

Requirements Engineering Methodology in Agile

Environment

Waleed Helmy, Amr Kamel and Osman Hegazy

Faculty of Computers and Information, Cairo University

Giza, Postal Code: 12613, Egypt

Faculty of Computers and Information, Cairo University

Giza, Postal Code: 12613, Egypt

Faculty of Computers and Information, Cairo University

Giza, Postal Code: 12613, Egypt

Abstract
This paper provides a better understanding of the architecture-

related issues in agile projects and proposes a methodology to

guide and assist practitioners adopting agile requirements

engineering. The methodology was motivated by the lack of

structure to the agile requirements engineering process with

minimal impact on agility. It describes in detail the phases in

the agile requirements engineering process and suggests

techniques that can be used to perform these phases. As the

length of the development lifecycle is taken into account, the

methodology describes not only the requirements engineering

process activities but the complete development process as

well. It reflects the agile principles such as direct stakeholder

involvement, evolutionary requirements, refactoring, no

BRUF, just-in-time gathering of details and minimal

documentation.

Keywords: Architecture Challenges in Agile Environment,

Agile Requirements Engineering

1. Introduction
The conventional approach to the RE process focuses on

gathering all the requirements and preparing the requirements

specification document up front before proceeding to the

design phase. These up front requirements gathering and

specification efforts consume long time and leave no room to

accommodate changing requirements later in the development

cycle. Some of the issues faced by organizations involved in

up front requirements gathering and specification efforts are

[8]:

 Requirements change over a period of time due to

changes in customer and user needs, technological

advancement and schedule constraints. Identifying new

requirements or changing existing requirements affects

the other requirements as new dependencies may

surface. Also, changes to requirements involves

modifying the architecture and in turn, the code.

Accommodating changing requirements is an

expensive activity. Hence, gathering all the

requirements up front is expensive in the face of

rapidly changing requirements. Also, new requirements

can be identified late in the development cycle.

Requirements Management activities help plan for and

control change. However, it is not always possible to

avoid changes to requirements.

 Rapidly changing business environments can cause

requirements to become obsolete before project

completion.

On the other hand, the agile requirements engineering [8]

welcomes changing requirements even late in the

development cycle. This is achieved by using the agile

practice of evolutionary requirements which suggests that

requirements evolve over the course of many iterations rather

than being gathered and specified up front. Agile requirements

engineering has the following issues:

 Clear specification of activities in the agile

requirements engineering process is missing and there

is a lack of a set of techniques that practitioners can

choose from.

 This approach toward requirements usually results in

several architecture-related issues that can potentially

have negative impact on architectural practices,

artifacts or design decisions [8].

2. Requirements Issues in Agile Methods
Little is known about how agile projects conduct requirements

engineering [1]. Recent studies have identified several

problems that could result from the lack of detailed

requirements specifications [2]. The following paragraphs

describe the requirements issues when using agile approaches.

 Missing Requirements Engineering Activities: clear

specification of activities in the agile requirements

engineering process is missing and there is a lack of a

set of techniques that practitioners can choose from.

 Missing Requirements Interface: agile methods

assume that it is very hard to elicit all requirements

from the user upfront. They also assume that such

requirements evolve over time as the customer may

change its mind [6]. So, nobody knows the entire

requirements at the beginning of the project. That leads

to missing the interface between requirements. As a

consequence, the impact on the next iterations may

cause re-work as the requirements interfaces were not

addressed.

 Non-Functional Requirements Elicitation: agile

methods do not provide any widely accepted technique

for eliciting and managing non-functional requirements

[3]. After every iteration, the product is released and

the customer is able to test the product. If he identifies

problems related to non-functional qualities, the team

can adapt the system to meet such requirements in the

subsequent iteration without affecting too much the

schedule. Often, the customer does not perceive as high

impact many non-functional requirements (e.g.,

scalability, security, etc.). This may affect deeply the

release of the final version of the application. This

approach to non-functional requirements may represent

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 5, No 3, September 2012
ISSN (Online): 1694-0814
www.IJCSI.org 293

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

a major risk for agile methods, since they lack of

specific techniques for their management.

