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Abstract 
Continuous glucose monitoring (CGM) sensors able to monitor 

blood glucose concentration continuously (i.e. with a reading 
every 1-5 min) for several days (up to 7 consecutive days), 
entered clinical research. The availability of continuous glucose 
monitoring (CGM) sensors allows development of new 
strategies for the treatment of diabetes. CGM sensors are of two 
types, non invasive (NI-CGM) and minimally invasive (MI-
CGM). Irrespective of the type, CGM sensors can become 
smart by providing them with algorithms able to generate 
alerts, say, 20–30 min ahead of time, when glucose 

concentration is predicted to exceed the normal range 
thresholds (70-180 mg/dL). Such alerts would allow diabetes 
patients to take precautionary measures to prevent 
hypo/hyperglycemia. In this paper we review blood glucose 
prediction algorithms such as first-order autoregressive    
(AR(1)), Kalman filtering and feed forward neural network. All 
these algorithms have demonstrated that blood glucose can be 
predicted ahead in time.  

Keywords— Continuous glucose monitoring, Auto regressive,  
Kalman filtering, Feed forward neural network. 

 

1. Introduction 

 
Diabetes is a disease that affects 285 million people in 

the world and this number is expected to increase to 439 

million in 2030, thus making diabetes an ―epidemic‖ 
disease [1]. In healthy people, glucose levels in the blood 

are controlled by insulin using a negative feedback. In 

people with diabetes, the body does not secrete insulin 

(type 1 diabetes) or imbalances in both insulin secretion 

and action (type 2 diabetes) occur. Therapy is mainly 

based on insulin administration and diet, which are tuned 

by self-monitoring of blood glucose (SMBG) levels 3-4 

times a day. Nevertheless, blood glucose concentration 

of the patients is often outside of the normal range of 70-

180 mg/dL. While hyperglycemia(high blood sugar) 

mostly affects long-term complications (such as 

neuropathy, retinopathy, cardiovascular, and heart 
diseases), hypoglycemia( low blood sugar)  can be very 

dangerous in the short-term and, in the worst-case 

scenario, may bring the patient into hypoglycemic coma. 

 

New scenarios in diabetes treatment were opened in the 

last ten years, when continuous glucose monitoring 

(CGM) sensors, able to monitor glucose concentration 

continuously (i.e. with a reading every 1-5 min) for 

several days (up to7 consecutive days), entered clinical 

research. It has been suggested that the retrospective 

assessment of glucose profiles measured through CGM 

sensors (either MI-CGM or NI-CGM) might help in the 

optimization of metabolic control [2] in people with 

diabetes. 

 

On-line applications are potentially more appealing and 

with a greater impact in the patient daily life. Ideally 

these would include the ―smart CGM sensor‖, i.e. a 

system able to generate alerts when glucose 

concentrations exceed the normal range thresholds [3], 
combined with ―the artificial pancreas‖, i.e. a device 

conceived for Type 1 people with diabetes aimed at 

maintaining glucose concentration within safe ranges by 

infusing subcutaneously insulin via a pump under the 

control of a closed-loop algorithm [4]. However, it 

would be much more preferable to prevent 

hypo/hyperglycemic events before they occur, e.g., by 

generating an alert, say, 20–30 min ahead of time. This 

gain in time would allow e.g., to prevent hypoglycemia, 

since it is comparable, if not greater, than the interval 

required for an ingested sugar to reach the blood. Some 
methods have been proposed which generate alerts when 

the current trend of the glucose concentration profile 

suggests that hypoglycemia is likely to occur within a 

short time. 

 

The possibility of making a short term prediction of 

glucose concentration exploiting its past history was 

originally suggested in Bremer and Gough [5], on the 

basis of preliminary results obtained from modeling 

blood glucose concentration data (not CGM), measured 

every 10 min in blood for up to 40 hr, and using a 

prediction horizon (PH) of 10 min. Since then, several 
approaches have been proposed using CGM sensor data 

and a larger, and more clinically significant, PH.  

