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Abstract—This study propose and demonstrates a novel tech-
nique incorporating multilayer perceptron (MLP) neural net-
works for feature extraction with Photometric stereo based image
capture techniques for the analysis of complex and irregular 2D
profiles and 3D surfaces. In order to develop the method and
to ensure that it is capable of modelling non-axisymmetric and
complex 2D/3D profiles, the network was initially trained and
tested on 2D profiles, and subsequently using objects consisting
of between 1 and 4 hemispherical 3D forms. To test the capability
of the proposed model, random noise was added to 2D profiles.
3D objects were coated with various degrees of coarsenesses
(ranging from low-high). The gradient of each surface normal
was quantified in terms of the slant and tilt angles of the vector
about the x and y axis respectively. The slant and tilt angles were
obtained from the bump maps and these data were subsequently
employed for training of a NN that had x and y as inputs and
slant and tilt angles as outputs. The network employed had
the following architecture: MLP and a Levenberg-Marquardt
algorithm (LMA) for training the network for 12,000 epochs.
At each point on the surface the network was consulted to
predict slant and tilt and the actual slant and tilt was subtracted,
giving a measure of surface irregularity. The network was able to
model the underlying asymmetrical geometry with an accuracy
regression analysis R-value of 0.93 for a single 3D hemispheres
and 0.90 for four adjacent 3D non-axisymmetric hemispheres.

Index Terms—3D imaging, Neural networks, Bump map

I. INTRODUCTION

Employing machine vision techniques for surface analysis
offers advantages such as a contact-less requirement and fast
operation. These advantages make machine vision a potentially
useful technique in fields ranging from industry [1], [2], [3] to
medicine [4]. In the case of industrial surface inspection, the
high speed capability of machine vision makes it particularly
attractive and it has therefore been the subject of a considerable
amount of research [5], [6]. These applications generally
require a high resolution of surface topography, the provision
of which provides a significant challenge for machine vision.
Regarding medical applications, a good deal of machine vision
research is in fact currently under-way [7], [8],[9]. An example
medical application that has received considerable attention is
that of automatic computer aided diagnostic (CAD) systems
for skin cancer examination. There are strong motivators for
employing machine vision techniques in this area, since skin
cancer is becoming an increasingly common disease [10] as
image capture and 2D/3D analysis of a lesion is a quick, risk-
free and non-invasive procedure.

Automated and accurate detection of skin cancer offers
potential to assist with an early identification and diagnosis of

suspicious lesions, which is critical for effective treatment of
malignant melanoma. A research on 2D lesion characteristics
[11] has been beneficial for classifying melanoma and benign
lesions; however, only limited research has been performed on
3D lesion characteristics, perhaps due to the limited capabili-
ties for acquiring 3D skin textural data.

To address this issue, [8] proposed a PS technique to
investigate the surface normal for generating indicators of
possible MM in human skin as shown in Figure 1(a). In
Ding’s method, a 2D isotropic distribution, which is uniformly
distributed with respect to the distribution centre of the lesion,
was chosen as the function for generating a skin slant/tilt
pattern model. A series of simulated 2D Gaussian profiles were
employed to model the lesion surface in order to minimise the
error between the recovered bump map of the lesion and the
synthetic model as shown in Figure 1(b).

However, these multiple surfaces are computationally an ex-
pensive solution for analysing the lesion morphology. Another
limitation of their work was that the 3D surface generated from
a 2D Gaussian was limited to regular (axis-symmetric) shapes;
whereas cancerous lesions often exhibit irregular morphologies
and 3D textures. Therefore, Ding’s model potentially presents
some limitations in the analysis of 3D irregular (complex)
lesions.

These limitations are overcome in the present study by
making use of the non-prescriptive (i.e. data-driven rather than
assuming any particular function) and non-linear modelling
capabilities of neural networks to model the gradients of the
bump maps of axisymmetric and non-axisymmetric (irregular)
3D forms. In general and particularly for preliminary study,
it is desirable to model relatively less complicated surfaces.
The experiments have initially involved analysis of 2D profiles
(Gaussian and sine wave with added random noise). The
next step was modelling a single 3D form, specifically an
axisymmetric hemispherical ball covered with various level
of coarseness added to the surface. Moving toward more
complicated 3D shapes in the subsequent experiments, objects
were employed which incorporated additional hemispheres
(also covered with grits to provide degree of coarseness).
The aim here was to observe how well the proposed method
could model more complex and non-axisymmetric underlying
geometry (analogous to lesion morphology) in the presence of
noise. The data was randomly selected and were split into two
datasets (i.e. training and test) ranging from 60% to 70% for
training the network.The Levenberg-Marquardt algorithm was
selected for training the MLP network (for 12,000 epochs) due
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(a)

(b)

Fig. 1. (a) 2D Gaussian, uniformly distributed with respect to the distribution
centre of the lesion as the function for generating a skin tilt pattern model [8]
and (b) Aeries of simulated 2D Gaussian profiles to model lesion surface in
order to minimise the error in between the bump map of the lesion and the
synthetic model [4].

to its efficient learning capability [12].

