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Abstract 
 

Hepatitis C virus (HCV) is a widely spread disease all over the 

world. HCV has very high mutation rate that makes it resistant 

to antibodies. Modeling HCV to identify the virus mutation 

process is essential to its detection and predicting its evolution. 

This paper presents a model of HCV based on profile hidden 

Markov model (PHMM) architecture.  An iterative model 

learning procedure is proposed and applied to both full-length 

sequence of virus and its very high variation (mutation) zone 

called NS5A.  A pilot study on HCV dataset of type 4 is 

conducted which is of special concern in Egypt. 

 

Keywords: Hepatitis C virus (HCV), Profile Hidden Markov 

Model (PHMM), Non-structure 5 A(NS5A) 

 

1- Introduction 
Hepatitis C is a liver disease caused by the hepatitis C virus 

(HCV). It is widely spread disease all over the world. About 

130–170 million people are chronically infected with HCV and 

more than 350 000 people die from hepatitis C-related liver 

diseases each year. HCV infection is found worldwide. 

Countries with high rates of chronic infection are Egypt (22%), 

Pakistan (4.8%) and China (3.2%). The main mode of 

transmission in these countries is attributed to unsafe injections 

using contaminated equipment. It is particularly menacing in 

Egypt.  HCV is a major human health concern that causes fatal 

liver diseases. Currently no vaccine is available to prevent 

HCV infection [1]. 

The aim of this study is to identify a model of HCV genotype 4 

genome using PHMM.  This model shall be used for detection 

of HCV in blood samples. Moreover the HCV model will help 

in learning the mutation model of HCV. The mutation model 

presents new therapeutic targets as well as genomic 

information for designing vaccine candidates. 

 

In this research we identify the profile hidden markov model 

(PHMM) from full length genomic sequences of 12 distinct 

HCV genotype 4. To reduce number of parameters of model 

(transition probability and length of the model from match 

states) and increase performance of the model, our approach 

selects a  zone of HCV genome called non structure 5A 

(NS5A) which has more variation (mutation) than other zones 

in HCV genome  and applied PHMM again. 

 

This paper is organized as follows: In section 2, is given related 

research for detecting hepatitis C virus. Section 3 describes 

HCV virus genome. Section 4 is divided into two subsections, 

first one presents a  review of Profile Hidden Markov Model 

structure, and the second presents the  suggested learning 

model.  In section 5 presents  data description and experimental 

results of PHMM. Section 6 concludes the paper with future 

research directions. 

 

2- Related Research 
Bioinformatics aims to improve current knowledge and 

understanding of biological and molecular entities. Pattern 

recognition and representation of motifs is a fundamental 

problem in bioinformatics and bioinformatics for diseases [2]. 

Several researches have been conducted to unravel information 

and useful patterns in a database for detecting hepatitis C virus. 

Leung et al. [3] present a data mining framework which 

includes molecular evolution analysis, clustering, feature 

selection, classifier learning and classification applied on 

Hepatitis B virus (HBV) DNA sequence.  Jilani et al. [4] 

introduce an automatic diagnosis system based on neural 

network for Hepatitis C virus. This automatic diagnosis system 

deals with the mixture of feature extraction and classification. 

ElHefnawi et al. [5] implement a novel approach for extracting 

features including informative markers from mutations in the 

non-structural 5A protein (NS5A), specifically its Interferon 

sensitivity determining region (ISDR) and V3 regions, and use 

a novel bioinformatics approach for pattern recognition on the 

NS5A protein and its motifs to find biomarkers for response 

prediction using class association rules and comparing the 

Predications of the different features. Yasin et al. [6] used 

logistic regression model to investigate factors that contribute 
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significantly in the classification of HCV cases. Jacob et al. [7] 

evaluate the performance of twenty classification algorithm on 

the cancerous HCV dataset that comprises individual medical 

cases from UCI Machine Learning Repository . Njouom et al. 

