X   iff S( )  , ( , ) ( )c XI O S  . 

(2) Y  , =2 )( \Y    iff S( )  , 

( , ) 0c YI O  . 

Proof: From [15], the necessity and sufficiency of the 

condition (1) is obvious. From [16, 17], we have that 
YO  is 

erased with respect to S( )  and Y  when 

( , ) 0c YI O  . On the other hand, if Y  , then the 

quantum operation YO  is erased with respect to S( ) , 

that is, S( )  , 0( )YO   , here 0 ( )Y  . 

Therefore, there is no quantum information survives the 

transmission through the channel, i.e., ( , ) 0c YI O  , this 

completes the proof.  

The efficiency of quantum secret sharing schemes is 

quantified by its information rate, which is given by the 

following expression 
(S)

max ( )X

S
r

S X

 . Smaller the rate, 

the sizes of the shares are larger and overhead costs of 

storage and communication. As the shares are to be kept 

secret, the security of the protocol can be undermined by 

large shares. For these reasons, it is beneficial to design 

schemes with high information rate. In the following 

proposition, we give the upper bound of quantum 

information rate.  

Theorem 4: Suppose QSS scheme O  realize an access 

structure  . The dimension of share of any participant 

X   must be at least as large as the dimension of the 

secret, and quantum information rate 1r  .  

Proof: O  is supposed to be a pure sate scheme 

without loss of generality. For any participant X , suppose 

we can choose a unauthorized set ( =2 \ )Y    such 

that ( )Y X  . From theorem 3, it holds that 

( , ) 0c YI O   and ( , ) ( )c XYI O S   for any 
S( ) . 

Thus, we have  

( ) ( , ) ( , )

( ( )) ( , ) ( ( )) ( , )

( ( )) ( , ) ( , )

c XY c Y

XY XY Y Y

X XY Y

S I O I O

S O S O S O S O

S O S O S O

  

   

  

 

   

  

 

          (9) 

where the last inequality follows from the subadditivity of 

the von Neumann entropy. Let / ( )Z X Y , then it 

follows from theorem 2 that the set Z  is unauthorized, and 

( )X Z  . Similarly to Eq. (9), we have  

( ) ( ( )) ( , ) ( , )X XZ ZS S O S O S O               (10) 

Adding the Eq. (9) and Eq. (10) to obtain  

1
( ) ( ( )) ( ( , ) ( , )

2

( , ) ( , ))

X XY Y

XZ Z

S S O S O S O

S O S O

   

 

   

 

    (11) 

Let   is any purification of   into system RS . It 

follows from the definition of pure state schemes that the 

state ( )R XYZI O    is a pure state. Hence, we have 

( (( ) )) ( (( ) ))Y R XYZ XZ R XYZS Tr I O S Tr I O      , that is,  

( , ) ( , )XZ YS O S O                      (12) 

and ( (( ) )) ( (( ) ))Z R XYZ XY R XYZS Tr I O S Tr I O      , 

that is, 

( , ) ( , )XY ZS O S O                      (13) 

Substituting Eqs. (12) and (13) into Eq. (11) yields that  

( ) ( ( ))XS S O                      (14) 

which implies that  

(S)
1

max ( )X

S
r

S X

                       (15) 

4. Threshold QSS schemes 

In this section, we revisit the (( ,2 1))k k  -threshold 

QSS
 
scheme [3] in quantum operations form.  

Definition 5: A QSS scheme O  is called a (( , ))k n -

threshold scheme if the following conditions are fulfilled. 

(1) X  , XO  is erased iff X k . 
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(2) X  , XO  is reversible iff X k . 

We will construct a pure state QSS scheme O  which 

maps a quantum state on 
S
 into a entangled state on the 

composite system 
i iP P  . Pure state operation 

O  is represented by a unitary operator 

S) (( ):U  , that is, for any 
S( ) , 

†( )O U U  . Let { }
qss 
 be an orthonormal basis on 

S
, it suffices only consider the encoding operation U s  

of the basis s . The principle of our QSS scheme O  in 

detail as follows: Alice defines firstly a polynomial on  
1

1
( )

k i

c ii
p x c x 


  specified by an arbitrary set 

1( ,..., ) k

k qc c c  . Then, she provides publicly revealed 

constants 
1,..., n qx x   ( q n ), and performs the 

following operation on the secret basis states s : 

1

1

1
( ),..., ( )

k
q

c c n

c F

c s

U s p x p x
H 



                (16) 

where H  is a normalization constant. Finally, the output 

particles of n  registers are assigned to the participants set 

1={ ,..., }nP P .  