 

Sparacino et al. [6],[7] demonstrated that simple 

prediction algorithms based on low-order models, e.g., 

either a first-order polynomial or an auto-regressive of 

order 1 (AR(1)) model, with time-varying parameters, 

identified by recursive least squares (RLS) with a 

constant forgetting factor, can predict glycemia ahead in 

time with sufficient accuracy, with a PH of 30 and 45 

min. Eren-Oruklu et al. [8] developed prediction 
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algorithms based on AR(3) and on auto-regressive with 

moving average (ARMA(3,1)) models, with time-

varying parameters identified by RLS, using a forgetting 

factor μ which could be modulated according to the 

glucose trend. Reifman et al. [9] proposed a predictor 

based on an AR(10) model, with time-invariant and 
subject-invariant parameters identified by regularized 

LS. Similarly, Gani et al. [10] developed a prediction 

strategy based on an AR(30) model with time-invariant 

parameters identified by regularized LS on  prefiltered 

data. Finan et al. [11] proposed a predictor based on an 

ARX(3) model with exogenous inputs given by ingested 

carbohydrates and insulin medications. 

  

Palerm et al. [12],[13], after having posed the problem in 

a state-space setting, used the Kalman filtering 

methodology to predict glucose level after a given PH, 

using a double integrated random walk as a prior for 
glucose dynamics. 

 

Pappada et al. [14],[15] have proposed an NN approach 

to predict glycemia with a PH of 75min. The network is 

a feed forward one, with nine hidden neurons with a 

tangent sigmoid activation function, and one output, with 

a linear transfer function. The inputs include SMBG 

readings, CGM data and its trend, information on insulin 

dosages, nutritional intake, hypo- and hyperglycemic 

symptoms, lifestyle, activities, and emotional factors. 

The output of the NN is the vector of all the future 
glucose values till the chosen PH (e.g., 15 future BG 

values, for PH = 75 min and sensor sampling time of 5 

min).  
 
In the next section we briefly review blood glucose 

prediction algorithms such as first-order autoregressive 

(AR(1)), Kalman filtering, feed forward neural network 
proposed by Sparacino et al., Palerm et al., Pappada et 

al, respectively. All these algorithms have demonstrated 

that blood glucose can be predicted ahead in time. 

 

2. Prediction Algorithms 

 
2.1 Auto regressive  
 

The glucose time series is described locally by an auto-

regressive model of first-order (AR(1)), corresponding to 

the following time-domain difference equation: 

 

𝑦𝑖 =  𝑎 𝑦𝑖−1 +  𝑤𝑖                                  (1) 

 
In equation (1), i = 1, 2, …n denotes the order of glucose 

samples collected till the nth sampling time tn and {wi} is 

a random white noise process with zero mean and 

variance equal to σ2.  

The prediction strategy is as follows. Let θ denote the 

vector of the parameters of the model employed to 

describe the glucose time-series, i.e., θ = ( a, σ2 ). At 

each sampling time tn, a new value of θ is first 

determined by fitting the model against past glucose data 

yn, yn-1, yn-2,…. by weighted linear least squares. Once θ 
is determined, the model is used to calculate the 

prediction of glucose level T steps ahead, i.e., 𝜃 𝑛+𝑇. For 
a sampling interval of 3 min, a value of T equal to 10 or 

15 corresponds to a PH equal to 30 or 45, respectively. 

The value 𝜃 𝑛+𝑇  is calculated iteratively for i = n+1, n+2, 
….. , n+T with wi ≡ 0. 

