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ABSTRACT:  
            Directed digital signatures are probably the 
most important and widely used cryptographic 
primitive enabled by public key technology, and they 
are building blocks of many modern distributed 
computer applications. But many existing signatures 
schemes lie in the intractability of problems closely 
related to the number theory than group theory. In 
this paper, we present a new directed digital 
signature scheme based on general non-commutative 
division semiring.  For this, we construct the 
polynomials as the elements of additive structure of 
the semiring and take them as the underlying work 
structure. Then the signature scheme is developed on 
the multiplicative structure of the division semiring. 
And also 
             We present one important application  
‘Registration Process’ in different situations in 
common practice.  For this, we  use  a  directed 
digital  signature, to design a scheme such that the 
scheme provides a  registration number to a person 
or an organization. The registration number can’t be 
forged and misused and is the strength of the 
algorithm.  
             The security of the proposed directed 
signature scheme and registration number is based 
on the intractability of the Polynomial Symmetrical 
Decomposition Problem over the given non-
commutative division semirings.         
Keywords: Directed Digital Signature, Polynomial 
Decomposition problem, Non-commutative Division  
Semiring, Registration number.  
1.  INTRODUCTION 
1.1 Background of Public Key Infrastructure and 
proposals based on Commutative Rings 
 There is no doubt that the Internet is 
affecting every aspect of our lives; the most 
significant changes are occurring in private and 
public sector organizations that are transforming their 
conventional operating models to Internet based 
service models, known as eBusiness, eCommerce, 
and eGovernment. Public Key Infrastructure (PKI) is 
probably one of the most important items in the 
arsenal of security measures that can be brought to 
bear against the aforementioned growing risks and 
threats. The design of reliable Public Key 

Infrastructure presents a compendium challenging 
problems that have fascinated researchers in 
computer science, electrical engineering and 
mathematics alike for the past few decades and are 
sure to continue to do so. 
             In their seminal paper “New directions in 
Cryptography” [1] Diffie and Hellman invented 
public key Cryptography and, in particular, digital 
signature schemes. Today most successful signature 
schemes are based on the difficulty of certain 
problems in particular large finite commutative rings.  
For example, the difficulty of solving Integer 
Factorization Problem (IFP) defined over Zn (where n 
is the product of primes) forms the ground of the 
basic RSA signature scheme [2], variants of RSA and 
elliptic curve version of RSA like KMOV [3].  Another 
good case is  ElGamal signature scheme[4] that is 
based on the difficulty of solving the discrete 
logarithm problem (DLP) defined over a finite field Zp 
(where P is a large prime), of  course a commutative 
ring.  
          The theoretical foundations for the above 
signature schemes lie in the intractability of problems 
closely related to the number theory than group 
theory [5]. On Quantum computer, IFP, DLP, as well 
as DLP over ECDLP, are turned out to be efficiently 
solved by algorithms due to Shor [6] , Kitaev [7] and 
proos–Zalka [8]. Although practical quantum 
computers are as least 10 years away, their potential 
weakness will soon create distrust in current 
cryptographic methods [9]. 
        As addressed in [9], in order to enrich 
Cryptography, there have been many attempts to 
develop alternative PKC based on different kinds of 
problems. Historically, some attempts were made for 
a Cryptographic Primitives construction using more 
complex algebraic systems instead of traditional 
finite cyclic groups or finite fields during the last 
decade.  The originator in this trend was [10], where 
a proposition to use non-commutative groups and 
semigroups in session key agreement protocol is 
presented.  Some realization of key agreement 
protocol using [10] methodology with application of 
the semigroup action level could be found in [11].  
Some concrete construction of commutative sub-
semigroup was proposed there.   
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 According to our knowledge, the first 
signature scheme designed in an infinite non 
commutative groups appeared in [12].  This invention 
is based on an essential gap existing between the 
Conjugacy Decision Problem (CDP) and Conjugator 
Search Problem (CSP) in non-commutative group 
[13]. In, [14], Cao et.al.  Proposed a new DH-like key 
exchange protocol and ElGamal–like cryptosystems 
using  polynomials over non-commutative rings.    
             Digital signature is one of the most 
important techniques in modern information  security  
system  for its functionality of  providing data 
integrity and authentication. A normal digital 
signature [2,4,15] has the property that any one having 
a copy of  the signature and can check  it’s  validity  
using the corresponding public information. This 
“self  authentication”   property  is  necessarily  
required  for some applications of  digital signature 
such as  official documents issued by some 
authorities. However it is not suitable  for some other 
applications, where  a  signed message is personally 
or  commercially sensitive  to the signature receiver. 
For example as in bill of tax, bill of health etc. 
Therefore, to prevent the potential misuse of 
signatures, it is preferable to place some restrictions 
on this property. 
          To achieve this purpose, Lim and Lee [16], first 
proposed the concept of directed digital signature at 
AUSCRYPTO’92. In  directed  signature  scheme, 
when a signer  sends  a signed message  ‘m’ to a 
designated verifier(receiver), then,  only the 
designated  verifier  can directly verify the signature 
on  message  ‘m’, while the the others know nothing  
on the origin and validity of the  message ‘m’ without 
help of the signer or designated verifier. On the other 
hand, if necessary both the signer and the designated 
verifier can prove to  any  third party that  the 
signature is a valid signature on the message  ‘m’  
issued by the signer to the designated verifier. This 
property enables a dispute resolution in case that the 
signer tries to deny her signature or the designated 
verifier tries to deny the directedness of the signature. 
          In [16], Lim and Lee presented such a directed 
signature, in which the construction is based on the 
GQ signature [17] scheme. D.Chaum [18] introduced 
the concept of designated confirmer signatures. Later 
T.Okamato [19] presented a more practical 
construction of designated signatures. Recently, 
Manoj kumar  and Sunder  lal [20] proposed  two 
other types of  directed signature schemes based on 
Schnorr  signature. This work is the motivation for 
the present article. 
           In the first type of scheme, any third party can 
check the signature validity with the help of signature 
receiver or the signer as well. Both the signer and 
signature receiver have full control over the signature 