[8] conducted phylogenetic analyses of NS5B gene sequences 

from HCV-infected inhabitants of a remote area of south-west 

CAR which indicated that (82.8 %) were infected with (HCV-

4), (8.6 %) with (HCV-2) and (8.6 %) (HCV-1). Where HCV-4 

strains were highly heterogeneous, an evolutionary analysis 

using the coalescent approach was used to estimate the 

epidemic history of these HCV-4 strains.  

 

3- HCV Virus Genome 
The HCV genome is an enveloped structure approximately 50 

nm in diameter. HCV is a positive single stranded  enveloped 

RNA virus belonging to the Flaviviridae family with an 

average length of 9600 bases and carries a single, long open 

reading frame (ORF) flanked by 5' and 3' non-translated 

regions. The ORF encodes a polyprotein of ~ 3000 amino acids 

that is processed into three structural proteins (Envelopes 1 and 

2 and p7) and six non-structural proteins named NS2-NS5B [9] 

as shown in Figure 1 [10]. 

 
 

Figure 1 Hepatitis C virus (HCV): model structure and genome 

organization1 [10]. 

 

HCV is classified into eleven major genotypes (designated 1-

11), many subtypes (designated a, b, c, etc.), and about 100 

different strains (numbered 1, 2, 3, etc.) based on the genomic 

sequence heterogeneity [11].  

Genotypes 1-3 have a worldwide distribution. Types 1a and 1b 

are the most common, accounting for about 60% of global 

infections. They predominate in Northern Europe and North 

America, and in Southern and Eastern Europe and Japan, 

respectively. Type 2 is less frequently represented than type 1. 

Type 3 is endemic in south-east Asia and is variably distributed 

in different countries. Genotype 4 (HCV4) is principally found 

in the Middle East and Africa, particularly Egypt, which 

represent more than 90% of infections due to genotype 4 

worldwide [12]. 

HCV has high rates of replication and mutation that promote 

chronicity and the development of resistance to antiviral 

therapy. Within an individual, viral mutations produce closely 

related strains called quasi-species [10]. 

 

4- Profile Hidden Markov Model 

4.1 Review 

Hidden Markov models have become one of the most 

statistically powerful methods used to model sequence 

alignment. A special type of left-to-right HMMs called profile 

HMM (PHMM) is commonly used to model multiple 

alignments. The architecture of PHMM was introduced by 

Krogh (1994) [13]. PHMM is well suited to the popular 

“profile” methods for searching databases using multiple 

sequence alignments instead of single query sequences [14]. 

The profile is weight matrix that for each position in a group of 

aligned sequences, assigns a score for each of the twenty 

possible amino acid residues. Each row in the profile regarded 

as a “match state” and the values in the row as the emission 

probabilities for each of the twenty possible amino acid 

residues. The position specific gap weights represent transition 

probabilities for moving to an insert or delete state from a 

match state [15].  

HMM is formally defined as a 5 –tuple  ,,,,  PS  where   

 
N

sssS ,,,
21
 is a finite set of N states (hidden states) 

 
N

 ,,,
21
  is a finite set of M possible symbols 

(observed states which is one of 20 amino acids) 

 
ij

pP  is the set of state-transition probabilities, 
ij

p  is the 

probability that the system goes from state
i

s to state 
j

s  

  
ki

o  are the observation probabilities, 

 
ki

o  is the probability that the symbol
k

o is emitted when 

the system is in state 
i

s  

 
i

   are the initial state probabilities. 

i
  is the probability that the system starts in state 

i
s  

Because the states and output sequence are understood, the 

parameters of an HMM denote by   ,, P  

There are three tasks solved by HMM: aligning, scoring 

sequences with the model and learning to estimate best 

parameters for the model [16]. 

Once a HMM drawn, the standard dynamic programming 

algorithms used for aligning and scoring sequences with the 

model. These algorithms called Forward (for scoring), Viterbi 

(for alignment) and Baum-Welch is used for learning [14]. 

