

Cache Based Query Optimization Approach in Distributed Cache Based Query Optimization Approach in Distributed Cache Based Query Optimization Approach in Distributed Cache Based Query Optimization Approach in Distributed

DatabaseDatabaseDatabaseDatabase

Mantu Kumar1, Neera Batra2 and Hemant Aggarwal3

 1 Computer Science and Engineering, Maharishi Markandeshwar University

Mullana(Ambala), Haryana-133207, India

2 Computer Science and Engineering, Maharishi Markandeshwar University

Mullana(Ambala), Haryana-133207, India

3 Infosys Ltd.

 Bangalore, Karnataka, India

Abstract

Query optimization in distributed databases is explicitly needed

in many aspects of the optimization process, often making it

imperative for the optimizer to consult underlying data sources

while doing cost based optimization. This not only increases the

cost of optimization, but also affects the trade-offs involved in

the optimization process significantly. The leading cost in this

optimization process is the cost of costing that traditionally has

been considered insignificant. The optimizer can only afford a

few rounds of messages to the under-lying data sources and

hence the optimization techniques in this environment must be

geared toward gathering all the required cost information with

minimal communication. In this paper, a cache based query

optimization model has been proposed which shows better hit

ratio even for the initial queries made since local cache has been

used instead of global cache. A cache is implanted between the

local optimizer and local database. Whenever a query is given to

a local optimizer, local optimizer first checks the cache rather

than fetching the data directly from the database. In case, if the

solution of query can be obtained from the cache, it results in

saving a huge amount of computation time as accessing a cache

is faster than accessing the database. The proposed cost

optimization model works on the basis of four different factors

i.e. server distance, server capacity, server load and current queue

length to provide optimal node where query should be executed.

Keywords: distributed database, cost optimizer, query

optimization, cache, local cache, server load.

1. Introduction

In world of universal dependence on information system,

people want to access database from different parts of the

world. Company also wants to deploy business worldwide.

Due to global business policy, distributed database has

become very popular and mostly used worldwide. A

distributed database is a database in which storage devices

are not all attached to a common processing unit such as

the C.P.U. It may be stored in multiple computers located

in the same physical location, or may be dispersed over a

network of interconnected computers [1].

Figure 1. Distributed database system architecture

Global Schema

Fragmentation Schema

Allocation Schema

Local mapping

Schema 1

DBMS of Site 1

Local

database at

site 1

Local mapping

Schema 2

Local mapping

Schema n

DBMS of Site 2 DBMS of Site n

Local

database at

site 2

Local

database at

site n

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 6, No 1, November 2012
ISSN (Online): 1694-0814
www.IJCSI.org 389

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

The management of query processing becomes very

complex and its time taking process, so, query processing

is a key issue in distributed database system.

Figure 1 shows the collection of data (e.g. in a database)

that can be distributed across multiple physical locations.

A distributed database can reside on network servers on

the Internet, on corporate intranets or extranets or on other

company networks. The replication and distribution of

databases improves database performance at end-user

worksites.

Query optimization is a function of many relational

database management systems in which multiple query

plans for satisfying a query are examined and a good query

plan is identified. This may or may not be the absolute best

strategy because there are many ways of doing plans

[9][14]. There is a trade-off between the amount of time

spent figuring out the best plan and the amount running the

plan. Different types of database management systems

have different ways of balancing these two factors. Cost

based query optimizers evaluate the resource footprint of

various query plans and use this as the basis for plan

selection [5].

The rest of paper is organized as follows. In section 2, we

summarize the literature survey. In section 3, proposed

query optimization model is presented followed by cost

optimizer in section 4. Finally, in section 5, query

optimization algorithm and experimental results are

discussed and section 6 concludes the work.

2. Literature Survey

According to Swati Gupta et al.[1] distributed database

systems provide an improvement on communication and

data processing due to its data distribution throughout

different network sites. Not only is data access faster, but a

single-point of failure is less likely to occur and it provides

local control of data for users [23].