verification process. In other words, they are 
independent to prove the validity of the signature to 
any third party, whenever necessary. Where as in the 
second type of scheme, they presented two different 
applications of directed signature. 
(i). Directed delegated signature scheme, this scheme 
combines the idea of proxy signatures with directed 
signatures.  
(ii). Allocation of registration number, this scheme 
provides a registration number to an applicant, in 
which the registration number can’t be forged and 
misused. 
         However to our best  knowledge,  none of them  
has provided the provable security proof. On the 
other hand, there still does not exit any directed 
signature scheme based on RSA assumption 
presently, though  the ordinary RSA digital signature 
scheme is very popular. In 2006, Rongxing  Lu and 
Zhenfu Cao [21] presented a new directed signature 
scheme based on RSA  assumption, but it is fit for 
signing personally  or commercially sensitive 
message and may be useful to the internet community  
and web based system community. Particularly, it 
uses the techniques from provable security to analyze  
its  security. 
1.2. Our contributions 
 In this paper, we would like to propose new 
method for directed digital signature scheme based on 
general non-commutative division semirings.  The key 
idea of our proposal is that for given non-commutative 
division semiring, we generate polynomials on additive 
structure and take them as the underlying work 
structure. By doing so, we implement a new directed 
digital signature scheme on multiplicative structure of 
the division semiring. 
               And also, we present one important 
application in different situations in common practice. 
For this, we  use  a  directed digital  signature, to design 
a scheme such that the scheme provides a  registration 
number to a person or an organization, when he or 
organization wants to apply for the same to a 
government office in different situations. This scheme 
proposes a registration scheme, in which the 
registration number can’t be forged and misused. The 
advantage of this system is that we can take all types of 
registration numbers under a unique providing 
authority. In this system, there is no chance of getting 
unique registration number for any pair of applicants, 
even if there are more applicants in number.  
              The security of the proposed directed signature 
scheme and registration number are based on the 
intractability of the Polynomial Symmetrical 
Decomposition Problem over the given non-
commutative division semiring. But the construction of 
polynomials on additive structure and operating them 
on multiplicative structure, are strength of the directed 
digital signature and registration number. 
 
1.3  Outline of the paper: 
 The rest of the paper is organized as follows. 
In Section 2, we present the necessary Cryptographic 
assumptions over non-commutative groups. In 
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Section 3, first we define semiring, division semiring 
and integral co-efficient division semiring 
polynomials and  then  we present necessary 
cryptographic assumptions over non-commutative 
division semirings .  In Section 4, we propose new 
directed digital signature scheme based on underlying 
structure and assumptions. In section 5, we study the 
confirmation theorem and security concepts of the 
proposed signature scheme. We study the application 
of directed digital signature scheme i.e allocation of 
registration number in section 6.  In section 7, we 
verify the algorithm by concrete example. Finally, 
concluding remarks are made in Sec-8. 
2. CRYPTOGRAPHIC  ASSUMPTIONS  ON    NON-   
      COMMUTATIVE GROUPS: 
2.1 Two Well-known Cryptographic Assumptions  

As Z.Cao discussed in [14], In a non-
commutative group G, two elements x, y  are 
conjugate, written x ~ y,  if  y = z-1 x z  for some  
zG.  Here z or z-1 is called a conjugator.  Over a non 
commutative group G, we can define the following 
two cryptographic problems which are related to 
conjugacy. 
Conjugator Search Problem (CSP):  
Given (x,y)   G x G, find z   G such that    y = z-1 x z 
Decomposition Problem (DP): Given (x,y)   G xG 
and S   G, find 1 2,z z   S such that y = 1 2z zx

 At present, we believe that for general non-
commutative group G, both of the above problems 
CSP and DP are intractable. More precisely, CSP(DP) 
assumption states that there does not exist 
probabilistic polynomial time algorithm which can 
solve CSP(DP respectively) with non-negligible 
accuracy with respect to the problem scale. 
Note: May be,  in theoretical, these problems are not 
solvable for arbitrary instance. But in practice of the 
cryptographic applications, we usually start from 
some solvable instances to construct desired schemes.  
 2.2 Symmetrical Decomposition problem    over 
Non-Commutative Groups   
          Enlightened by the above problems, Z. Cao 
[14] defined the following Cryptographic problems 
over a non-commutative group G.   
Symmetrical Decomposition Problem  (SDP):       
Given (x,y)  G x G and m, n   I,  find  z   G  such   
that   y = zmx zn, where I is set of integers. 
 
Generalized symmetrical Decomposition Problems    
(GSDP):  Given (x,y)   G x  G,  S  G and m, n   I,   
 find  z   S  such that    y = zm x zn. 
     Hardness of  z: Clearly, GSDP can be looked as a      
type of constrained SDP. In general, if the size of S is       
large enough and its membership  information does       
not help one to extract z from  zm x zn, then we can       
say that GSDP is at least as hard as SDP.So that GSD      

assumption says that  GSDP is intractable i.e there is  
no probabilistic polynomial time algorithm which     
can solve GSDP with non-negligible accuracy with      
respect to the problem scale.         
3. BUILDING  BLOCKS  FOR  PROPOSED DIRECTED      
DIGITAL SIGNATURE SCHEME AND           
REGISTRATION   NUMBE 
3.1  Semiring             
       A Semiring R is a non-empty set, on which the 
operations of  addition  &   multiplication have been 
defined such that the      following conditions are 
satisfied. 

