

AN ADAPTIVE ALGORITHM FOR DYNAMIC PRIORITY
BASED VIRTUAL MACHINE SCHEDULING IN CLOUD

Subramanian S1, Nitish Krishna G2, Kiran Kumar M3, Sreesh P4 and G R Karpagam5

 1 Department of Computer Science and Engineering,

P.S.G College of Technology,
Coimbatore, Tamil Nadu , 641004, India

2 Department of Computer Science and Engineering,

P.S.G College of Technology,
Coimbatore, Tamil Nadu , 641004, India

3 Department of Computer Science and Engineering,

P.S.G College of Technology,
Coimbatore, Tamil Nadu , 641004, India

4Department of Computer Science and Engineering,

P.S.G College of Technology,
Coimbatore, Tamil Nadu , 641004, India

5Department of Computer Science and Engineering,

P.S.G College of Technology,
Coimbatore, Tamil Nadu , 641004, India

Abstract

Cloud computing, a relatively new technology, has been gaining
immense popularity over the last few years. The number of cloud
users has been growing exponentially and apparently scheduling of
virtual machines in the cloud becomes an important issue to
analyze. This paper throws light on the various scheduling
algorithms present for scheduling virtual machines and also
proposes a new algorithm that combines the advantages of all the
existing algorithms and overcomes their disadvantages.
Keywords: Scheduling, Eucalyptus, Dynamic priority,
Cloud.

1. Introduction

Cloud computing is the use of computing resources
(hardware and software) that are delivered as a service over
a network (typically the Internet). The name comes from the
use of a cloud-shaped symbol as an abstraction for the
complex infrastructure it contains in system diagrams. Cloud
computing entrusts remote services with a user's data,
software and computation [1]. The scheduling of virtual
machines in a cloud computing environment has become
crucial due to the increase in the number of users. This is
usually done to load balance a system effectively or to
achieve a target quality of service [2]. The scheduling
algorithm used contributes to the performance of the entire
system and the throughput. Eucalyptus is open

source software for building AWS-compatible private and
hybrid clouds [3]. There are several scheduling policies
already available in Eucalyptus. On analysis of these
algorithms, each is found to have its own drawback and
hence a new algorithm which overcomes these
disadvantages is preferable. The newly proposed algorithm
is explained and its working under various circumstances
has been illustrated. Also, it is compared with the other
existing algorithms.

2. EXISTING SCHEDULING ALGORITHMS
IN EUCALYPTUS

Scheduling in Eucalyptus determines the method by
which Virtual Machines are allocated to the nodes. This is
done to balance the load on all the nodes effectively and to
achieve a target quality of service. The need for a good
scheduling algorithm arises from the requirement for it to
perform multitasking and multiplexing.

The scheduling algorithm in Eucalyptus is concerned mainly
with:

Throughput - number of VMs that are successfully
allocated per time unit.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 6, No 2, November 2012
ISSN (Online): 1694-0814
www.IJCSI.org 397

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

http://en.wikipedia.org/wiki/Quality_of_service
http://en.wikipedia.org/wiki/Computer_multitasking
http://en.wikipedia.org/wiki/Multiplexing
http://en.wikipedia.org/wiki/Throughput

Response time - amount of time it takes from when a
request was submitted until the first response is produced.

Fairness / Waiting Time – All the requests for an
allocation of a node should be treated in the same manner
without any bias.

In practice, these goals often conflict and thus a scheduler
will implement a suitable compromise. Preference is given
to any one of the above mentioned concerns depending upon
the user's needs and objectives [4] [5]. A scheduling policy
can be chosen by changing the value of SCHEDPOLICY in
eucalyptus.conf file [6]. The various existing algorithms
along with their limitations are listed below.