 

In determining the model parameters θ at a given time, 

all the past data yn, yn-1, yn-2,….,y1  participate,  with 

different relative weights. A typical choice is to employ 

exponential weighting, i.e., μk is the weight of the sample 

taken k instants before the actual sampling time i.e., μk is 

the weight of the sample taken at time tn-k                       

(k = 0,1,…,n-1). With μ, taken in the range (0,1), acts as 

a forgetting factor [16]. If a forgetting factor is not used 

(which is equivalent to letting μ= 1), glucose samples 
collected tens of hours, if not days, before the actual 

sampling time would influence prediction, with a 

possible deterioration of the algorithm capability to 

promptly track changes in the signal, in particular those 

due to perturbations, e.g., meals. From an algorithmic 

point of view, recursive least squares (RLS) 

implementations are possible in order to estimate the 

unknown model parameters θ in a computationally 

efficient manner. 

 

2.2 Kalman filtering 
 

Predictions are made using an estimate of the rate of 

change of the blood glucose, using a Kalman filter (an 

optimal estimation method). The Kalman filter trades off 

the probability that a measured glucose change is due to 

sensor noise versus an actual change in glucose, to obtain 

the maximum likelihood estimate of glucose (and its first 

and second derivatives). In this case, the model is given 

by 
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where the indices k and k + 1 denote the current time step 

and one time step into the future, respectively. The states 
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are the blood glucose concentration (gk), its rate of 

change (vk , i.e., the velocity), and the rate of change of 

the rate of change (ak , i.e., the acceleration). The latter is 

assumed to vary in a random fashion, driven by the input 

noise wk (with covariance matrix Q), which describes 

changes to the process. The blood glucose measurements 
are assumed to contain noise, described by uk (with 

covariance matrix R). The Kalman filter uses a two-step 

process. It first calculates the estimate of the states 

(denoted by 𝑥 ) using the model based on the information 

up to the previous time step. Then 

 

𝑥  𝑘 𝑘−1 =  Φ 𝑥  𝑘−1 𝑘−1            (3) 
 

where the subscript (k | k – 1) indicates the estimate at 

time step k, using measurements up to time step k - 1. 

Once the measurement at time step k is available, it is 

used to correct the estimate of the states, using 

𝑥  𝑘 𝑘 =  𝑥  𝑘 𝑘−1 + 𝐿 𝑦𝑘 − 𝐶 𝑥  𝑘 𝑘−1          (4)   

where L is the steady-state Kalman gain and            

 𝑦𝑘 − 𝐶 𝑥  𝑘 𝑘−1   is the difference between the measured 

output and the expected output using the estimate from 

equation (3). The Kalman gain L is calculated using the 

covariances Q and R. Given that these covariances are 

not known in advance, they become tuning parameters. 
Changing the relative weight between Q and R serves to 

trade off the confidence in the model versus the 

confidence in the measurement. Putting a significant 

weight on the trust in the measurement means that the 

estimates will track the sensor signal very closely, even 

if noisy. Conversely, weighing the model significantly 

more than the measurement, results in a heavily filtered 

estimate. The tuning is thus selected manually based on 

the best trade-off sought between these two extremes, 

which in this case is done as to maximize                      

the sensitivity and specificity of the hypoglycemia 
predictions. For example, when Q/R = 1.25e-3 then                                   

L = [0.4821 0.1699 0.0254]T. The model [equation (2)] 

can then be used to estimate blood glucose into the 

future.  

 

2.3 Feed forward neural network  
 

An NN is a modeling tool that consists of simple 

processing elements, called neurons in analogy to 
biological structures, linked to each other through 

weighted connections [17]. NNs are able to ―learn‖ the 

relationship between a set of input and output data. This 

makes it possible to create input–output models without 

making strong assumptions on the system. NNs provide a 

suitable structure for prediction when the relationships 

among the involved signals are known only partially. In 

the context of glucose prediction, an additional 

interesting feature of NNs is that they can combine 

information from different sources such as CGM, meals, 

and insulin. 

 

The neural network model we are discussing in this 
section is a time-lagged feed-forward neural network. 

This neural network contains multilayer perceptrons that 

have memory components to store previous values of 

data within the network. The existence of such memory 

components provides the system the ability to learn 

relationships and patterns existent in the data over time. 