    (i). ( R, +)  is  a  commutative monoid with identity      
element  “0” 

    (ii). (R, ) is a monoid  with  identity  element   1. 
    (iii).Multiplication  distributes over addition  from       

either side 
(iv). 0  r  =  r  0   for   all   r  in  R 

    3.2   Division  semiring   
           An  element  r  of  a  semiring  R,  is a “unit”  if     
   and only if   there exists an element   r1  of   R       
   satisfying     r  r1 = 1 =  r1 

 r  
         The  element  r1 is  called  the inverse of  r  in  R.    

If  such an inverse r1 exists  for  a  unit  r,  it  must 
be unique. We will normally denote the inverse of  r  
by  r-1.  It is straightforward to see that ,  if   r  and  
r1   units of   R, then  r(r1)-1=(r1)-1

r-1 and  In 
particular  (r-1)-1  =  r. 
 

       we  will  denote the set of all units of  R, by       
U(R). This set is non-empty, since it  contains “1”      
and  is not all of  R, since it does not contain ‘0’.we      
have just noted that U(R) is a submonoid  of  ( R, ),     
which is infact  a group. If   U(R) = R/{0}, Then R, is  a     

    division semiring. 
3.3    Integral co-efficient  Polynomials on       
Division   Semiring   
           Let ( R, +, )  be  a non-commutative  division 
semiring. Let us consider positive    integral  co-
efficient  polynomials  with   semiring   assignment  
as follows.          
          At first, the notion of scale multiplication over 
R is already on hand. For  k  0Z  &  rR Then  (k) 
r =r + r + r +… + r + r  (k times ), For   k = 0,   it is 
natural to define  (k) r = 0 
Property 1. (a)rm

 (b)rn = (ab) rm+n =(b)rn  
(a)rm ,   

                           a,b ,m,n  Z  ,   rR                                 

Remark:  Note that in general 
    (a)r  (b)s  (b)s  (a)r   when  r  s,  since the 
multiplication in R is non-commutative. 

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 5, No 3, September 2012 
ISSN (Online): 1694-0814 
www.IJCSI.org 378

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.



 

 

Now, Let us proceed to define positive integral 
coefficient semiring  polynomials. Suppose that                           

2( ) ...... [ ]0 1 2 0
nf x a a x a x a x Z xn        

 is given positive integral coefficient polynomial. We 
can assign this polynomial by using an  element  r in  
R  &  finally , we  obtain                             

2( ) ......0 1 2
nf r a a r a r a r Rn       

Similarly                             
2( ) ......0 1 2

mh r b b r b r b r Rm       

for   some  n   m. Then we have the following 
Theorem1:   f(r).h(r) = h(r).f(r)      for   f(r), h(r) € R 
Remark:  If   r  &  s  are  two different variables in R,   
then    f(r) h(s)  h(s) f(r)    in   general. 
3.4 Further cryptographic assumptions on        

Non- Commutative   Division  Semirings 
        Let (R, +, ●) be a non-commutative division 
semiring. For any aR, we define the set PaR   by         

                  { ( ) / ( ) [ ]}0f a f x Z xPa
    

         Then, let us consider the new version of GSD 
over (R,●.) with respect to its subset Pa, and name it 
as polynomial symmetrical decomposition (PSD) 
problem.   
Polynomial Symmetrical Decomposition (PSD)  
problem over  Non- Commutative Division Semiring 
R:  Given   (a, x, y)  R3 and m, n  Z, find   zPa      
      such that      y = zm  x zn  
4. PROPOSED DIRECTED SIGNATURE SCHEME  
Directed  Signature Scheme from Non-
Commutative Division  Semiring:    
           Digital Signature on semirings could be found 
in [22]. This is, Directed digital signature scheme and 
contains the following main steps.   
Initial  setup: 
          Suppose that a Signer “A” wants to generate  a 
signature on  a message  ‘M’. So  that the receiver  B  
only can verify the signature & that  B  can prove the 
validity of signature to any third party  “C”, 
whenever   necessary. 
          Let ( R, +, ● ) be a  non-commutative division    
semiring  &  Let  p, q € R, m € Z+, H are the public   
parameters of the system. Let H:R →M be a collision   
free hash function, which maps  R  to the message   
space  M.  
Key  Generation: 
(a). The Signer  “A” chooses a polynomial  at 
random , f (x) € Z >0[x]  such that  f (p) ≠ 0, f (p) € R, 
then “A”  takes  f(p) as  his private key  and   
computes  y = f (p)-m q f (p)m   as his  public key[14]. 
(b). Another person “B” chooses  a  polynomial  at  
random g(x) € Z >0[x] such that g (p) ≠ 0,g (p) € R, 

then “B” takes  g (p) as  his private key  and   
computes  z = g (p)-m q g (p)m   as  her  public key. 
Signature  Generation: 
(a). Again “A” chooses , another polynomial at 
random   h (x) € Z >0[x], such that    h (p) ≠ 0,    h (p) 

€ R  and  then computes  
     wB = h (p) 

-mq h(p)m         zB =  h (p) 
-m z h(p)m 

(b). Using one way hash function  ‘H’ and  a message  
M, “A”  also computes 
     rA =H( zB,  wB,  M ),    sA = f (p) 

-m r A f(p)m  
(c)  A  sends  { s A,  w B,  r A,  M }  to  B  as his  
signature on the message M. 
Signature Verification by  B:  
(a). B collects the signature of  A i.e  
       { s A,  w B,  r A,  M } and  make this public  
(b). B  also  computes   µ  =  sA 