Fan Yuanyuan et al.[2] and Reza Ghaemi et al.[3]

emphasized that the search complexity is constantly

increasing due to new distributed database applications

such as huge deductive database systems and we need

better algorithms to speedup traditional database queries.

An optimal dynamic programming method for such high

dimensional queries has been the big disadvantage of its

exponential order and thus we are interested in semi-

optimal but faster approaches.

Advantage of using cache in query optimization is to

reduce server load for frequently requested contents,

reserve server capacity for other non-cacheable request of

client/user and capital expenditure as well as operational

savings may also be achieved by optimizing server

utilization.

D. Kossmann et al.[6] describe how cache investment

component can be built and integrated with the query

optimizer without changing its basic components such as

plan enumeration, search strategy or cost model. S. Adali

et al.[4] uses distributed caching which makes network

traffic flow less congested and also allows better load

sharing along with more fault tolerance. Q. Luo et al. [12]

describes DBCaches, which is deployed at application

server. When arbitrary SQL statements are generated

from the same request by the application that are intended

for a backend database server, they can be answered: at

the cache, at the backend database server, or at both

locations in a distributed manner. The factors that

determine the distribution of workload include the SQL

statement type, the cache content, the application

requirement on data freshness and cost-based optimization

at the cache.

3. Proposed Query Optimization Model

To solve the problem of query processing in distributed

database systems, a cache based query optimization model

has been proposed.

Figure 2. Cache Based Query Optimization in Distributed Database

Global Query

Interface

Query Analyzer

Cost Optimizer

Query Distributor

Global Schema

Data Dictionary

Global

Optimization

Local

Optimizer

Local

Optimizer
Local

Optimizer

Cache Cache Cache

Database Database Database

Request Query Result

User

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 6, No 1, November 2012
ISSN (Online): 1694-0814
www.IJCSI.org 390

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

In this model, cache is implanted between local optimizer

and database server where each cache is associated with its

corresponding local database server.

Figure 2 shows the proposed cache based query

optimization model in distributed database. It has

following modules:

• User: A user is an agent, either a human agent (end-

user) or software agent who uses a computer or

network service. A user often has a user account and

is identified by a username (also user name). Other

terms for username include login name, screen name

(also screen name), nickname (also nick), or handle

which is derived from the identical Citizen's Band

radio term. Users are also widely characterized as the

class of people that use a system without complete

technical expertise required to understand the system

fully.

In hacker-related contexts, such users are also

divided into users and power users. In projects in

which the actor of the system is another system or a

software agent [13], it is quite possible that there is no

end-user for the system. In this case, the end-users for

the system would be indirect end-users.

• Global Query Interface: Global Query Interface is

used to obtain a pointer to another interface, given a

Graphical User Interface Database (GUID) that

uniquely identifies that interface.

• Query Analyzer: Query analyzer receives the global

query from the GUI and consults the Global Schema

to analyze the query and decides about the appropriate

nodes where requested query result resides.

• Cost Optimizer: One of the hardest problems in query

optimization is to accurately estimate the costs of

alternative query plans [19][22]. Optimizers cost

query plans using a mathematical model of query

execution costs that relies heavily on estimates of the

cardinality or number of tuples flowing through each

edge in a query plan [21]. Cardinality estimation in

turn depends on estimates of the selection factor of

predicates in the query [15]. Traditionally, database

systems estimate selectivity through fairly detailed

statistics on the distribution of values in each column,

such as histograms.

• Query Distributor: It is responsible for sending the sub

queries to appropriate sites so that the actual

computation on those sub queries can be carried out

[11][16].

• Cache: In computer science, a cache is a component

that transparently stores data so that future requests

for that data can be served faster [10][24]. The data

that is stored within a cache might be values that have

been computed earlier or duplicates of original values

that are stored elsewhere. If requested data is

contained in the cache (cache hit), this request can be

served by simply reading the cache, which is

comparatively faster. Otherwise (cache miss), the data

has to be recomputed or fetched from its original

storage location which is comparatively slower.