3. Architecture Challenges in Agile

 Methods
The agile requirements engineering approach toward

requirements usually results in several architecture-related

issues that can potentially have negative impact on

architectural practices, artifacts or design decisions [7].

Following paragraphs briefly describe the most commonly

observed architecture-related difficulties when using agile

approaches.

 Incomplete Requirements Elicitation: the “user

stories” or the like are just the beginning points of both

the requirements gathering and development processes

in agile methods. Early requirements are simply a place

to start. It is expected to add more requirements as

more is known about the product. This attitude toward

requirements makes software architecture development

more difficult. The architecture that chosen by the team

during the early cycles may become wrong, as later

requirements becomes known [4].

 Incorrect Prioritization of User Stories: one of the

key architecture-related challenges commonly

experienced by agile teams is that User Stories may be

prioritized without taking the technical considerations

into account [7]. If critical interdependencies among

User Stories are discovered later on, it usually requires

significant re-factoring with consequences for the

whole structure of the software.

 Lack of Focus on Non Functional Requirements: as

mentioned, handling of non-functional requirements

in agile approaches is ill defined [5]. Customers or

users talking about what they want the system to do

normally do not think about maintainability,

portability, safety or performance. Some requirements

concerning user interface or safety can be elicited

during the development process and still be integrated.

But most non-functional requirements should be

known in development because they can affect the

choice of database, programming language or operating

system. Agile methods need to include more explicitly

the handling of non-functional requirements in a way

they can be analyzed before implementation.

4. Motivation towards the Proposed Model
The methodology was motivated by the lack of structure to the

agile requirements engineering process with minimal impact

on agility. It describes in detail the phases in the agile

requirements engineering process and suggests techniques that

can be used to perform these phases. As the length of the

development lifecycle is taken into account, the methodology

describes not only the requirements engineering process

activities but the complete development process as well. The

methodology reflects the agile principles such as direct

stakeholder involvement, evolutionary requirements,

refactoring, no BRUF, just-in-time gathering of details and

minimal documentation.

As shown in figure 1, the methodology consists of eight

phases. The first six phases (Inception, Feature List

Identification, Feature Grouping, Group Prioritization, NFRs

Identification, and Architecture Envisioning) cover the

requirements and architecture envisioning part while the two

remaining phases (Task Identification and Task Development)

cover the requirements development part.

Feature List Identification

Feature Grouping

Feature List

Feature Groups

Prioritized Groups

Inception
Product Concept

Statement

A
r
c
h

it
e
c
t
u

r
e
 E

n
v

is
io

n
in

g

Group Prioritization

Non-Functional Requirements

Identification

NFRs List

Envisioning: Sprint 0

Task Identification Task List

Task Development

Development

Highest Priority Group

Sprint Release
Fig. 1 The Proposed Methodology Structure

5. The Proposed Methodology
Figure 2 shows the proposed methodology complete life

cycle. The main characteristic of the proposed methodology is

that it provides a complete product development cycle. Each

phase of the proposed methodology is shown in the figure.

Sprint zero is used before the start of the development

process. It is basically designed to envision system

requirements and architecture. The requirements are presented

in different levels which are: product level, feature level, story

level, and task level. Table 1 summarizes all levels with the

description linked to each.

The proposed methodology provides complete steps for sprint

zero. Sprint zero starts with the inception phase and ends with

a group or subset of it to be developed. The inception phase

defines vision and goals for the project and a high level

product mission statement is created which serves as the input

to the feature list identification phase. Each item in the feature

list includes definition of customer requirements that allows

development team to produce a reasonable estimate of the

effort during the development. The features identified during

the feature list identification phase are classified into groups

during the feature grouping phase. The groups are then

prioritized and only one group is chosen for development

during a release. As well, the architecture is envisioned in

sprint 0 based on the feature list and the non-functional

requirements identified in feature list identification phase and

non-functional requirements identification phase respectively.

Each feature in the selected group is decomposed into stories.