2.1 GREEDY ALGORITHM

The Greedy algorithm is the default algorithm used for
scheduling of Virtual Machines in Eucalyptus. The Greedy
algorithm is very simple and straight forward. As a matter of
fact, it was the only scheduling policy which was in use for a
long time. Only after the cloud started evolving, more
complex scheduling policies came into effect.
The greedy algorithm uses the first node that it finds with
suitable resources for running the VM that is to be allocated.
The first node that is identified is allocated the VM. This
means that the greedy algorithm exhausts a node before it
goes on to the next node.
As an example, if there are 3 nodes and the first node’s
usage is 40% while the other two are under loaded and if
there are two VMs to be allocated, then both are allocated to
the first node which might result in the increase of its usage
to 90% while the other two nodes will still remain under
loaded.
As obviously seen, the main advantage of the Greedy
algorithm is its simplicity. It is both simple to implement
and also the allocation of VMs do not require any complex
processing. The major drawback would be the low
utilization of the available resources. As illustrated in the
example above, even if there are under loaded nodes, an
overloading of a node might result.

2.2 ROUND ROBIN ALGORITHM

The Round Robin algorithm mainly focuses on distributing
the load equally to all the nodes. Using this algorithm, the
scheduler allocates one VM to a node in a cyclic manner.
The round robin scheduling in the cloud is very similar to
the round robin scheduling used in the process scheduling.
The scheduler starts with a node and moves on to the next
node, after a VM is assigned to that node. This is repeated
until all the nodes have been allocated at least one VM and
then the scheduler returns to the first node again. Hence, in

this case, the scheduler does not wait for the exhaustion of
the resources of a node before moving on to the next.
As an example, if there are three nodes and three VMs are to
be scheduled, each node would be allocated one VM,
provided all the nodes have enough available resources to
run the VMs.
The main advantage of this algorithm is that it utilizes all the
resources in a balanced order. An equal number of VMs are
allocated to all the nodes which ensure fairness. However,
the major drawback of using this algorithm is that the power
consumption will be high as many nodes will be kept turned
on for a long time. If three resources can be run on a single
node, all the three nodes will be turned on when Round
Robin is used which will consume a significant amount of
power.

2.3 POWER SAVE ALGORITHM

The Power Save algorithm optimizes the power
consumption by turning off the nodes which are not
currently used. Instead of keeping all the nodes turned on,
resulting in a lot of power consumption, this algorithm aims
at turning the unused nodes off which will reduce the power
consumed to a reasonable extent.
The scheduler allocates a VM to the node and then traverses
through the list of nodes to check if the node is unused and
if found to be so, turns it off. If the resource of a node which
has been turned off is required for the allocation of a VM,
the scheduler turns it on again and then allocates the VM to
that node.
As an example, consider the scenario in which there are
three nodes, two of which are unused. When a new VM is to
be scheduled, the scheduler may allocate it to the node
which is already being used and would turn off the two
nodes which are unused.
The Power Save algorithm results in the reduction of power
consumption but this is at the expense of lower utilization of
resources. This algorithm is used only at places where there
is an extreme need for reducing the consumption of power.
A new scheduling algorithm has been proposed in this paper
which is based on the assignment of dynamic priority to the
nodes. It overcomes the stated limitations of the existing
scheduling algorithms and works effectively under all
circumstances.

3. PROPOSED DYNAMIC PRIORITY
BASED SCHEDULING ALGORITHM

The need for a new algorithm can be easily realized from the
fact that all the existing algorithms suffer from serious
drawbacks. The proposed algorithm uses dynamic priority
for the nodes based on which the virtual machines are

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 6, No 2, November 2012
ISSN (Online): 1694-0814
www.IJCSI.org 398

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

http://en.wikipedia.org/wiki/Response_time

scheduled. It schedules the VMs to the nodes depending
upon their priority value, which varies dynamically based on
their load factor. This dynamic priority concept leads to
better utilization of the resources. Priority of a node is
assigned depending upon its capacity and the load factor.
This algorithm strikes the right balance between
performance and power efficiency.

3.1 PSEUDO CODE

Algorithm triggered when a request for a new instance
arrives.
Input: None
Output: None
Algorithm sched_priority
{
Flag=0;
If(P1 is not set)

P1=max available resource node
If(P1 is turned OFF)
 Turn P1 ON

If(load factor of P1<0.8)
Assign VM to P1;
Flag=1;

if(P2 is set AND load factor of P2<0.8 AND
Flag=0)

Swap P1 and P2;
Assign VM to P1;

Else if(Flag=0)
 P2=P1
 P1=current max available resource node

If(P1 is turned OFF)
Turn P1 ON

 Assign VM to P1;
Turn OFF all unused nodes;
}

Fig 3.1 Priority based dynamic scheduling algorithm

As and when the virtual machines are assigned to the nodes,
recalculation of their priorities takes place. Table 3.1 shows
the statistics of the available resources along with priorities
when 4 nodes were used. Table 3.2 explains how these

priorities got changed when a request for two large instances
having high memory requirements arrived.