We now show that constructed as above QSS scheme 

O  is feasible. For convenience, let us introduce the 

following notations for any 
1

{ ,..., }
Xi iX P P  , 

1
1( ) = ( ),..., ( ) = ( ,..., ) ( )

ii X

k

c c P c P kp X p x p x c c V X  

(17) 

where  
1

1

1 1

-1 -1

1 1

( )=
i i X

i i X

P P
k

k k

P P

x x

V X

x x

 
 
 
 
 
 
 

. 

(1) Recoverability. In order to verify that any subset 

X   is authorized set for X k , it suffices to show 

that X k , because of the monotonicity of the access 

structure. Let 
1

{ ,..., }
ki iX P P ,  

1 1

1 1

\

,

,

( )

( ( ))

1
( ) ( ) ( ) ( )

1
= ( ,..., ) ( \ ) ( ,..., ) (

\

\ )

( )

\

( )

k
q

k
q

X

c c F c c c c

c c s

k k
c c F k

X

k

c c s

c c

O s s

Tr O s s

p p p X p
H

s c V X s c V X
H

p

X X X

X Xp

  
 



 





 









 

1

1
( ) ( )k

qc F c c
c s

Xp X p
H





                                          (18) 

where the fourth equality holds because when 

2 2( ,..., ) ( ,..., )k kc c c c  that \( ) ( )\c cp pX X  and 

( ) ( 0\ \ )c cp pX X  . Furthermore, we can see the 

normalizing constant 
1kH q  . There exists a operation 

such that 1ˆ ( )k

XO V X  (since ( )kV X  has full rank if 

1

,...,
i ik

P Px x  different from each other), then  

1

1
1

†

1 1

2 2\

1

ˆ ˆ( )

1
( ) ( ) ( ) ( )

1
,..., ,...,

k
q

k
q

X X X

k k
c F c c
c s

k kc c F

k

O O s s O

p X V X p X V X
H

s c c s c c
H

I
s s

q



 












 




       (19) 

Thus, we have recovered s  from O s  by the local 

operation on X . In addition, from theorem 3, we have 

1
( , )

1 1
( ( )) ( )

log log

=( 1) log

Xs

X s s

S s s O
q

S O s s S s s
q q

k q q

k q

 

 





          (20) 

(2) Security. In order to verify that any subset Y   is 

unauthorized set for <Y k , it suffices to show that 

1Y k  , because of the anti-monotonicity of the 

adversary structure. Since XYO  is a pure state scheme, we 

naturally have  

1 1
( , ) ( , )=( 1) logY Xs s

S s s O S s s O k q
q q

      (21) 

Let 
1 1

{ ,..., }
ki iY P P


  , then  

1 1

1 1

\

,

1 1
( ) ( ( ))

1
( ) ( )

( ) ( )

1
(

\

(

\

) )

k
q

k
q

Y s s

c c F c cs

Y

c c s

c c

c c kc F

Y Y

O s s Tr O s s
q q

p p
qH

p Y p Y

I
p Y p Y

H q


 
 











 

 

 



 

(22) 

where the third equality holds since, for any 
qs and 

1
{ ,..., }= \

ki iP P Y , there are q  distinct 1 2( , ,..., )kc c c  with 
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1=c s  such that ( )=
ij

c P jp x y  for all 1,...,j k . 

Consequently, it holds that  

1
( , )

1 1
( ( )) ( , )

0

c Ys

Y Ys s

I s s O
q

S O s s S s s O
q q

 





        (23) 

Therefore it follows from theorem 3 that 
YO  is erased.  

5. Conclusion  

In this paper, we treated the authorized sets and 

unauthorized sets of QSS schemes as the reversible 

operations and erase operations respectively. By 

establishing a fundamental relation between the 

reversibility and erasability of quantum operations and the 

quantum coherent information, we revisited the lower 

bound on the dimension of each share in QSS schemes and 

gave a rigorous proof by using coherent information. We 

have also revisited (( ,2 1))k k  -threshold
 
scheme in [3] by 

using quantum operation. This model of QSS schemes in 

the form of quantum operation provides new insights into 

the theory of quantum secret sharing.  
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