II. MATERIALS AND METHODS

A. The theory of PS

The critical influence of light direction on the nature of ac-
quired images has led to the investigation of the PS technique
[13]. This was later explored in the generation of 3D data
which can subsequently be analysed in much depth [14],[15].
PS presents a great advance to the conventional photographs,
which are very susceptible to imaging noise. The theory of
PS is to employ a surface reflectance model to recover the
surface physical properties (i.e. orientations and reflection).
At least three images, each captured from a fixed point under
different illumination, are required for dimensional orientation.
The direction of the light, which is a single moveable source,
is defined by two angles (i.e. slant & tilt). Slant is the angle
between the illumination vector and the z-axis and tilt is the
angle between x-axis and the projection of the illumination
vector onto the x − y plane. A standard PS geometry with
its slant and tilt angles is shown in Figure 2. Mathematical
descriptions of tilt and slant angles are presented in the
following section.

In the PS method an assumption is made that the object’s
surface is Lambertian [16]. Lambertian is a surface with
perfectly matter properties, which means that these surfaces
reflect light with equal intensity in all directions, and hence

Fig. 2. A surface normal vector (nx, ny and nz) with its tilt τ direction
and slant δ direction.

Fig. 3. Lambertian reflection.

appear equally bright from all directions. For a given surface
the brightness depends only on the angle θ between the
direction of the light-source L and the surface normal N as
shown in Figure 3.

If an approximately flat texture plane coincides with x− y
plane, the surface S can be described as a height function as
follows:

z = S(x, y). (1)

The surface gradients in x and y directions for a facet on

such a surface are therefore as p =
∂z
∂x

and q =
∂z
∂y

. Where -1

< p, q < 1. Two tangents perpendicular to this facet can then
be written in vector form as [1, 0, p] and [0, 1, q]. The vector
normal to the facet, N , is found by taking the cross-product
of these tangents. N = [p, q,−1]. Once optimised it becomes:

N =
1√

p2 + q2 + 1
[p, q,−1]. (2)

If the facet is illuminated by a light-source, the unit illumi-
nation vector L, which points away from the surface is written:

L = lx, ly, lz. (3)

Defined in terms of a polar co-ordinate system this becomes:

L = (cosτsinδ, sinτsinδ, cosδ). (4)

Where τ is tilt angle and δ is the slant angle. For an
ideal Lambertian surface, image irradiance equation can be
expressed as:
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i = ρ.
−pcosδsinτ − qsinδsinτ + cosτ√

p2 + q2 + 1
. (5)

Where ρ is the surface reflection rate (albedo). The height
z can be reconstructed through the combination of p and q.
However, the process has some reconstruction errors. There-
fore, to avoid this present study will involve analyses of the
gradient of the surface normal (i.e. slant and tilt) directly.

i = ρ.(cosδsinτ, sinδsinτ, cosτ).
(−p,−q, 1)T√
p2 + q2 + 1

. (6)

Where T denotes the transpose. According to Horn [17].

~N = (nx, ny, nz) =
(−p,−q, 1)√
p2 + q2 + 1

. (7)

Where ~N is the surface normal vector, nx, ny and nz are
its x, y and z − axis components, respectively. Hence the
surface gradient vectors can also be expressed as p = −nx

nz

and q = −ny

nz
. After rearranging, it become:

i = ρ.(cosδsinτ, sinδsinτ, cosτ).(nx, ny, nz)
T . (8)

Since a unit surface normal has the modulus of 1, only
three variables are unknown including the albedo and any two
from nx, ny and nz . Therefore, at least three images, with
each image taken under a differently positioned illuminant,
are required to solve the irradiance equation. In this way, a
surface containing both 2D and 3D features is separated by
photometric stereo into 2D and 3D surface texture, with the
former being a 2D albedo map, and the latter being a surface
normal map. The 3D information in the form of a dense array
of vectors may potentially offer significant advantages over
the 2D intensity or scalar images for a wide range of surface
inspection tasks. This includes ceramics analysis for defects
[18] and new application in forensic sciences and medicine
[19].