Profile Hidden Markov Model (PHMM) is probably the most 

popular application of HMM in molecular biology for detecting 

remote homology between proteins. PHMM turn a multiple 

sequence alignment into a position-specific scoring system 
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suitable for searching databases for remotely homologous 

sequences [14]. 

The PHMM architecture shown in Figure 2 [17], consists of 

match states M, deletion states D, and insertion states I, 

flanking states (S, N, B, E, C, T) are used for proper modeling 

of the ends of the sequence, either for global, local or fragment 

alignment of the profile. S, B, E, and T are silent (don‟t 

emission symbols), while N and C are used to insert symbols at 

the flanks. 

A PHMM for a motif of length L contains L match states. 

Match state 
i

M  emits i-th motif residue, while insertion state 

i
I  emits background residues after this i-th residue. Each state 

i
M  defines an emission probability distribution. 

i
M  emits 

residue j with probability 
ji

M . All states 
i

I  emit residues 

according to a common background distribution π. 
i

I  emits 

residue j with probability
jji

M  .  Deletion state 
i

D  allows 

i-th motif residue to be skipped; it is non-emitting.  

At each position i of a motif, there are seven allowed 

transitions
1


ii

MM , 
ii

IM  , 
1


ii

DM , 
ii

II  ,

1


ii
MI , 

1


ii
DD , and 

1


ii
MD . A PHMM can 

generate a state path by first following a transition 
i

MB   

then extending the path by transitions as described above until 

it reaches E following a final transition EM
i


 . Match and 

insertion states on the path emit residues according to their 

emission probabilities. Flanking insert states (N and C) used 

for local profile alignment [14].  

To force a global alignment setting the looping transition 

probabilities in the flanking insert states to zero. 

BN  = TC  =0  NN  = CC  =1 [17]. 

 

 
Figure 2 Architecture of PHMM [17] 

4.2  Model Learning 

The objective of model learning process is to estimate the 

parameters of PHMM from a training set. This set contains n 

DNA sequences each of which is labeled by its HCV genomic 

type.  The Baum Welch algorithm is generally accepted to 

estimate PHMM parameters. However, this algorithm assumes 

that the model length is known, which not the case in this 

work. Hence, we have to adapt the learning procedure to search 

for the optimal model length. In this work we use MATLAB 

bioinformatics tool box functions. The learning procedure is 

detailed in the following steps: 

1- Input training examples which consist of n sequences 

of full-length of 12 distinct subtypes of 4 genotype. 

2- Apply Multiple Sequence Alignment (MSA) to 

training examples [18]. MSA performs by using a 

heuristic search known as progressive technique (also 

known as the hierarchical or tree method). The 

MATALAB function used is 

MSA=multialign(Sequences).  

3- Preprocess data to filter unknown symbols. 

Sometimes, a character „x‟ is found in training 

sequences which do not map to any of 20 amino acid, 

so it is replaced by one of amino acid by using MSA. 

4- Initialize structure for PHMM of MSA. The initial 

model structure and length are defined using 

information derived from the alignment together with 

its prior knowledge of the general nature of proteins. 

The MATALAB function used is 

Model=hmmprofstruct(Length) . 

5- Estimate the PHMM parameters from training 

sequences. All the parameters in the PHMM (i.e. the 

transition probabilities and the amino acid 

distributions) are estimated from a set of aligned 

sequences to maximize the likelihood  of the observed 

sequences in the family.  The likelihood of observed 

sequences is defined as:  

P(sequences | model) = P(sequence 1| model) * … * 

P(sequence n |model) 

The MATALAB function used is hmmprofestimate 

(Model, MSA). 

6- Score the model. Scoring is used to assign a score 

with respect to the model to any query sequence, the 

better the score, the higher the chance that the query 

sequence is a member (homologue) of the protein 

family represented by the model. Scores are computed 

using log-odd ratios for emission probabilities and log 

probabilities for state transitions. The MATALAB 

function used is  Score = hmmprofalign(Model, Seq).  