-m   w B   s A m    
       λ = sA 

-m g(p)m    and    zB  = λ -1 µ λ      and   B  
checks the validity of  signature  by   computing   rA 
= H( zB, wB, M) locally, and then comparing it to the 
rA, received from signer. 
Proof  of  validity by B to any third party C: 
(a). B sends { sA,  wB,   rA, M , m,  λ } to  C 
(b). C  checks  rA = H( zB, wB, M) by   computing   rA 
locally, and then comparing it to the rA, received from 
signer.  
       If  this does not  hold, C stops  the  process, 
otherwise goes to the next steps. 
(c). B  in a zero knowledge fashion proves to C that  
S = T as  follows. 
(i). C chooses a polynomial at random, Ф(x) € Z 
>0[x], such that  Ф(p) ≠ 0, Ф(p) € R  and Computes 
the challenge   
Q = Ф(p)m[ sA

m λ z] Ф(p)-m  and  C sends Q to B. 
(ii). B chooses a polynomial at random, ψ(x) € Z >0[x]  
such that ψ (p) ≠ 0, ψ(p)€R and  Computes the 
response   
       T = ψ(p)-m[Q.g(p)-m] ψ(p)m  and  B sends  T to  C 
(iii). C  sends   Ф(p)   to  B. 
(iv). B  verifies that      Q = Ф(p)m[ sA m λ z] Ф(p)-m  
(v).  B  sends  ψ(p)  to  C 
(vi).  C verifies that   
                               S = ψ(p)-m[Ф(p)m q Ф(p)-m ] ψ(p)m 

If it holds  (S=T), then C accepts {sA, wB,, rA, M} is an 
authenticated  signature . 
5.  CONFIRMATION  THEOREM  AND SECURITY 
5.1  CONFIRMATION  THEOREMS    
5.1(a)Theorem:     Let  ( p, q, y, z ) € R4 
Completeness: Given a signature {sA ,wB , rA, M} if 
the person ‘A’ follows signature verification 
algorithm, then  the person  ‘B’  always  accepts  
{ sA,, wB, , rA, M} is an authenticated signature. 
Proof: we recall that z = g(p)-m q g(p)m   is the  
public key  of  the person B. 
      wB = h (p) 

-mq h(p)m      µ = sA 
-m   w B   s A m   

       λ = sA 
-m  g(p)m              λ-1 = g(p)-m sA 

m  
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are other parameters  of  the  signature algorithm. 
Then 
λ-1 µ λ  = g(p)-m sA 

m . sA 
-m   wB   s A m . sA 

-m  g(p)m 

            =  g(p)-m  wB 
  g(p)m

 
            = g(p)-m 

 h (p) 
-mq h(p)m g(p)m  

Since    g(p). h(p) = h(p). g(p)   then   
g(p)-1.h(p)-1 = h(p)-1.g(p)-1 ,  by theorem 1 of  3.3 
        And  also note that g(p)m.h(p)m =h(p)m.g(p)m  
then g(p)-m.h(p)-m  = h(p)-m.g(p)-m     and    hence  
λ-1μ λ = h(p)–m [g(p)-m 

 q g(p)m ]h(p)m  
          = h(p)–mzh(p)m  = zB [ zB = h(p) 

–m  z h(p)m ] 
Then  B computes   H( zB, wB, M)  and  is always 
equal to  rA , when A  follows this algorithm.    So 
that  B  accepts the signature  { s A, , w B, , rA,  M } is 
an authenticated signature, which is generated by  A  
to  B.  Hence  the proof  is complete. 
5.1(b)Theorem:  (zero-knowledge case)   
                   Let  ( p, q, y, z ) € R4                
Completeness: Given a signature {sA,,wB,, rA, M} if 
the person  ‘A’  follows signature verification 
algorithm , then the person  ‘B’ always  accepts  
{ sA,, wB,, rA, M} is an authenticated signature. 
Proof: From the zero-knowledge case, we have  
T = ψ(p)-m[Q.g(p)-m] ψ(p)m,    λ = sA 

-m  g(p)m     
   and    z =g(p)-m q g(p)m ,      where 
Q = Ф(p)m[ sA m λ z] Ф(p)-m 
    = Ф(p)m[sA

m sA
-m  g(p)m g(p)-m q g(p)m ]Ф(p)-m  

    = Ф(p)m[q g(p)m ] Ф(p)-m 

   So   that, we can have  
Q .g(p)-m = Ф(p)m[q g(p)m ] Ф(p)-m. g(p)-m 

                =  Ф(p)m[q g(p)m ] g(p)-m Ф(p)-m           
                       [  Ф(p)-m. g(p)-m = g(p)-m Ф(p)-m] 
                =  Ф(p)m q Ф(p)-m 
And  hence   T = ψ(p)-m[Q. g(p)-m] ψ(p)m 
                        = ψ(p)-m[Ф(p)mq Ф(p)-m] ψ(p)m=S 
Which  means  that   T = S.  So that,  C  accepts the 
signature {sA,, wB,, rA, M } is an authenticated 
signature, which is generated by  A  to  B. 
           Hence  the  proof  is  complete. 
5.1(c)Theorem: Our proposed signature scheme is a  
really directed signature scheme 
Proof: To  verify the signature {sA, wB,  r A, M}, we 
need the following parameters  

( )A A AB
m m m ms g p and s w s    , zB = 1      

i.e this verification process needs  the private key  
g(p) of the designated verifier  B. Therefore, only 
designated verifier B, can  verify  the  authenticity of 
this signature scheme. 
        As far as third party C is concerned, computing  
ψ(p) from T, is equivalent to solve the polynomial 
symmetrical decomposition problem. However , 
when  C holds  ψ(p) with the help of  designated 
verifier B, he can easily verify the signature. Hence 
our proposed signature scheme is actually a directed 
signature scheme. 