Node Priority Resource
available

1 1 24%
2 3 100%
3 4 100%
4 2 100%

Table 3.1 Initial priority value

Node Priority Resource
available

1 2 10%
2 3 100%
3 4 100%
4 1 100%

Table 3.2 Priority values after arrival of a new instance

3.2 TRACING ALGORITHM WITH VARIOUS
SCENARIOS

When a request to schedule a Virtual Machine is received, it
checks if the maximum resource node has been identified
and its priority has been assigned. If the node has not been
identified, then it is identified first. The node with the
maximum resource is determined and then it is checked
whether the node has a load factor less than 80%. This is
done to prevent a particular node from being overloaded.
Once the suitable node is identified, then it is assigned the
highest priority and the VM is allocated to it as shown in Fig
3.2.

Fig 3.2 VM allocated to the highest priority node

If the highest priority has a load factor above 80%, then it
checks if the next maximum resource node has been
identified. If it has been identified and if its load factor is
less than 80%, then the VM is scheduled to that node and
the search for the next maximum resource node with the
load factor less than 80% takes place. Before assigning the

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 6, No 2, November 2012
ISSN (Online): 1694-0814
www.IJCSI.org 399

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

new node as the highest priority node, the current maximum
resource node is assigned to previous maximum resource
node and the previous maximum resource node is assigned
the next highest priority.

Fig 3.3 Highest priority node has a load factor of 75%

The purpose of keeping track of the previous maximum
resource node is to prevent the fluctuations above and below
the load factor in extreme cases, when VMs are assigned to
it and removed from it. Consider the scenario in which, the
maximum resource node has been identified and it has been
assigned the highest priority. The VMs are allocated to it till
the load factor is less than 80%. Assume that the current
load factor is 75% as shown in Fig 3.3. After allocating a
VM to it, the load factor becomes 85% as shown in Fig 3.4.
On completion of the work, the VM is shut down and the
load factor goes to 75%. The load factor fluctuates above
and below 80% frequently and will initiate a new search
request for finding the new node. To overcome this problem,
the previous maximum resource node is kept track off i.e.
the next highest priority node.

Fig 3.4 Highest priority node is changed

If the highest priority node has the load factor more than
80%, then it keeps allocating the VMs to the next highest
priority node until its load factor becomes greater than 80%.
This gives the highest priority node some time to finish off
the work of VM and shut it down so that it would be well
below the load factor. If the load factor is still above 80%,
then its priority is decreased and the other node is assigned
higher priority.
This algorithm shows remarkable speed in terms of the time
taken to schedule a Virtual Machine to a node, once these
nodes have been identified. The scheduling would be done

to these nodes directly and the other nodes are not taken into
consideration.

Fig 3.5 Idle node is shut down

When it comes to power efficiency, every time the request
for scheduling is received, it also checks for the idle nodes.
The idle nodes are one to which, no VM is allocated to it.
These nodes are turned off to save power as shown in Fig
3.5.

3.3 HIGHLIGHTS OF THE ALGORITHM

1. Once the highest and next highest priority nodes have

been identified, then the scheduling is very quick.
2. It prevents a particular node from being overloaded by

considering the load factor.
3. The idle nodes are turned off. Hence it is power

efficient.
4. It prevents fluctuations around the load factor of 80% in

most cases. Fluctuation occurs only under extreme
cases, when all the nodes have load factor which are
approximately 80%.

4. COMPARISON OF ALGORITHMS

On comparison with the other algorithms, the proposed
dynamic priority based scheduling algorithm has been found
to work more effectively in most of the cases.