7- Repeat steps 5 to 6 and compare the score recorded: 

until there is no change in score, and record length of 

the model and maximum score obtained from all 

training sequence. 

8- Validate the model: Randomly select  samples out of 

training sequences from genotype 1 to 6, and generate 

a set of fake sequences 

9- Score the model performance based on test samples. 

 

These steps are graphically represented as shown in Figure 

3. 
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Figure 3 Model Learning of HCV 

 

The steps for learning the model of  NS5A regions 

are as follows: 

1- Extract NS5A from training sequences, and make 

MSA of these sequences. 

2-  Initialize structure of PHMM for NS5A. 

3- Estimate the parameters of a PHMM from NS5A 

training sequences. 

4- Score the PHMM model using NS5A  query 

sequences. 

5- Repeat steps 2 to 4 and compare the score recorded 

until there is no change in score values. 

6- To validate the model take samples out of training 

sequences from NS5A genotype 1 to 6, and NS5A 

fake sequence. 

7-  Score the model performance based o test samples. 

 

These steps are graphically represented as shown in Figure 

4. 
In p u t N S 5 A  t r a i n i n g  e xam p l e s

( 2 0  s e q u e n c e s )

A p p l i e d  m u l t i p l e  S e q u e n c e

A l i g n m e n t  ( M S A )

B u i l d s t r u c u r e  o f P H M M   fr o m

M S A

E s t i m at i n g  t h e  p ar am e t e r s  o f

P H M M

S c o r i n g  t h e  m o d e l

C h an g e  i n

 m o d e l  S c o r e

Y E S

M o d e l  V a l i d a t i o n

N O

Te s t i n g  E xam p l e s Te s t i n g  S c o r e

 
 Figure 4 Model learning of NS5A 

5- Pilot Study 
The main objective of this pilot study is to identify the model 

of Hepatitis C Virus spread in Egypt as a first step to identify 

its mutation model. Genotype 4 (HCV4) is particularly 

principally found in Egypt, which represent more than 90% of 

infections worldwide [12]. For this purpose, a data set 

representing HCV4 is collected and used for to identify its 

model. Then, the learning procedure described in section 4.2 is 

applied on this real world data set to identify the model and 

evaluate its validity. 

5.1 Data Description 

The dataset contains the full-length genomic sequences of 20 

distinct hepatitis C virus (HCV) genotype 4 isolates/subtypes 

4a(7 sequences), 4f(2 sequences) , 4f(2 sequences), and one 

sequence for each 4l, 4t, 4n, 4o, 4k, 4b, 4m, 4p and 4g. 

The resulting genomes varied between 2969 and 3011 amino 

acid (aa) length and each contains a single ORF. 

The data is obtained from the site 

“http://www.ncbi.nlm.nih.gov/protein”  and it presented in 

Table 1 which contains virus name, genebank and sequence 

length. 

The data set was found to contain the character „x‟ which 

undefined as amino acid, to overcome this problem and replace 

character „x‟ with suitable amino acid followed this steps 

1- Determine sequence number and positions numbers 

which contain character „x‟ in original sequences. 

2- Apply  global alignment to all sequences MSA, and 

determine sequence number, position number of „x‟ 

and the most character repeated  

3- Replace character „x‟ with suitable amino acid found 

in step 2  

 

 
Table 1: The Training Data Set (http://www.ncbi.nlm.nih.gov/protein) 

Virus name Genebank Sequence length 

hcv4a_1 ADF97233.1 3008 

hcv4a_2 CAA72338.1 3008 

hcv4a_3 O39929.3 3008 

hcv4a_4 ABD75824.1 3009 

hcv4a_5 ABD75826.1 3008 

hcv4a_6 ABD75829.1 3008 

hcv4a_7 ABD75830.1 3008 

hcv4f_1 ABU68272.1 3010 

hcv4f_2 ABU68271.1 2969 

hcv4d_1 ABD75828.1 3007 

hcv4d_2 ACS29436.1 3006 

hcv4l ACT66295.1 3006 

hcv4t ACT66294.1 3007 

hcv4n ACS29440.1 3008 

hcv4o ACS29439.1 3005 
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hcv4k ACS29437.1 3011 

hcv4b ACS29434.1 3011 

hcv4m ACS29432.1 3006 

hcv4p ACS29430.1 3007 

hcv4g ACS29431.1 3008 

 

The validity of the PHMM assessed with a new test data 

obtained from the site indicated in Table 2. 