Each story then is decomposed into tasks. Tasks outline the

details required for implementing the stories. These tasks are

then developed during the task development phase using test

driven development approach. The customers and developers

perform acceptance testing to ensure that the system meets the

customer and user needs.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 5, No 3, September 2012
ISSN (Online): 1694-0814
www.IJCSI.org 294

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

Inception Feature
Grouping

Feature List
Idenification

Group
Prioritization

NFRs
Identification

Architecture
Envisioning

F3

F7
F6
F5
F4

F8

F2
F4
F1

F5
F3

F6

G1 G2

F9

F2
F1

Vision

Goals

F9F8

F7

G3

F4
F1

F6

G2

Task
Identification

Feature List

Stories

Task List

Task
Development

Cycle

Design

Code Test

Product Release

Sprint 0

Fig. 2 The Proposed Methodology Life Cycle

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 5, No 3, September 2012
ISSN (Online): 1694-0814
www.IJCSI.org 295

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

Table 1: Requirements Levels

The next sections describe in details the proposed

methodology basic phases, activities, and techniques.

5.1 Inception Phase
The inception phase is the first phase of the proposed

methodology and is designed to help the stakeholders

establish relationship. This phase is carried out up front before

starting the project. It is essentially a meeting or a series of

meetings where all the stakeholders participate. During this

phase, the customer is informed about the proposed

methodology main phases, activities, and techniques. Goals

for the project are formed and a vision statement is created

that defines the entire project. The project team is assembled

and the team members are empowered by having roles and

responsibilities assigned to them.

As shown in figure 3, the basic activities of the inception

phase are:

 Assign Roles and Define Responsibilities – Roles are

assigned to team members and responsibilities are

defined.

 System Users Identification – Identify the different

users who will the use the system. Different users of

the system have different needs. Hence, it is important

to identify the various users of the system in order to

identify their needs.

 Proposed Methodology Explanation – The customers

and users need to be familiarized with the proposed

methodology. This allows the customers and users to

understand the methodology steps as they are involved

through the complete software development process.

 Establish Product Concept Statement – The product

concept statement is identified by system users. It

contains the product mission statement and the goals

for the project.

System Users
Identification

Proposed
Methodology
Explaination

Product Concept
Statement
Creation

Product Concept
Statement

Inception Phase

Fig. 3 Inception Phase

The output of this phase is a high level product mission

statement which is a brief descriptive summary of the product.

It would answer the following questions:

 Who are the product users?

 What will the product do?

 What problem(s) will the product solve?

The high level mission statement serves as the input to the

features list identification phase. The stakeholders determine

the expected functionality of the system from this statement.

5.2 Feature List Identification
The feature list identification is the second phase of the

proposed methodology where the system features are

identified. A feature can be defined as the smallest set of

functionality that provides business value to the customer. The

high level product mission statement created during the

inception phase serves as the input to the feature list

identification phase. The stakeholders identify the expected

functionality from the high level product mission statement.

Features should be identified upfront in order to be informed

about the scope of the project and plan for the release cycles.

Identifying features upfront gives the “big picture” about the

project. The features usually are identified over a series of

meetings. The identified features are validated, the time for

their completion estimated and are prioritized based on their

value to the customer and stored in a prioritized feature list

stack. Features are ordered in the stack based on their

priorities. The Interviews, focus groups, and brainstorming are

effective techniques to elicit business features from users.

As shown in figure 4, the various activities of the feature list

identification are:

 Preparation – This activity is to arrange for a meeting

among all the stakeholders to identify the major

features of the system to be built.

 Elicitation – Release level features are identified using

various techniques used for requirements elicitation.

Brainstorming sessions involving all the stakeholders

are generally an effective way to identify features.

Open-ended interviews and focus groups with the

customers and users are other techniques to elicit

features. This process takes into account the agile

practice of no BRUF and the details are gathered on a

just-in-time basis.

 Validation and Estimation – The elicited features are

validated and the time required to complete each

feature is estimated. The validation process involves

the development team discussing the identified features

with the customers and users. The time estimates for a

feature factor in time for gathering details from

customers, coding, testing and helping customers plan

and automate acceptance tests.