4.1 COMPARISON WITH GREEDY ALGORITHM

The proposed algorithm does not exhaust a particular node
like Greedy algorithm. Therefore the proposed algorithm
makes better utilization of the available resources.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 6, No 2, November 2012
ISSN (Online): 1694-0814
www.IJCSI.org 400

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

Fig 4.1 Comparison with greedy algorithm

As shown in Fig. 4.1, the resource utilization of the
proposed algorithm is better than that of the greedy
algorithm, given that the number of nodes is fixed.

4.2 COMPARISON WITH ROUND ROBIN

ALGORITHM

The proposed algorithm takes a constant time to assign a
node once the priorities have been assigned, unlike the
Round Robin algorithm and the proposed algorithm also
consumes lesser power than the round robin algorithm.

Fig 4.2 Comparison with round robin algorithm

As shown in Fig. 4.2, keeping the number of nodes fixed,
the power consumption in the proposed algorithm is lesser
than that of round robin algorithm until the number of
virtual machines increases such that all the nodes are turned
on. From that point onwards, both the algorithm consume
the same power until any one of the nodes gets turned off
according to the proposed algorithm.

4.3 COMPARISON WITH POWER SAVE

ALGORITHM

The proposed algorithm does not turn off the nodes very
frequently unlike the power save algorithm and hence faster
response times are seen than that of power save algorithm.

Fig 4.3 Comparison with power save algorithm

As shown in Fig.4.3, even though the difference is not very
vast, the response time of the proposed algorithm is lesser
than that of power save algorithm as the number of virtual
machines increase, keeping the number of nodes fixed.

5. CONCLUSION

Thus a new algorithm for the scheduling of virtual machines
in Eucalyptus platform was proposed along with the
explanation of how the algorithm would work under various
circumstances. A comparative study was done comparing
the various existing algorithms with the proposed algorithm
and the results were illustrated in the form of graphs.
However, the proposed algorithm does not handle certain
cases like the failure of nodes. Also, the uptime and
downtime of nodes have not been measured.

This scheduling algorithm can be extended to suit other
cloud platforms also. Here, the load factor above which the
highest priority node changes is kept constant. Further
extension to this algorithm can be done by varying the
maximum load factor, above which the priority of a node
decreases, dynamically by setting it to an optimum value
based on the present conditions.

Acknowledgments

We would like to thank Cordys for introducing the concept
of cloud computing to us and inspiring us to take up issues
in cloud computing as our research project.

References
[1] Cloud Computing:
http://en.wikipedia.org/wiki/Cloud_computing
[2] Scheduling:
http://en.wikipedia.org/wiki/Scheduling_(computing)

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 6, No 2, November 2012
ISSN (Online): 1694-0814
www.IJCSI.org 401

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

[3] Eucalyptus:
http://en.wikipedia.org/wiki/Eucalyptus_(computing)
[4] Brief discussion of Job Scheduling algorithms-
http://www.cs.sunysb.edu/~algorith/files/scheduling.shtml
[5] Blazewicz, J., Ecker, K.H., Pesch, E., Schmidt, G. und J.
Weglarz, Scheduling Computer and Manufacturing Processes,
Berlin (Springer) 2001

[6] Eucalyptus Scheduling Algorithms:
http://open.eucalyptus.com/

Subramanian S is currently the B.E. degree candidate
In Department of Computer Science, P.S.G College of Technology,
Coimbatore, India. His research interests include
Cloud computing and its applications.

Nitish Krishna G is currently the B.E. degree candidate
In Department of Computer Science, P.S.G College of Technology,
Coimbatore, India. His research interests include
Cloud computing and its applications.

Kiran Kumar M is currently the B.E. degree candidate
In Department of Computer Science, P.S.G College of Technology,
Coimbatore, India. His research interests include
Cloud computing and its applications.

Sreesh P is currently the B.E. degree candidate
In Department of Computer Science, P.S.G College of Technology,
Coimbatore, India. His research interests include
Cloud computing and its applications.

G R Karpagam is a professor at the Department of Computer
Science, P.S.G College of Technology, Coimbatore, India. Her
specialization areas include database, service oriented architecture
and cloud computing.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 6, No 2, November 2012
ISSN (Online): 1694-0814
www.IJCSI.org 402

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