 
Table 2: The Testing Data Set (http://www.ncbi.nlm.nih.gov/protein) 

Virus name Genebank Sequence length 

hcv1 NP_671491.1 3011 

hcv2 YP_001469630.1 3033 

hcv3 YP_001469631.1 3021 

hcv4 YP_001469632.1 3008 

hcv5 YP_001469633.1 3014 

hcv6 YP_001469634.1 3019 

 

5.2 Experimental Results 
1-  After applying  the derived PHMM model to all 20 

distinct full length of HCV4 subtypes, the results 

show that maximum score is (9611.8) at a number of 

match states (length of the model) 3000 as shown in 

Figure 5. 

 

 
 

Figure 5 Relation between number of match states in PHMM and 

scores for HCV sequence 

 

2- To validate PHMM model using test data which consist 

of fake sequence and 6 sequences of HCV with 

distinct types from 1 to 6. The maximum score record 

to HCV4 where PHMM is designed to this genotype 

as shown in Figure 6. 

 

 

 
 

Figure 6 Relation between PHMM model and testing data for 

HCV sequence 

 

3- Table 3 records the values of the score from testing 

data. It‟s shown that the maximum value is 9453.6 

marked at HCV genotype 4. And all other types of 

HCV marked values are less than this maximum 

value. This means that the PHMM model succeeded to 

identify HCV4 from other genotypes. 

 

 
Table 3: Show percentage of classified HCV genotype 

HCV_type Score 

HCV_1 7970.5 

HCV_2 6930.3 

HCV_3 7388.6 

Hcv_4 9453.6 

HCV_5 7345.8 

HCV_6 7664.8 

Fak_seq -1347.3 

 
4- When applying  the derived PHMM model for the 

zone NS5A of HCV4 subtypes, the results show that 

maximum score is (1389.3) at a number of match 

states 440 as shown in Figure 7. 

 

 
Figure 7 Relation between number of match states and scores in 

NS5A 
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5- To validate PHMM model using test data which consist 

of fake sequence and 6 sequences of NS5A with 

distinct types from 1 to 6. The maximum score record 

to NS5A genotype 4 as shown in Figure 8. 

 

 

 
 

Figure 8 Relation between PHMM model and testing data for 

NS5A sequence 

 
6- Table 4 records the values of the score from testing 

data. The maximum value is 1336.7 marked for NS5A 

genotype 4. And all other types of NS5A mark values 

much less than this maximum value. Which mean that 

the PHMM model has succeeded to identify NS5A4 

more than other genotypes. 

 
Table 4: Show percentage of classified NS5A genotype 

NS5A_type Score 

NS5A_1 1070.2 

NS5A_2 824.8 

NS5A_3 964.4 

NS5A_4 1336.7 

NS5A_5 943.8 

NS5A_6 1038.5 

Fak_seq -169.639 

 

6. Conclusion and Future Work 
In this paper, the model of the HCV has been identified. The 

learning process of PHMM model for the full length RNA 

result in a lengthy model which is prone to prediction errors 

and time consuming. This model could be impractical for large 

data set of HCV sequences.  In this research we present two 

approaches to reduce the model length and increase its 

prediction accuracy. The first approach iteratively applies the 

Baum-Welch learning to search for the best model length. The 

second approach apply combine the first approach and selects 

the region NS5A, which has large variation in amino acid for 

each position in MSA.  The validity of both approaches has 

been demonstrated in a pilot study based on real world data set.  

The future work shall study the impact of feature selection 

methods on mutation model identification and HCV detection 

in Egypt. 
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