5.1(d)Theorem : Our proposed signature scheme is 
based on zero-knowledgeness verification for third 
parties.  
Proof:  The protocol is zero knowledge, namely on 
input of a message and its valid signature, any third ( 
possibly cheating ) verifier V* interacting with the 
prover B, does not learn any information from the 
validity of the signature. 
             In this directed  signature scheme, the 
designated verifier B, chooses at random, a 
polynomial  ψ(x) €  Z >0[x]  such  that  ψ(p) (≠ 0) € 
(R, +, ●)  a  non-commutative division semiring and 
compute the response T € ( R, +, ●). So we can treat C 
as having a random element of  ( R, +, ●). Any 
random choice of   ψ(p) (≠ 0)  € (R, +, ●)  by  B in  
practice  makes  the  response  T  to  appear  as  a  
random  element. 
          During this transactions, the third  party  C 
could not learn any thing about the  directed signature 
scheme. Hence the protocol is zero-knowledgeable. 
5.2  Security  Analysis: 
        Assume that the active eavesdropper Eve can 
obtain, remove, forge and retransmit any message 
that Alice sends to Bob.  
         As security analysis given by E.Sakalauskas 
[24], we discuss security of signature scheme for four 
main attacks:  Total break, Data forgering  on valid 
signature, Signature repudiation on valid data and 
existential forgering.  
5.2(a). Total Break ( Retrieving the secret keys): 
       This is as difficult as solving Polynomial 
symmetrical decomposition problem on non-
commutative division semiring. No one  get the  
secret key f(p), since f(x) € Z>0[x]  is a randomly  
and secretly generated polynomial. On the other 
hand,  by  using  the public keys  A  and  B  are  y = 
f(p)-m q f(p)m,  z = g(p)-m q g(p)m,  no one get the 
secret keys f(p) and g(p), as we believe that 
polynomial symmetrical decomposition problem is 
intractable on non-commutative division semiring. 
5.2(b). Data  forgering : 
       Assume that a forger replaces the original 
message ‘M’ with a forgered one ‘Mf’. then he sends  
Mf  to the designated  signer B and taking the 
signature {s A,  w B,  r A, Mf} and  verifies that  rA =  
H( z B,  w B,  Mf ), but verification fails since 
rA = H( z B,  w B,  M)  ≠ H( z B,  w B,  Mf ). 
       Another attempt is try to find Mf ,  for valid  rA. 
But this is impossible in two ways, because we 
assume that hash function (H) is cryptographically 
secure in one side, and he is not able to find  zB  as it 
is CSP based, so it is intractable in other side. So the 
invalid data, can’t  be signed  with a valid signature. 
5.2(c)  Signature  Repudiation: 
       Assume original signer “A” intends to refuse 
recognition of his signature on some valid  data. Then  
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valid signature {sA, wB,  rA, M} can be forgered  by an 
attacker Eve and  she can replace message M with 

forgered signature  * * * *, , , }{ MA B Aw rs  instead. Then 
the designated  verifier B  computes 

                    * * * *. .B

m m
s w s


     

  1* * * * * *( ) . ( ) , B
m ms g p z   

   

And then checks the validity of the signature by using 

the inequality  rA =H( z B,  w B,  M) * * *( , , )W MB BH z    
and detects the forgery. Note that there is a negligible 
probability to hold this equality, because this 
equation needs elements satisfying commutative 
property on non-commutative division semiring and 
parameters based on PSD problem. So Eve is not able 
to find those elements on (R, +, ●). Hence,  this 
signature scheme ensures the non-repudiation 
property.  
5.2(d)  Existential Forgery 
        A forger may try to impersonate the designated 
signer B, by choosing a random polynomial  
h1(x)€Z>0[x] such that h1(p) € (R, +, ●) and an 
element q1€(R, +, ● ) then  calculates  
   wB = h1(p) 

-mq h1(p)m      zB =  h1(p) 
-m z h1(p)m 

    rA=H( zB,  wB,  M)      for some message   M 
but without knowing the secret  key f(p), it is highly  
difficult to generate a valid sA=f(p)-mrAf(p)m

 and 
hence to satisfy verification equation rA=H(zB, wB,    
M) , where      zB= 1     for 

       ( )A A AB
m m m ms g p and s w s     so that 

signature is secure under existential  forgery. 
Supporting Actions of  Security: 
5.2(d). If the designated signer B, is dishonest, then  
he can cheat the original signer A and  get her/his 
signature {sA, wB, r A,  M} on any message ‘M’ of  
her/his  own choice. 
     The solution of this problem is the existence of a 
trusted third party. The original signer ‘A’  may 
stress that  all messages between two parties A and B, 
during the key generation algorithm to be 
authenticated. The third party keeps the records of 
original signer’s orders and checks any case of 
designated signer disobeying original signer’s order. 
5.2(e)Can one forge a signature{sA, wB, rA, M} using   
         the equation A AB

m mws s   

         Computing the element sA€(S, +, ● ) , a  non-
commutative division semiring, from the above 
equation is equivalent to solving symmetrical 
decomposition  problem. We believe that PSD  is 

intractable on the designed underlying work 
structure. 
        Even then, if  any forger  selects  s*  in  some 
way,  and  sends  the  fake  signature  
{ s*, wB, rA, M } to B,  receiver  B computes  

            * * *. .B

m m
s w s


       

  1* * * * * *( ) . ( ) , B
m ms g p z   

   

Then  concludes  that   

      rA = H(zB, wB, M) * , , )( W MB BH z    
and detects  the  forgery. 
6. ALLOCATION OF REGISTRATION NUMBER    
6.1   INTRODUCTION   AND   MOTIVATION  