 Prioritization – Customers prioritize the identified set

of features based on their needs and return on

investment. Those features that have highest market

value are given the top priority. Prioritization of

features should take into account strong dependencies

among feature sets.

Preparation Elicitation Validation and
Estimation

Prioritization of
Features

Product Concept
Statement

Prioritized Features

Feature List Identification Phase

Fig. 4 Feature List Identification Phase

The output of the feature list identification is a prioritized

feature list which contains the prioritized features ordered by

their priorities. The output of this phase will be the input to

the feature grouping phase.

5.3 Feature Grouping
The identified features in the feature list identification phase

are collected into groups. The groups are set of related

features that serve a business area. The groups are validated

and the time of their completion is initially estimated. Only

Level Name Description
1 Product

Level
Vision and Goals that form
requirements

2 Feature

Level

Features that the product

support, but not too detailed or
set of functionalities that

provide business value to the

customer

3 Story Level Brief descriptions of customer
valued functionality

4 Task Level The details required for

implementing the story

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 5, No 3, September 2012
ISSN (Online): 1694-0814
www.IJCSI.org 296

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

one group or a subset of the identified groups is chosen for

development during a release.

As shown in figure 5, the various activities of this phase are:

 Preparation – This objective of this activity is to

arrange for a meeting among the stakeholders is to

create groups for the prioritized features.

 Grouping – The prioritized features are grouped into a

set of groups. Groups are created for all the user

features identified during the feature list identification

phase.

 Validation and Estimation – The groups created are

validated and the team estimates the time required for

completing each group. Validation involves discussing

the groups with the customers.

The output of this phase is feature groups that serve as the

input to the group prioritization phase.

Preparation Grouping Validation and
Estimation

Prioritized Features

Feature Groups

Feature Grouping Phase

Fig. 5 Feature Grouping Phase

5.4 Group Prioritization
The team determines the dependencies if any among the

groups identified in the feature grouping phase and prioritize

the groups accordingly. The team also considers the customer

and user preferences. The team and customers may have

different sequences in which they would like to implement the

groups. If there is a conflict, the customer is given preference.

The customer is made aware of issues that may arise when

their choices are given precedence. Only one group or a subset

of the prioritized group is chosen for development during

iteration. The output of this phase is prioritized stack list. As

shown in figure 6, the various activities of this phase are:

 Preparation – This objective of this activity is to

arrange for a meeting among the stakeholders is to

prioritize the identified feature groups.

 Prioritization – The feature groups are prioritized and

only one group or a subset of the prioritized group is

chosen for development during iteration

Preparation Prioritization

Feature Groups

Prioritized Groups

Group Prioritization Phase

Fig. 6 Group Prioritization Phase

5.5 Non-Functional Requirements Identification
The phase aims to identify the system non functional

requirements (NFRs). These NFRs are set of constraints on

the software. The high level product mission statement created

during the inception phase serves as the input to the non

functional requirements identification phase. The stakeholders

with the team identify the NFRs from the high level product

mission statement. The identified NFRs are validated and

prioritized based on their value to the customer and stored in a

prioritized NFRs list stack. The Interviews and brainstorming

are effective techniques to elicit NFRs from users.

As shown in figure 7, the various activities of this phase are:

 Elicitation – NFRs are identified using various

techniques used for requirements elicitation.

Brainstorming sessions involving all the stakeholders

are generally an effective way to identify features.

Open-ended interviews with the customers and users

are other techniques to elicit NFRs.

 Validation– The elicited NFRs are validated. The

validation process involves the development team

discussing the identified NFRs with the customers and

users.

 Prioritization – Customers prioritize the identified set

of NFRs based on their needs.

Elicitation Validation Prioritization

Product Concept
Statement

Prioritized NFRs

NFRs Identification Phase

Fig. 7 NFRs Identification Phase

The output of the non functional requirements identification is

a prioritized NFRs list which contains the prioritized NFRs

ordered by their priorities. The output of this phase will be the

input to the architecture envisioning phase.