Hence, the greater the number of requests that can be

served from the cache, the faster the overall system

performance becomes. To be cost efficient and to

enable an efficient use of data, caches are relatively

small. Nevertheless, caches have proven themselves in

many areas of computing because access patterns in

typical computer applications have locality of

reference. References exhibit temporal locality if data

is requested again that has been recently requested.

References exhibit spatial locality if data is requested

that is physically stored close to data that has been

requested already.

• Database: A database is an organized collection of

data, today typically in digital form. The data are

typically organized to model relevant aspects of

reality (for example, the availability of rooms in

hotels), in a way that supports processes requiring this

information (for example, finding a hotel with

vacancies).The term database is correctly applied to

the data and their supporting data structures and not to

the database management system (DBMS). Users can

query the database through the Global User Interface.

Queries can be federated queries [25], federated

queries are those queries which require access from

more than one database. When a Global User

Interface, receives a federated query, it first divides

the federated query into sub-queries and passes those

sub-queries to the appropriate databases. The retrieved

result from each database is then integrated and results

are shown at Global User Interface.

4. Cost Optimizer

It is the responsibility of cost optimizer to select the

appropriate node for processing of the query. Since data is

replicated at multiple sites [17], cost optimizer works on

the basis of parameters chosen to select the appropriate

processing node:

• Current Queue Length: This is the number of

processes which are either running or waiting for their

turn to get executed on the server.

• Server Distance: Server distance refers to the

geographical distance of the server from the

requesting client. Nearer will be the server, lesser will

be the cost of fetching data from that server.

• Server Capacity: It is the number of processes which

can run on a server without hampering the server’s

normal functioning.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 6, No 1, November 2012
ISSN (Online): 1694-0814
www.IJCSI.org 391

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

• Load: It is the ratio of actual processes running on a

server to the capacity of the server i.e. Load = Current

Queue Length / Server Capacity.

The parameters taken into consideration are Queue length,

Server Distance and Load. Since queue length is by far the

most important factor in determining the waiting time, a

process will have to wait for execution in the queue. The

proposed model has been designed by prioritizing different

parameters taken into consideration for cost optimization.

The highest priority has been given to queue length in

order to reduce the traffic bottleneck in a replicated

environment and subsequently server distance has been

given second highest priority in order to reduce the

transmission cost incurred. Hence, queue length is divided

by factor of 10 whereas server distance divided by factor

of 100 in mathematical calculations in order to select the

optimal node for computation with the assumptions that

queue length will always remain considerably small in size

when compared with server distance. So lesser the queue

length at a server, less is the cost and subsequently higher

will be the response time.

Load refers to the ratio of number of requests served by

the server to the total capacity of the requests that can be

handled by the server. These factors help to balance the

load amongst the servers.

The equations derived for determining the cost of

executing a query based upon all the above considered

parameters are as follows:

Let there are n number of servers. For each server i and j

() 10/QLQLPP jirr −+=

() 100/SDSDPP jirr −+=

iii SC/QLL =

jjj SC/QLL =

()jirr LLPP −+=

 Where rP = net priority of server

iQL - queue length of server i

jQL - queue length on server j

 where { }ni0 << and { }nj0 <<

iSD - server distance of server i from requesting node

jSD -server distance of server j from requesting node

iL - load on server i

jL - load on server j

iSC - Server capacity of server i

jSC - Server capacity of server j

5. Query Optimization Algorithm

Cache based query optimization approach is based on the

fact that there is a cache placed near the database (or

server). A request for accessing data is made by the user

through User Interface, this request (or query) is analyzed

by the query analyzer and the cost of query is optimized by

cost optimizer in order to decide about the optimal nodes

where sub-queries are to be sent for further processing

[18][20]. Query distributor is responsible for further

distributing the sub-queries to the appropriate sites. Local

optimizer at each site checks whether the results can be

returned from cache or the data need be fetched from the

database depending upon the fact that a repeated request

has been received or a fresh one. If data is fetched from the

database then the cache is updated accordingly and results

are displayed at User Interface.