          In 2004, Sunder Lal and Manoj Kumar [20], 
presented a registration scheme, which is based on 
directed digital signature scheme on discrete 
logarithms. This directed signature follows Schnorr 
signature, according to its structures [23]. 
          Registrations of various kinds are a  common 
practice in our society, like that of vehicle, shop, and  
factory  etc. in daily life, there are so many situations, 
when it is necessary, beneficial and expedient  to 
have registration  number for vehicles  etc. This 
section  proposes a registration scheme, in which  the 
registration number cannot be forged and misused. 
Under this scheme, the validity of  an allocated 
registration number  can be verified at any time by 
any authority. The allocating authority and verifying 
authority may be different. For practical 
implementation of this idea, we use directed digital 
signature scheme. 
            We all are familiar with the present status of 
our registration system. A hand written signature is 
used for the allocation of registration number by any 
authority. Every signature is followed by lot of 
formalities and records of verification. Even though 
and unfortunately, the present system is not much 
secure and liable.  
6.2   PROPOSED  REGISTRATION  NUMBER   
      This procedure for allocation of a registration 
number contains the following main  five  steps. 
Initial setup: 
       We assume a government  center , providing the 
registration number for the public. An officer   
“YAMU”  heads  this  center .Y possesses  a secret  
and public key pair. Again consider a public person   
“CHAYA”  with  a secret  and public key pair. C  
wants  her registration number. The officer  “Y” 
generates a registration number with a message m , 
so that “C” can  directly collect her registration 
number. She can use her registration number 
publicly. She is able to prove its validity to any 
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authorized party  “R”, whenever necessary. No one 
other than  “C” can use this registration  number , 
because only she can prove its validity.  Allocation of  
registration number  and  verifying process are as 
follows. 
        Let (S, +, ●) be a non-commutative division 
semiring. &  p, q € S are the public parameters of the 
system. H:S→M  be a cryptographic hash function, 
which maps  S  to the message space M. To 
implement this idea, we use the directed signature 
scheme which is presented in the section 4 , for m=1.    
Key  Generation: 
     The officer  “Y” chooses a polynomial  at random 
, f (x) € Z>0[x] such that  f (p) ≠ 0, f (p) € S,  then Y 
takes  f (p) as  his private key  and    computes  y = f 
(p)-1 q f (p)  as his  public  key. 
      Another person “CHAYA” who wants 
registration number, chooses a polynomial at random 
g(x) € Z> 0[x] such that  g (p) ≠ 0, g (p) € S, then  
“C”  takes  g (p) as  his private key  and computes   z 
= g (p)-1 q g (p)  as  her  public key. 
   The private  and  public  key  pairs of  Y  and  C  
are  (f(p), y)  and  (g(p), z). 
Allocation of Registration number by Y to C: 
(Signature  Generation) 
(a). Again Y chooses , another polynomial at random  
h (x) € Z>0[x], such that  h(p) ≠ 0, h (p) € S  and   
computes     
          wy=h(p) 

-1q h(p),      zc =  h(p) 
-1 z h(p) 

(b). Using one way hash function  H  and  a message  
m, Y also computes 
        r y = H( zc, wy, m)      s y =  f (p) 

-1 r y f(p)  
(c) The  officer  Y   sends  {s y,  w y,  r y, m }  to  C,  
as  her registration number 
Collecting & Verification of Registration  number  
by  C: 
(a). C  collects {s y,  w y,  r y, m }  &  make this public 
as her registration number 
(b). C computes 
      µ=sy 

-1 wy sy     λ = sy 
-1 g(p)    zC = λ -1μ λ             

and   then  checks the validity of her registration 
number  by  computing  r y = H( zc, wy, m) 
Verification of Registration number by  authority  
R: 
(a).  C   sends   {s y,  w y,  r y, m,  λ } to  R 
(b).  R   checks  r y =  H ( z c,  wy,  m)  
          If  this does not  hold,  R  stops  the  process, 
otherwise goes to the next steps. 
(c).   C  in a zero knowledge fashion proves to  R  
that   V = T as  follows. 
(i). R chooses a polynomial at random, Ф(x) € Z>0[x],   
such that Ф(p)≠0, Ф(p) € S, next computes  the  
challenge  Q=Ф(p)[sy λ z]Ф(p)-1 and  then   R  sends  
Q  to  C. 

(ii). C chooses a polynomial at random, ψ(x) € Z >0[x] 
such that ψ (p) ≠ 0, ψ(p) € S, next             
Computes the response T= ψ(p)-1[Q.g(p)-1] ψ(p)    
and  then  C sends   T  to   R 
(iii)  R   sends   Ф(p)   to  C.  
(iv). C   verifies that   Q = Ф(p)[ s y λ z] Ф(p)-1 
(v).  C   sends   ψ(p)  to  R 
(vi). R  verifies that V=ψ(p)-1[Ф(p)qФ(p)-1 ] ψ(p) 
         If  it holds (V=T)  then R accepts {sy, wy, ry m} 
is an authenticated registration number. 
6.3  CONFIRMATION   THEOREMS AND  SECURITY    
        OF   REGISTRATION   NUMBER 
         Confirmation theorems, security and soundness 
of allocation registration number follows  security 
concepts of  directed digital signature, which is 
described in section 5,  but for m =1, because  
allocation of registration number  is an application  of  
directed digital signature scheme on  non-
commutative division semiring. Thus the allocation 
of registration number in the electronic world has the 
following characteristics. 
(i). Only the user can use his/her registration  
number, due to the property of directed Signature  
scheme.  
(ii). The problems of forgery can be easily identified  
and solved easily, as discussed in section 5.2 
(iii).  By using this system, we can minimize the 
possible misuse of the present system 
(iv). The  obvious  advantage of our scheme over 
present system is that resulting registration number  
has no meaning to any third person. 
(v).  Since the relation between the signature and the 
signer secret key is not known to any one, but the 
designated receiver. Hence the security level is much 
higher than  any scheme  based on discrete 
logarithms. 
7. CONCRETE MODEL ON MATRIX DIVISION SEMIRINGS   
    We illustrate the allocation of registration number 
by using matrix division semiring, which is clearly  
non-commutative. 
Initial setup: 
         Suppose, we choose S is a 2x2 Matrix division 
semiring, under the usual operations of Addition &  
Multiplication. Trivially it is non-commutative.  So 
we define ( )2M Z P   

   : , , , , , 0
a b

a b c d Z for prime p ad bcpc d
   

  
and S 

= M2(ZP) U 0 0
0 0
 
  

; where p is large  secure prime. 