5.6 Architecture Envisioning
The list of features identified in the feature list identification

phase, the user stories identified in the task development

phase, and the list of non-functional requirements identified in

the non-functional requirements identification phase serve as

the input to the architecture envisioning.

The goal of the architecture envisioning phase is to try to

identify an architecture that has a good chance of

working. This enables to set a feasible technical direction for

the project and to provide sufficient information to organize

the team around the architecture. The envisioned architecture

presents the system technical infrastructure and the major

business entities and their relationships to explore potential

architecture-level requirements

Unlike agile methods in which the initial requirements and the

initial architect models need to be evolved as you learn more

about the project, the architecture envisioning phase of the

proposed methodology tries to stabilize the architecture at the

beginning of the project. As a result, this will reduce the risk

of updating the system architecture every time a new

requirement appears.

The technology stack diagram or deployment diagram are

useful when doing initial architectural modeling because they

depict the major software and hardware components and how

they interact at a high level.

Part of the initial architectural modeling efforts, particularly

for a business application, will include the development of

high-level domain model. This model should capture the

main business entities and the relationships between them.

The initial domain model will be used to help guide both the

physical data model as well as the class design

The architecture envisioning seems to provide a

comprehensive view of the system being developed, while

maintaining the agility of the development process rather than

the heavy design documents that were always recommended

in the traditional methodologies. To conclude this phase,

below is a summary of benefits of applying the architecture

envisioning phase:

 Ensure better understanding of the problem and the

proposed solution

 Give an overall view of the issue of the information

system being built, rather than the narrow vision of just

coding the required software

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 5, No 3, September 2012
ISSN (Online): 1694-0814
www.IJCSI.org 297

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

 Increase the communication and knowledge transfer

among the whole team

5.7 Task Identification
The prioritized groups identified in the group prioritization

phase serve as the input to the task identification phase. Only

one group or a subset of it is chosen for development during

iteration. Each feature in the selected group is decomposed

into stories. Stories are descriptions of user- or customer-

valued functionality. Stories are defined at a lower level of

abstraction when compared to the features. If multiple teams

are involved, then each team can work on identifying stories

for a particular feature. Each story is a sentence or two or a

paragraph at most. Stories are recorded on index cards.

Each story then is decomposed into tasks by the

development team. The task list for each story is essentially a

to-do list created for the developers. Though the stories are

themselves small, they are further disaggregated into tasks due

to the following reasons:

 Each story maybe developed by more than one

developer due to time constraints or developer skill

sets. Hence, there is a need to further decompose

stories into tasks.

 Decomposing stories into tasks ensure that the

developers do not overlook any detail

The task lists provide details about the functionality to be

implemented to the developers to guide them during the

development of the tasks. Task lists for more than one story

can be created in parallel by multiple teams involved in the

development process. This enables faster software

development. The development team brainstorms to create the

task lists for each story. The team reviews the lists to ensure

that they have not overlooked any details. These details are

gathered just-in-time.

As shown in figure 8, the various activities of this phase are:

 Preparation – This objective of this activity is to

arrange for a meeting among the stakeholders is to

create stories and tasks for a a group of prioritized

features.

 Stories Identification – The chosen feature is

decomposed into stories. Techniques for eliciting

stories include interviews, observation, questionnaires

and story-writing workshops. A story writing workshop

is a brainstorming session involving all the

stakeholders dedicated to creating stories. Customers

write the acceptance criteria for each story. Hence, the

customers write the acceptance criteria and later

validate the developed code against these criteria.

Preparation Stories
Identification

Stories
Prioritization

Tasks
Identification

Prioritized Group

Tasks List

Task Identification Phase

Validation and
Estimation

Fig 8 Task Identification Phase

 Stories Prioritization – The developers determine the

dependencies if any among the stories and prioritize the

stories accordingly. They also consider the customer

and user preferences. Developers and customers may

have different sequences in which they would like to

implement the stories. If there is a conflict, the

customer is given preference. The customer is made

aware of issues that may arise when their choices are

given precedence. The output of this activity is a

prioritized story stack.