5.1 Proposed Algorithm

STEP 1: Input: Query

 Output: Optimized Result

STEP 2: site []=sites on which sub query is replicated

 Length = site [].length

STEP 3: if (Length>1)

3.1 Start cost optimizer

3.2 Consider the following factors for each site

i where sub query result is replicated.

• Current queue length(iQL)

• Server distance(iSD)

• Server capacity(iSC)

• Load(iL)

3.3 Prioritize all the sites on the basis of value of

these parameters using following equations:

Let n be the number of servers for each site i

in site []

() 10/QLQLPP jirr −+=

 () 100/SDSDPP jirr −+=

 iii SC/QLL =

 jjj SC/QLL =

 ()jirr LLPP −+=

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 6, No 1, November 2012
ISSN (Online): 1694-0814
www.IJCSI.org 392

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

site0 = site with maximum priority

 else

 site0 = site [0]

 end if

STEP 4: send sub query to site0.

STEP 5: check local cache of site0

STEP 6: if (data present in local cache) i.e. at site0

 return results from local cache

 else

• fetch data from database

• update cache

• return results.

 end if

STEP 7: End of Algorithm

5.2 Experimental Results

The experimental evaluation of the proposed model uses

sets of PC Memory distributed databases, operating system

with windows 7 Server and database management system

with MS Access.

Factors like server distance, server queue length and server

load have been considered to prioritize the sites for cost

estimation. A screenshot of prioritization factors taken into

consideration is shown below in Figure 3.

Figure 3. Prioritization of database site

As shown in the above figure, optimized site is the site

with ID 2.0 with best priority shown as 0.16875, so query

distributor sends the sub query to site ID 2 for further

processing.

Figure 4. Computation time vs. number of queries

The figure 4 shows how the proposed cache based model

is efficient in improving query optimization as compared

to existing model which don’t use local cache. In the

present scenario, replicated database used for evaluating

the results of the proposed model when used without cache

is considered as an existing model and compared with

proposed cache based approach (proposed model).

As figure 4 shows, initially the response time shown by

the proposed model is not better than that of when using

database system without cache. This is due to the fact that

initially cache is empty, data is fetched from the database

and also additional time is required to update the cache.

After a certain period of time, as the number of queries

increase, computation time shown is almost same in both

the cases. This is due to fact that time saved by fetching

data from cache is neutralized by the time required to

update the cache. Further increase in number of queries

doesn’t affect the proposed scheme much, since the result

sent against most of the requested queries is fetched from

the cache and no computation is required. Hence, the

proposed technique significantly increases the response

time resulting in faster access to data by user.

We have compared the results obtained by us with the

Wen-Syan results [24] which are obtained using global

cache. Wen-Syan obtained the results based upon two

factors: no. of queries and query type. But we take into

consideration only no. of queries since query type has little

significant when repeated queries are received from

users.The comparison of results of our proposed model

with that of results obtained by Wen-Syan [2003] has been

tabulated in table 1.

TABLE 1 Experimental Results

No. of Query Cache hit-rate

(Wen-Syan[2003])

Cache hit-rate

(Proposed Model)

0 0 0

20 0.3 0.6

50 0.5 0.71

60 0.64 0.72

80 0.75 0.75

100 0.8 0.76

120 0.81 0.81

150 0.82 0.83

Table 1 shows the number of queries vs. cache hit rate

ratio when the proposed model is implemented and

comparison of parametric values obtained is done with the

values shown by the cache technique used by Wen-Syan

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 6, No 1, November 2012
ISSN (Online): 1694-0814
www.IJCSI.org 393

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

Li [2003] which is considered as an efficient technique in

query optimization.

Figure 5 shows the correlation between the number of

queries and the cache hit rates as represented in table 1. As

shown in the figure, when 20 queries are selected, the

cache hit rate is close to 60%. And, when 100 queries are

selected, the cache hit rate is close to 80%.