B. Four-light image capture for 3D test objects

The hypothesis of the PS image capture model is based
on four-light PS, which uses a Lambertian diffuse model
to describe the surface reflectance properties, with image
capture with each under a different positioned illumination.
Detailed description and a mathematical foundation of four-
lights PS was already introduced. The schematic diagram of
four-light PS setup employed in this present study is shown in
Figure 4. This (four-light) PS setup was employed to record
2D/3D information of the test objects (i.e. single and multiple
3D hemispheres). The facility was mounted on an optical
bench with customised hardware for controlling the directional
lighting. The facility included a 8 bit AVT PIKE F100C, colour
camera with a resolution of 1 Mega Pixel and images were
captured at 20 frames/sec.

Fig. 4. Schematic diagram of the four-light PS experimental setup employed
for image capture.

III. PROPOSED NEURAL NETWORK ARCHITECTURE

The human brain is a highly complex non-linear and mas-
sively parallel computing system where structures consist of
approximately 10 billion basic units called ’the neurons’ and
trillions of interconnections. Inspired by the human brain,
neural networks emulate the brain’s biological network and
their use has been widely established in many applications
[20], [21], [22] [23]. NNs have the ability to model non-linear
data and subsequently offer a desired output. There are many
types of neural network reported in the literature [24], [25],
[26]. Multilayer perceptron is a feedforward network [12],
where all the connections are from the input to the output.
By employing a sufficient number of hidden units (neurons)
the network could model any decision boundary with arbitrary
accuracy and this concept has been employed herein modelling
the bump map of 3D surfaces. The architectural design follows
three steps: (i) creating a network, (ii) learning and training
algorithms (iii) and testing the network on a dataset. The
choice of MLP architecture in implementation is described
in the following subsections.

A. MLP network design

The MLP NN design was developed to accomplish the
objective of 3D shape modelling in terms of the gradients
of the bump map. The MLP has some important properties
which are useful in recognising patterns in the presence of
noise [27],[28]. Non-linear modelling capability was a factor
of particular interest whilst choosing NN architecture for the
present task. When the training set contains a considerable
noise or inconsistent samples, during the learning phase the
network extracts the underlying model of the set. Due to the
highly non-linear nature of the surfaces, the neurons have
sigmoid transfer functions. By carefully controlling the NN
learning parameters, the network can be made to generalise
(i.e. to model the underlying pattern rather than the actual
noise) and this can be tested by consulting the NN using a
test dataset (samples that are not included in the training set).
This is particularly important in practice, particularly when
considerable noise is present in the data. The establishment of
a network involves choosing the number of hidden layers and
the hidden layer neurons. The design employed here, consists
of hidden layer neurons ranging from 10 to 28 depending
upon the surfaces. The best overall accuracy was achieved
by employing 24 neurons for multiple hemispheres. Network
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(a) (b) (c) (d)

Fig. 5. Test subject (a) 2D Gaussian, (b) network modelled 2D profile, (c) 2D profile with random noise, and (d) network modelled 2D profile.

design was the initial step prior to training and testing for
accuracy.

B. Network training

Once the network was created, the next step was training it
on a dataset. The data was split into two sets (i.e. training and
test) ranging from 60% to 80% depending upon the complexity
of the surfaces. The bump map consisted of 1,000 x 1,000
vectors and was divided into regions of 20 x 20 vectors giving
2,500 regions. In the case of modelling a single hemisphere,
60% data allocation for training (1,500 regions) was randomly
selected to train the network. For two, three and four adjacent
hemispheres 70% of the data, (i.e. 1,750 regions of 20 x 20
points) were chosen for training the network. The training
dataset was randomly selected from the whole dataset. Inputs
to the network were the data columns corresponding to the
position of the pixels and the output represents the predicted
value of the gradients of the surface normal vector i.e. tile
and slant angle. In the literature, various training algorithms
are reported, such as error-back propagation and Levenberg-
Marquardt training algorithms. The learning capability of the
LMA is reported to be superior [21] and has rapid convergence
advantages [29]. Therefore the LMA training algorithm was
incorporated to train the network for 12,000 epochs. The
stopping principle determines the number of epochs before
training of the network is required to be stopped. This usually
depends on the sum of the squared errors which are the squared
differences between the actual output and the desired output.
Training a network involves minimising an error measured
across a training dataset which is a function of the weight
setting in the MLP. Training is usually carried out until a
certain number of epochs (i.e. 12,000 in this case) or the
errors decrease to a minimum value where the training could
be stopped.