 Tasks Identification – The story is decomposed into

tasks. Tasks outline the details required for

implementing the stories.

 Validation and Estimation – The tasks created are

validated and the developers estimate the time required

for completing each task. Validation involves

discussing the tasks with the customers, creating screen

designs and paper prototypes.

5.8 Task Development
The tasks created during the tasks identification phase are

developed in this phase. TDD is an agile practice and is a

widely used approach to writing code. Also, as delivering

product of value to the customer is a fundamental agile

principle, Customer Acceptance Testing is of great

importance. The proposed methodology reflects the agile

philosophy and hence, we suggest using TDD and Customer

Acceptance Testing as activities during this phase.

The developers follow TDD to implement the tasks. The

customers and developers then test the available system

against the acceptance criteria created previously. Each

developer chooses a set of tasks for the story to be

implemented based on their skills.

TDD is a combination of Test First development and

refactoring [21]. Test First Development is a development

technique where developers create a unit test first for a story

or task before writing code. Refactoring is an agile practice

which deals with changing the design or structure of the code

without changing its result. Refactoring involves rewriting the

code to improve its structure, while explicitly preserving its

behavior. It improves the understandability of the code or

changes its internal structure and design, and removes dead

code, to make it easier for human maintenance in the future.

Using TDD, developers, create tests first, then write code and

then refactor the code in order to improve its structure. After

refactoring, errors if any in the code are corrected. The

developers do not write code before a test fails.

The following are the objectives of the task development

phase:

For a story i and its task j:

- Create tests – The developers create unit tests first

before writing code.

- Write code – The developers write code to satisfy the

unit tests created.

- Perform customer acceptance tests

The activities carried out in the task development phase are:

 Test Driven Development (TDD) – “Clean code that

works” is the goal of TDD.

 Customer Acceptance Tests – Acceptance tests

ensure that the system developed meets the

expectations of the customer. The customers create

acceptance criteria for the stories and test the stories

against the criteria.

6. Methodology Time Framework
For short projects (less than 6 months in length) you may do

cycle zero in few hours and for medium and long projects (six

months or more) you may decide to invest few days in this

effort depending on the project size.

7. Proposed Methodology – Agile

 Manifesto
This section discusses how the proposed methodology is

reflective of the values and principles stated in the Agile

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 5, No 3, September 2012
ISSN (Online): 1694-0814
www.IJCSI.org 298

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

Manifesto. The following paragraphs discuss the focal values

and principles of the Agile Manifesto and how the proposed

methodology reflects the agile philosophy.

 "Individuals and Interactions over Processes and

Tools" and "Customer Collaboration over Contract

Negotiation" are two of the focal values stated in the

manifesto. The agile movement focuses on close team

relationships, close working environments and direct

stakeholder involvement. Human aspects of the

software development process are considered more

important than the process itself. Relationships

between the customers and the development team are

given preference over strict contracts. Rather than

focusing on strict contracts, agile methods emphasize

on collaborating with the customers to discuss the

functionality expected of the system. These values are

reflected in the proposed methodology in the following

ways:

- The methodology emphasizes direct customer

involvement. Customers and users are involved

throughout the process.

- The activities described in the inception,

features identification, features grouping,

groups prioritization, and non functional

requirements identification are essentially

meetings among stakeholders to discuss, elicit

and validate the customer and user needs.

- Face-to-face communication among the

members of the development team is

encouraged especially during the features list

identification.

 "Working Software over Comprehensive

Documentation" is another value stated in the

manifesto. The main objective of the software

development team is to produce working software at

regular intervals. Agile methods focus on iterative and

incremental development. Working software is used to

measure progress and minimal documentation is

produced. The proposed methodology emphasizes on

delivering working software to the customers at the end

of each iteration. Documentation produced during the

phases is minimal and mostly consists of product

concept statement, feature list, groups and their

prioritization, NFRs, high level architecture, and task

list.