Figure 5. Hit Rate vs. Number of Queries

Wen-Syan Li[2003] has also used the cache concept but it

can be concluded from the figure shown that are proposed

model has a sharp raise in hit rate as compared to the

technique used in Wen-Syan Li[2003] . This can be

justified by the fact that, in the proposed technique,

database-side cache has been used at each database i.e.

cache is local to server while network-based caches are

used in Wen-Syan Li [24].

6. Conclusion

Query optimization using cache based approach has

proved to be a better option for optimizing queries in

homogenous distributed database systems. It can prove to

be of great advantage in the fields where access is

generally of read only type for in those cases, updating the

cache periodically and simultaneously maintaining

concurrency with the database are not big issues and also

this will increase the computation time.

This model can prove to be useful in situations where

users generally access a certain part of database only,

which is seen in most of cases i.e. locality of reference. In

such cases, cache can save lot of accesses to the database

and since accessing the database consumes a lot of time

because of seek time and disk latency. Both seek time and

disk latency can’t be reduced below a certain limit. Hence

cache proves to be a great solution as accessing cache is

much faster than accessing database.

As for future work, the proposed model can be

implemented for heterogeneous distributed database

systems. The concept of global caching can also be

introduced in the system for better result. The facts like

maintaining the concurrency of data in database systems

where access is both read as well as write type can also be

introduced.

References
[1] Swati Gupta, Kuntal Saroba, Bhawna, “Fundamental

Research of Distributed Databse”, International Journal of
Computer Science and Management Studies, vol. 11, 2011,
pp. 138-146.

[2] Fan Yuanyuan, Mi Xifeng, “Distributed Database System
Query Optimization Algorithm Research”, IEEE
international conference on Computer Science and
Information Technology, 2011, vol. 8, pp.145-149.

[3] Reza Ghaemi, Amin Milani Fard, Hamid Tabatabee, Mahdi
Sadaghizadeh, “Evolutionary Query optimization for
Heterogeneous Distributed Database Systems” ,World
Academy of Science, Engineering and Technology, vol. 45,
2008, pp. 43-49.

[4] Adali S., Candan K. S., Papakonstantinou Y., Subrahmanian
V. S., “Query caching and optimization in distributed
mediator systems”, ACM SIGMOD, vol. 2, 2006, pp. 45-
118.

[5] Yannis. E. Loannidis and Youngkyung Cha Kang,
“Randomized Algorithms for optimizing large Join
Queries”, ACM SIGMOD, 1990, vol. 19, pp. 47-53.

[6] D. kossmann, M. J. Franklin, G. Drasch, “Cache
Investment: Integrating Query Optimization and Distributed
Data Placement”, ACM, vol. 25, 2000, pp. 517-558.

[7] D. Kossman, “The state of the art in distributed query
processing” , ACM Computing Surveys, vol. 32, 2000, pp.
422-469.

[8] P. Griffiths, Selinger, M. M. Astrahan, D. D. Chamberlin,
R.A. Lorie, T. G. Price, “Access path selection in a rational
database management system”, ACM SIGMOD, vol. 20,
1979, pp. 23-34.

[9] Stocker, Kossman, Braumandl, Kemper, “Integrating Semi
Join Reducers into state of the art query processors”, ICDE,
2001, pp. 143-156.

[10] Neera Batra, A . K . Kapil, “Three Tier Cache Based Query
Optimization Model in Distributed Database”, IJEST, vol. 2,
2010, pp. 3206-3212.

[11] C. Damianos, K. A. Ross, “Partitioned Optimization of
Complex Queries”, ELSEVIER, vol. 32, 2007, pp. 248-282.

[12] Q. Luo, S. Krishnamurthy, C. Mohan, H. Pirahesh, H. Woo,
B. G. Lindsay, J. F. Naughton, “Middle-tier database
caching for e-business”, ACM SIGMOD, 2002, pp. 600-
611.

[13] A. Korzyk, “Towards XML As A Secure Intelligent Agent
Communication Language”, the 23rd National Information
Systems, 2000, pp. 134-138.