C. Network testing

After the network had been trained on the training dataset,
the subsequent step was to test the capability of the network
to generate useful outputs. Test data were fed to the network
to observe the final output, in order to confirm the actual
values. This was achieved by employing the total data minus
the training data for testing. For the reported work the designed
network employed 5-7 neurons for 2D profile modelling and
24 neurons to model 3D multiple hemispheres.

IV. EXPERIMENTAL PROCEDURE

For a preliminary investigation, a 2D Gaussian as shown
Figure 5(a) was a selected for modelling. The proposed
network employed 5 neurons to model the profile. The network
was trained for 1,200 epochs. For training, 60% data input data
were fed to the network. The outputs were plotted to examine
how well the network model the 2D Gaussian; the performance
is shown in Figure 5(b).

The following step was to include some degree of random
noise to modify the underling geometry and to test network
modelling capability. The added noise altered the profile as
observed in Figure 5(c) The architecture of the network was 7
single layer hidden neurons and 60% data for training the net-
work the remaining 40% was kept for testing. The network was
trained for 1,400 epochs. The modelled surface is illustrated in
Figure 5(d). Once the network had modelled a curve and 2D

Fig. 6. Test subject (a) sine wave (b) sine wave with added noise, and (c)
NN modelled sine wave.

Gaussian, the following step was to model a rather complicated
profile i.e. sinusoidal wave. The architectural design consisted
of 8 hidden layer neurons and 60 % of the whole data for
training. Test data was hidden and was not included in the
training stage. The network was trained for 1,550 epochs
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and the network response was evaluated at 500 epochs, in
reviewing how well the network modelled the profile, it was
found that the training progressed well. With the increase in
epochs from 900 to 1200 the network closely followed the sine
wave trajectory, i.e. the desired output. Increasing the number
of epochs to 1,550, allowed a reasonably precise target data
modelling. Test subject of sine wave with added noise and
network modelled trajectory is shown in Figure 6.

These preliminary results showed that the proposed method
could successfully model a 2D profile with noise present. The
next step was to employ the proposed method on 3D objects
i.e. single axisymmetric hemispheres covered with various
level of coarseness ranging from low to medium to as shown
in Figure 7.

(a) (b)

(c) (d)

Fig. 7. PS acquired test objects (a) single hemisphere without coarseness,
with (b) low level coarseness (c) medium level coarseness, and (d) high level
coarseness.

In the following steps, to establish the capability of the
proposed model in modelling the non-axisymmetric surfaces,
two, three and four adjacent hemisphere were added to the
experiments as shown in Figure 8.

The next step was to differentiate between the object and
the background (i.e. segmentation). There is a significant
difference in terms of gradient; therefore the segmentation
process was relatively simple. A threshold value of 5o for
slant and tilt angles was employed to separate the object. The
segmented bump map are depicted in Figure 9.

Since four-light sources were employed, four images were
captured under different lighting conditions for each of the
3D hemisphere combinations. The data acquisition involved
processing four PS images to generate 3D data. Actual surface
reconstruction was not the aim here. However, to observe
how well the data acquisition performed, a frankot-chellapa
reconstruction algorithm [30] was employed for 3D surface
reconstruction as shown in Figure 10.

(a) (b)

(c) (d)

Fig. 8. PS acquired test images (a) single hemisphere (b) two adjacent (c)
three adjacent and (d) four adjacent hemisphere; all covered with grit to attain
coarseness.

(a) (b)

(c) (d)

Fig. 9. Segmented bump map for four set of 3D hemispheres.

Regarding the NN modelling, numerous training methods
have been reported. For example, the error-back propagation
(EBP) algorithm is a popular learning algorithm [12]. How-
ever, it is relatively slow and requires 100-1,000 times more
iterations compared to the Levenberg-Marquardt Algorithm
(LMA) [21] compared to the LMA. Consequently, LMA was
employed for training the dataset. A detailed description of the
algorithm can be found in a previous report [31]. As previously
mentioned, the PS acquired images were processed, slant and
tilt angles were calculated and these data were utilised for
training of a network that had x and y coordinates as inputs
and slant and tilt angles as outputs. Once trained, the network

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 5, No 3, September 2012 
ISSN (Online): 1694-0814 
www.IJCSI.org 117

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.