Then  ( S, +, ● )  is  clearly  non-commutative  
division  semiring and  is the fundamental work 
infrastructure. For convenience, Choose p=23, and 
evaluated all calculations in the group of 
multiplication modulo 23. 
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Let H:SХSXS → M=M2(ZP)  be   a  cryptographic 
hash function, which maps   SХSXS to the message 
space  M  &  is defined  as   

H 1 2 1 2 1 2, ,
3 4 3 4 3 4

a a b b c
a a b

c
b c c

     
          

 

                      
mod mod

2 2
2 modmod

2 2

a p b pi i

c pc pi i

 



 
 
 

 mod p 

Key  Generation: 
          An  officer  ‘Y’  chooses  at  randomly ,  two 

elements   p = 2 5
7 4
 
  

,  q =  1 9
3 2
 
  

 € ( S, + , ● )       

        Also chooses a   polynomial  randomly  f(x) = 
3x3 + 4x2 +5x +6 ,such that 

       f (p) = 
3 2

2 5 2 5 2 5
3 4 5 6

7 4 7 4 7 4
I       

          
 

             1036 1090 1 9
mod 23

1526 1472 8 0
    
      

 

as  his private key  &  Also computes 

       y =  f (p)-1 q f (p) = 
1

1 9
8 0


 
  

1 9
3 2
 
  

1 9
8 0
 
  

 

          =  57 12
357 222
 
  

 mod 23 =  11 12
12 15
 
  

 

as   his  public key. Similarly, the person CHAYA,  
chooses  a polynomial at  random  g(x) = x4 + 5x3 + 
2x +1  such that  g(p) ≠ 0,  g(p) € S   and 

       g(p)  =  
4 3

2 5 2 5 2 5
5 2

7 4 7 4 7 4
I       

          
 

40 30 17 07
mod 23

42 29 19 06
    
      

as  her private key.  &   

also computes  z = g (p)-1 q g (p) 

                           =
1

17 07
19 06


 
  

1 9
3 2
 
  

17 07
19 06
 
  

mod23      

                           = 716 262
703 253
 
  

mod 23= 03 09
13 00
 
  

 

as   her public key. 

where   f(p)-1 = 
1

72

0 9
8 1



 
  

=
1

20

0 14
15 1
 
  

 

                     =15 0 14
15 1
 
  

 mod 23 = 0 3
18 15
 
  

 

and     g(p)-1 = 
1

31

6 7
19 17



 
  

=
1

15

6 16
4 17
 
  

 

                    = 20 6 16
4 17
 
  

 mod 23 = 5 21
11 18
 
  

 

Allocation of Registration Number by Y to C : 

YAMU,  also chooses another polynomial  
h (x)= x5 + 5x + 1, such that  h(p) ≠ 0, h(p) € S.  

  h(p) = 
5

2 5 2 5
5

7 4 7 4
I    

      
 

         24473 24730 01 05
mod 23

34622 34365 07 03
    
      

 

and   then   computes   wy= h (p)-1 q h (p) 

                  =
1

01 05
07 03


 
  

1 9
3 2
 
  

01 05
07 03
 
  

 mod 23 

                  = 627 576
283 204
 
  

mod 23= 06 01
07 20
 
  

  & 

zC = h (p)-1.z h (p) 

    =
1

01 05
07 03


 
  

03 09
13 0
 
  

01 05
07 03
 
  

 mod 23 

   = 573 684
285 304
 
  

 mod 23= 21 17
09 05
 
  

 

Where     h(p)-1 =
1

32

3 5
7 1



 
  

=
1

14

3 18
16 1
 
  

 

                        =5 3 18
16 1
 
  

 mod 23 = 15 21
11 05
 
  

 

Let m = 8 13
19 22
 
  

be the message &  hence  computes   

 r y =  H ( z c,  wy,  m)  = 
52 34

2 2
62 1078

2 2

 
  

 mod 23                   

                            
06 11

2 2 18 01
mod 2316 20 09 062 2

 
   
     

 

and  then  computes  the  other  parameters  of  the  
algorithm  are  

s y =  f (p) 
-1 r y f(p) =

1
1 9 18 01
8 0 09 06


   
      

1 9
8 0
 
  

 

                             = 148 36
150 198
 
  

 mod 23 = 10 13
12 14
 
  

 

Then   y    sends  {sy,  wy,  ry, m} i.e 

 10 13 06 01 18 01 08 13
, , ,

12 14 07 20 09 06 19 22
       
              

 

as  her  registration  number. 
Collecting  &  Verification  of  Registration 
Number by C: 
(a).  C  collects   

 10 13 06 01 18 01 08 13
, , ,

12 14 07 20 09 06 19 22
       
              

 &   

make this  public  as  her   registration  number. 