These neural networks consist of multiple layers of 

processing elements that are connected together in a 

feed-forward manner. Various connections (synapses) 

were constructed to facilitate connections between the 

processing elements of the neural network (axons). The 

neural networks generated were trained using a method 
known as the back propagation of errors. Elements in the 

neural network known as back propagation axons 

(BackAxons) facilitate the training process. BackAxons 

derive a relative error at their input, which is to be back 

propagated to any processing elements preceding them in 

the neural network design. The back propagation of 

errors is completed as an error is presented at the output 

of each BackAxon in the neural network, and the 

BackAxon is charged with calculating the gradient 

information associated with calculating weights for the 

minimization of total error in the neural network. 
Optimal weights for the minimization of error in the 

predictive model are obtained via a gradient descent 

algorithm performed within the BackAxon elements. 

 

This gradient descent algorithm calculates the optimal 

weight for the minimization of the total error in the 

neural network model. The optimization value of the step 

size in such an algorithm is integral in the amount of 

time it takes to train the neural network. A small step 

size could lead to a large training time, and conversely, a 

large step size could lead to overestimation of the desired 

local minimum. Neural networks were trained via batch 
training, i.e., network weights were updated after each 

epoch (single cycle or pass through the dataset). The 

neural networks were configured to stop training after 

1000 epochs or if the mean squared error was less than 

0.1. Figure 1 includes the neural network design and 

architecture of one of the processing and output layers of 

the neural network models designed using the 

NeuroSolutions software by Papada et.al [15]. 

 

The various components in the neural network design are 

labeled 1–5. Component 1 is a hyperbolic tangent axon 
(tanh axon). The tanh axon has the processing elements 

for the hidden layer of the neural network. Each

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 5, No 3, September 2012 
ISSN (Online): 1694-0814 
www.IJCSI.org 166

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.



 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 
Fig. 1 Design and architecture of the processing (hidden) and output layer of the neural network model proposed by Pappada et al.[15]. 

 

processing element sums the weighted connections from 

the inputs into the axon. Component 2 is a Laguarre axon 

that functions to store delayed versions of the processing 

elements output and pass it onto the next layer of the 

neural network. The Laguarre axon therefore serves to 

provide the neural network with memory, thus enabling 
the processing of information in time. Component 3 is 

the momentum/gradient descent component of the 

network. This component serves to adjust the weights 

with information about the error within the network. 

Optimal step sizes and momentum values in these 

elements for the minimization of error are determined via 

the implementation of a genetic algorithm. Component 4 

is an example of the synapses of the neural network, 

which serve to connect the various axons and processing 

elements of the neural network. Component 5 is the 

output layer of the neural network, which consists of a 

bias axon (leftmost element in Component 5) and an 

output axon (rightmost element in Component 5). The 

bias axon has the processing elements for the output 

layer, each of which sums the weighted connections from 

the second hidden layer. The output axon yields the 
predicted values in the original format (i.e., the desired 

response) as originally presented to the neural network. 

 

3. Conclusion 

Noninvasive and minimally invasive sensors have been 

developed that allow continuous glucose monitoring 

(CGM) for several days. There is a general agreement 

that, in the near future, CGM will improve diabetes 

management by facilitating the appropriate patient 
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reaction to hazardous and potentially life-threatening 

events, such as hypo- and hyperglycemia. For instance, 

in order to allow the patient to prevent such events, alerts 

could be generated on the basis of prediction of glucose 

concentration ahead of time using past CGM data and 

appropriate time-series models. CGM sensors allow the 

development of new strategies for the treatment of 

diabetes. A clinically important task in diabetes 

management is the prevention of hypo/hyperglycemic 

events. Blood glucose prediction algorithms such as first-

order auto regressive (AR(1)) , Kalman filtering, feed 

forward neural network demonstrated that blood glucose 

can be predicted ahead in time. 
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