(a) (b)

(c) (d)

Fig. 10. Test image 3D reconstruction of single, two, three and four adjacent
hemispheres.

was consulted to predict slant and tilt for a given x and y
position. At each point on the 3D surface, the network was
consulted to predict slant and tilt and the actual slant and
tilt was subtracted, giving a measure of surface irregularity.
The average irregularities were calculated for the entire set of
images.

V. RESULTS

The experiments consisting of a single hemisphere covered
with various levels of coarseness, as shown in Figure 7,
were chosen for preliminary examination. Depending upon
the training algorithm selected and the processor employed,
training took a considerable amount of time; however, once
the network had been trained it could be rapidly consulted.
Training involved the network weights being modified iter-
atively to minimise the error between the predicted output
gradients and actual gradients. As the training progressed, the
error decreased and this as depicted in Figure 11 and this
indicated that the training is progressing well.

Fig. 11. NN output error versus epochs. The negative slope indicates that
with the increase of epochs the error decreases.

A range of neurons (number varies in between 10 to 28)
for a dedicated number of epochs i.e. 12,000, were employed
to accomplish the task. For the reported work, the best overall
accuracy was achieved via commissioning 24-28 neurons. The

TABLE I
NN PREDICTED SLANT & TILT ANGLES FOR THREE POSITIONS ON x− y

AXIS; VALUES ASSOCIATED WITH FIGURE 13

Position of gradient
on x− y axis

Actual slant and
tilt angles

NN predicted slant
and tilt angles

(761, 350) 27o& 76o 21o& 85o
(761, 351) 56o& 37o 61o& 29o
(762, 350) 42o& 53o 37o& 57o

best overall accuracy was achieved on employing 24 neurons
which is evident in Figure 12.

Fig. 12. Accuracy with the increasing number of neurons.

Once the NN was trained, it was essential to verify that it
generalised well. This was achieved by feeding the test data
which was hidden from the network during training, into the
input layers. To observe the response of the proposed network,
three random points on the x − y plane were selected for
gradient matching. The position of these three points were
(761, 350), (761, 351) and (762, 350), as shown in Figure 13.
The two set of gradients, i.e. actual and NN predicted gradients
(slant & tilt angles) were matched. Table I illustrates actual
and NN predicted gradients for the positions (761, 350), (761,
351) and (762, 350).

In the case of a single 3D hemisphere covered with various
levels of coarseness, the network promisingly predicted the
gradient of the bump map with overall average deviation (the
difference between NN predicted value and actual values)
between 3.84o to 5.23o (for slant angle) and 4.13o to 7.16o (for
tilt angle), respectively. Table II illustrates gradients average
deviation calculated for test objects. In the case of a single
hemisphere, the slight increase in deviation of approximately
2o for slant and 3o for tilt angle (from low to high coarseness)
is due to the extra level of coarseness added into the surface
of the test objects.

The regression analysis was conducted and the MATLAB
function POSTREG was used to calculate regression R-value=
0.93, as shown in Figure 14(a) is for Figure 7(d), and
confirmed that the network has successfully modelled the
underlying symmetry.

These results demonstrated the usefulness of employing a
MLP in modelling axisymmetric single hemispheres. The next
step was to then model multiple non-axisymmetric surfaces
(i.e. two, three and four adjacent hemispheres) which are
relatively complex surfaces, as shown in Figure 8b-d. The
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Fig. 13. Actual bump map and NN modelling of the surface in terms of the bump map for positions (761, 350), (761, 351) and (762, 350).

TABLE II
NN PREDICTED SLANT & TILT ANGLES AVERAGE ERROR FOR SINGLE 3D
HEMISPHERE COVERED WITH GRIT FOR VARIOUS LEVEL OF COARSENESS.

Single hemisphere NN predicted slant an-
gles average deviation

NN predicted tilt an-
gles average deviation

Without coarseness 3.84o 4.13o
Low level coarseness 4.21o 5.75o
Medium level coarseness 4.93o 6.34o
High level coarseness 5.23o 7.16o

objective here was to validate the capability of the network
in modelling non-asymmetrical 3D forms, in the presence
of noise. This noise was introduced by adding coarseness to
the surface of two, three and four adjacent hemispheres. The
coarsenesses altered the surface of the objects as observed
in Figure 8(d). The proposed method satisfactorily modelled
the gradient of the surface normal vector of two adjacent
hemispheres with an average deviation of approximately 6.69
o for slant angle and 8.51 o for tilt angle as shown in Table
III.