(b). C   computes  1
y yy

s w s   
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          =
1

10 13
12 14


 
  

06 01
07 20
 
  

10 13
12 14
 
  

 mod 23 

          = 232 300
234 277
 
  

mod 23 = 02 01
04 01
 
  

 

1 ( )
y

s g p  = 
1

10 13
12 14


 
  

17 07
19 06
 
  

mod 23  

      = 186 62
458 174
 
  

 mod 23 =  02 16
21 13
 
  

  and  

zC = λ-1μλ =
1

02 16
21 13


 
  

02 01
04 01
 
  

02 16
21 13
 
  

mod 23 

              = 389 477
170 120
 
  

 mod 23 = 21 17
09 05
 
  

;  where 

1
ys =

1
10 13
12 14


 
  

= 140 100
110 100
 
  mod23 = 2 8

18 8
 
    

 λ-1  = 
1

02 16
21 13


 
  

= 26 14
04 04
 
  

 mod 23 = 3 14
4 4
 
  

 

and  Checks  the Validity of her registration number 
by computing  r y = H( zc, wy, m)    

                             =
52 mod23 34 mod23

2 2
mod 2362 mod 23 1078 mod23

2 2

 
  

 

                           
06 11

2 2 18 01
mod 2316 20 09 062 2

 
   
     

 

If this is true, then She receives her registration 
number as authenticated. 
Verification of Registration number of C by 
authority R: 
(a). C   sends  {s y,  w y,  r y, m,  λ } to R  

 10 13 06 01 18 01 08 13 02 16
, , , ,

12 14 07 20 09 06 19 22 21 13
         
                  

. 

(b).  R  checks    r y = H( zc, wy, m) = 18 01
09 06
 
  

  

        If this not hold, R stops the process, otherwise 
goes to the next steps. 
(c).  C   in  a zero  knowledge  fashion  proves  to  R  
that  V = T  as  follows. 
(i).  R chooses a polynomial at random, Ф(x) =  x3 + 
9x +1 such that  Ф(p) ≠ 0 and Ф(p) €  S,   computes 

 Ф(p) =  
3

2 5 2 5
9

7 4 7 4
I    

      
 

          307 360 08 15
mod 23

504 451 21 14
    
      

 

&  computes the  challenge Q  =  Ф(p)[ s y λ z] Ф(p)-1 

                         = 08 15
21 14
 
  

 04 15
20 10
 
  

 
1

08 15
21 14


 
  

 

                = 354 54
501 74
 
  

 mod 23 = 09 08
18 05
 
  

;  

  and    R  sends  Q  to  C. 

Where  Ф(p)-1 =
1

08 15
21 14


 
  

= 84 48
12 48
 
  

mod 23 

                       = 15 02
12 02
 
  

  and 

 s y λ z  = 10 13
12 14
 
  

02 16
21 13
 
  

03 09
13 00
 
  

 mod 23  

             = 142 153
135 171
 
  

 mod 23 = 04 15
20 10
 
  

 

(ii).   C  chooses a  polynomial  at random ,  ψ(x) = x4 
+ 3x2 +5   such   that   ψ(p)  ≠ 0,  ψ(p)  €  S,   
computes  

    ψ(p) = 
4 2

2 5 2 5
3 5

7 4 7 4
I    

      
 

          28 30 05 07
mod 23

19 40 19 17
    
      

  

and   calculates  the  response 
 T = ψ(p)-1[Q.g(p)-1] ψ(p) 

    =
1

05 07
19 17


 
  

18 11
07 08
 
  

 05 07
19 17
 
   mod 23 

    = 390 402
96 96

 
  

 mod 23 = 22 11
04 04
 
  

 

 and  C  sends  T    to   R.  where 

 ψ(p)-1 =
1

05 07
19 17


 
  

= 187 176
mod 23

44 55
 
  

                                    

           = 3 15
21 09
 
  

 

and   Q.g(p)-1 = 9 8
18 5
 
  

5 21
11 18
 
  

 mod 23    

                       = 18 11
7 8
 
  

 

(iii).  R  sends  Ф(p) = 08 15
21 14
 
  

  to   C  

(iv).   C   verifies that   Q  =  Ф(p)[ s y λ z] Ф(p)-1  

        = 08 15
21 14
 
  

04 15
20 10
 
  

1
08 15
21 14


 
  

mod 23 

          =  354 54
501 74
 
  

 mod 23 = 09 08
18 05
 
  
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(v).   C   sends   ψ(p) = 05 07
19 17
 
  

  to  R  

(vi). R verifies that V=ψ(p)-1[Ф(p) q Ф(p)-1 ]ψ(p) 

        =
1

05 07
19 17


 
  

18 11
07 08
 
  

05 07
19 17
 
  

 mod 23 

        = 390 402
96 96

 
  

  mod 23  = 22 11
04 04
 
  

 

Where   Ф(p) q Ф(p)-1  

        = 08 15
21 14
 
  

1 9
3 2
 
  

1
08 15
21 14


 
  

 mod 23 

        = 225 34
375 54
 
  

 mod 23 = 18 11
07 08
 
  

 

R concludes that V=T, He accepts the  Registration  
number  of   C  as  authenticated. 
8.  CONCLUSIONS 
       In this paper, we presented a new directed digital 
signature scheme based on general non-commutative 
division semiring.  For this, we construct the 
polynomials as the elements of additive structure of 
the semiring and take them as the underlying work 
structure. Then the signature scheme is developed on 
the multiplicative structure division semiring. In this 
case, non-commutative property plays an important 
role in the signature scheme, as the public key and 
other structures depend on the conjugacy problem. 
      We also presented one important application in 
different situations in common practice. For this, we  
used a directed digital  signature, to design scheme 
such that the scheme provides a  registration number 
to a person or an organization, when he or 
organization wants to apply for the same to a 
government office in different situations.  
          The advantage of this system is that we can 
take all types of registration numbers under a unique 
providing authority. In this system, there is no chance 
of getting unique registration number for any pair of 
applicants, even if there are so many  applicants in 
number. 
      At this instance, the algorithm of registration 
number designed for theoretical idea only.  Next step, 
how to produce this registration number in sequence 
of increasing order for practical applications and 
other difficulties in realization are subjected to 
further discussion. 
      The security of the proposed directed signature 
scheme and registration number are based on the 
intractability of the Polynomial Symmetrical 
Decomposition Problem over the given non-
commutative division semirings. 
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