 "Responding to change over following a Plan": The

methodology accepts changes in the task list by adding,

removing, or updating data requirements or changing

business logic or business steps. Also it encourages

customer to change the feature list or feature stories if

these changes have no impact on the architecture

envisioned in sprint zero.

8. Proposed Methodology – Agile

 Development Practices
Agile practices such as incremental development and test-

driven development are adopted for implementing system

features. The proposed methodology adopts these practices

which are common to the agile approach to software

development. The agile development practices adopted by the

proposed methodology are discussed below:

 Test-Driven Development – Developers write tests

first before writing code. The proposed methodology

suggests using TDD in the Development Phase to

implement features.

 Customer Acceptance Tests – Acceptance tests

ensure that the system developed meets the

expectations of the customer. During the task

development, the customers specify acceptance criteria

for each feature. The customers later test the working

software produced at the end of each iteration against

the criteria specified previously.

 Incremental Development – Agile methods

emphasize on incremental development and the

proposed methodology accommodates the same. The

development period consists of release cycles and

working software is produced at the end of each release

cycle. Incremental development is practiced as features

group identified during the features grouping activity.

 Gather Details Just-In-Time – In the proposed

methodology, the development team postpones

gathering feature details till the task identification

phase.

 Direct Customer Involvement – The proposed

methodology encourages the involvement of

customers at every stage of the development process.

As customers are involved throughout, the team can

gather details about the features just-in-time.

 Evolutionary Requirements – in the proposed

methodology, the requirements are allowed to evolve

over time. All the requirements are not identified

upfront. This practice is called No Big Requirements

Up Front (BRUF).

 Adopt User Terminology – The features and

requirements are recorded in the domain language of

the user. This is done in order to help users understand

the captured needs and requirements.

9. Conclusion

The conventional software development models try to

define all essential requirements in the beginning of the

software development phase by using huge effort.

Agile methods, on the other hand, does requirements

engineering in iterations: the requirements are defined

in detail only when they are implemented.

Agile methods, however, have a lack of focus on certain

parts of what is considered as important in requirements

engineering. The customers don't usually cover non-

functional requirements when they define requirements.

Non-functional requirements are not precisely handled

in agile methods and it would be good to concentrate

more on these.

References
 [1] J. Erickson, K. Lyytinen, and K. Siau, “Agile Modeling,

Agile Software Development, and Extreme Programming:

The State of Research” J. Database Management, 2005, vol.

16, no. 4, pp. 88–99.

[2] J. Nawrocki et al., “Extreme Programming Modified:

Embrace Requirements Engineering Practices,” Proc. IEEE

Joint Int’l Conf. Requirements Eng. (RE 02), 2002, IEEE CS

Press, pp. 303–310.

[3] A. Eberlein, F. Maurer, F. Paetsch, , "Requirements

Engineering and Agile Software Development", Proceedings

of the Twelfth International Workshop on Enabling

Technologies: Infrastructure for Collaborative Enterprises,

2003

[4] J. Tomayko, “Engineering of Unstable Requirements

Using Agile Methods”, International Conference on Time-

Constrained Requirements Engineering, (2002) ,Essen,

Germany, 9 September.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 5, No 3, September 2012
ISSN (Online): 1694-0814
www.IJCSI.org 299

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

 [5] A. Eberlein, F. Maurer, F. Paetsch, "Requirements

Engineering and Agile Software Development", Proceedings

of the Twelfth International Workshop on Enabling

Technologies: Infrastructure for Collaborative Enterprises,

2003

[6] K. Beck, "Extreme Programming Explained: Embrace

Change", Addison- Wesley, 1999

[7] M. Babar,"Going Agile? Beware of architecture-related

changes and challenges", (2009b). Available at:

http://www.acubecommunity.org/wikis/index.php/Architectur

ecentric_Methods_ and_Agile_Approaches.

[8] S.Ambler, “Agile Requirements Modeling”, 2012

available at:

http://www.agilemodeling.com/essays/agileRequirements.htm

.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 5, No 3, September 2012
ISSN (Online): 1694-0814
www.IJCSI.org 300

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