The following step was to model three adjacent non-
axisymmetric hemispheres. The network again successfully
predicted the desired gradient of the surface normal vec-
tor. Finally, a very complex image, i.e. four adjacent non-
axisymmetric hemispheres as shown in Figure 8(d), was
selected for modelling. The complexity in the shape of the
test image was increased; however, the training data was
maintained i.e. 70% for training and the remaining 30% for
testing. The regression value of R= 0.903 for four hemispheres
is shown in Figure 14(b), and confirms its validation. The drop
in the regression value was attributed to the surface complexity
(in the case of four hemispheres). The network predicted the
gradients for four adjacent non-axisymmetric surfaces with
average deviation of 9.76o for slant angle and 12.07o for tilt
angle. The overall average MLP predicted deviation in slant
and tilt angles for the hemispheres consisting of 1, 2, 3 and
4 hemispheres are illustrated in Table III. The slight increase
in deviation, for both in slant and tilt angles are due to the
asymmetrical complexity in shape for multiple hemispheres.

A synthetically 3D hemisphere and its various combinations
as shown in Figure 15 could also be modelled by solving
equations. However, mathematically, modelling of more com-
plex, irregular and non-axisymmetric 3D surface is extremely
challenging. The benefits of the proposed NN based PS
approach is that it could model various complex and irregular
surfaces such as for instance, a skin lesion as shown in Figure
16 which cannot be simply modelled with equations.

The proposed non-invasive scheme based on a neural net-
work and machine vision techniques explored the analysis of
surface normal data (tilt and slant angle). It also demonstrated
new valuable and potentially complementary 3D indicators in
the form of the degree of the 3D surface disruption, which
could be employed for skin texture examination. There have
been increasing demands for a non-invasive computer vision
system which offer benefits such as detailed descriptions of
skin. Such a system would be combination is a combination of
multi-disciplinary engineering, for instance, computer vision,
machine learning, neural networks and texture (skin texture).
These systems would be capable of converting qualitative
interpretations of the physical and textural characteristics into
quantitative results. Subsequently the results could either be
translated into a specific suggestion for diagnostic procedures,
or to draw judgment over the malignancy of a particular
lesion. Currently a diagnosis is often heavily dependent on the
clinician experience. Due to the wide range of the diseases,
a clear distinction between a melanoma and a benign lesion
is very challenging [32]. An alternative solution is that lesion

TABLE III
NN PREDICTED SLANT & TILT ANGLE AVERAGE ERROR FOR
NON-AXISYMMETRIC OBJECTS CONSISTING OF 1, 2, 3 AND 4

HEMISPHERES, RESPECTIVELY.

Multiple 3D hemisphere NN predicted slant
angle (average error)

NN predicted tilt an-
gle (average error)

Single hemisphere 5.23o 7.16o
Two adjacent hemisphere 6.69o 8.51o
Three adjacent hemisphere 8.20o 10.11o
Four adjacent hemisphere 9.76o 12.07o
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(a)

(b)

Fig. 14. (a) Slant angle linear regression for single hemisphere with
high value of coarseness, (b) Slant angle linear regression for four adjacent
hemispheres (high coarseness).

images may be collected (in clinics) at regular intervals and
a non-invasive method such as the proposed machine vision
based technique could be employed to assist with the early
identification of this deadly disease. Therefore, employing a
machine vision detection method mainly at primary healthcare
could not only help to reduce the number of expensive
unnecessary specialists referrals (currently occurring in the
NHS), but could assist with more accurate approaches for the
identification of melanoma.

VI. CONCLUSION

This article has proposed and demonstrated a novel pho-
tometric stereo and MLP neural network based approach for

(a) (b)

(c) (d)

Fig. 15. A computer generated 3D hemispheres.

(a) (b) (c)

Fig. 16. (a) Regular and symmetrical benign lesion, (b) less regular
and symmetrical melanoma lesion, (c) an irregular and non-axisymmetric
(complex) melanoma.

feature extraction which could subsequently be employed to
measure surface irregularities on skin. The PS technique was
employed to record 2D/3D data, and the neural network to pre-
dict the gradients of the surface normal vectors. The network
has initially predicted the gradient for single hemisphere cov-
ered with various degree of coarseness, subsequently multiple
hemispheres were incorporated to test the performance. Once
the proposed network has established its significance the next
step of the research is to employ the proposed method on real
images and measure skin surface irregularities for objective
assessment in the identification of melanoma. Therefore, the
following study will discuss the incorporation of medical
images analysis.
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