[14] Huang, Kuan – Tsae, Davenport, Wilbur B., “Query
Processing in Distributed Heterogeneous Systems”, MIT
Laboratory for information and Decesion Systems, 1981,
pp. 1-17.

[15] J. Callan, “Distributed Information Retrieval ” , W. B.
Croft, Ed. Kluwer Academic Publishers, 2000.

[16] Patricia G. Selinger, Michael E. Adiba, “Access Path
Selection in Distributed Database Management Systems”,
ICOD, 1980, pp. 204-215.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 6, No 1, November 2012
ISSN (Online): 1694-0814
www.IJCSI.org 394

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

[17] Syam Menon, “Allocating fragments in distributed
Database”, IEEE Transactions on Parallel and Distributed
Systems, vol. 16, 2005, pp. 577-585.

[18] D. Kossmann, K. Stocker, “Iterative Dynamic
Programming: A New Class of Query optimization
Algorithms”, ACM Computing Surveys, vol. 25, 2000, pp.
422-469.

[19] Peng-Yeng Yin, Shiuh-Sheng Yu,Pei-Pei Wang and Ye-Ti
Wang, “A Hybrid particle swarm optimization algorithm for
optimal task assignment id distributed systems”, Computer
Standards and Interfaces, vol. 28, 2006, pp. 441-450.

[20] LEE Chiang, CHIH Chi-seng, CHEN Yaw-huei,
“Optimizing large join queries using a graph based
approach”, IEEE Transactions on Knowledge and Data
Engineering, vol. 13, 2001, pp. 298-315.

[21] Tsai P S M, CHEN A L P, “Optimizing queries with foreign
function in a distributed environment”, IEEE Transactions
on Knowledge and Data Engineering, vol. 14, 2002, pp.809-
824.

[22] S. Pramnaik, D. Vineyard, “Optimization Join Queries in
Distributed Database” , IEEE Transaction on Software
Engineering, vol. 14, 1998, pp.1319-1326.

[23] Pankti Doshi, Vijay Raisinghami, “Review of Dynamic
Optimization Strategies in Distributed Database”, IEEE
International Conference on Electronics And Computer
Technology, 2011, vol. 6, pp. 145-149.

[24] Wen-Syan Li, Oliver Po, Wang-Pin Hsiung, K. Selc_uk
Candan, Divyakant Agrawal , “Freshness-driven adaptive
caching for dynamic content Web sites” , ELSEVIER, vol.
47, 2003, pp. 269-296.

[25] Wen-Syan Li, Dengfeng Gao, Haifeng Jiang, “Improving
parallelism of federated query processing”, ELSEVIER, vol.
64, 2008, pp.511-533.

Mantu Kumar is a student of Master
of Technology in Computer Science
and Engineering, Maharishi
Markandeshwar University, Mullana,
Ambala, India. He worked as
Computer faculty for one year after
completion of Master of Computer
Application from Madurai Kamaraj
University, Mudurai, Tamilnadu, India.
He also worked 1.5 years as a

software developer and trainer after completion of Bachelor of
Computer Application in 2005. He has published one paper in
international journal. His research area is query optimization,
concurrency control, security in distributed database and network
security.

Dr. Neera Batra received PhD in
Computer Science & Engineering from
Maharishi Markandeshwar University,
Mullana, Ambala and Master of
Technology in Computer Science &
Engineering from Kurukshetra
University, Kurukshetra. Dr. Neera
Batra is in teaching and Research &
Development since 2007. She has
supervised several M.Tech thesis. She
has published more than 15 research

papers in International/National journals and refereed

international/national conferences. Her research interests are in
concurrency control, query optimization, security, load balancing,
check pointing & recovery, access control in distributed database
and network security.

Hemant Aggarwal is an employee of
Infosys Ltd. Bangalore working as system
engineer. He has been working since 2009
after completing B.tech in computer
science from Kurukshetra University,
Kurukshetra. He has published three
papers in international/National journals.
His research area is query optimization,

security in distributed database and network security.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 6, No 1, November 2012
ISSN (Online): 1694-0814
www.IJCSI.org 395

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

