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Abstract – This paper presents a new signal denoising method based on the classical three step procedure analysis-threshold-
synthesis and the Spectral Intrinsic Decomposition (SID). This method consists of an iterative thresholding of the SID components.
If the wavelets denoising approach depends on the choice of the wavelet form, the SID-denoising proposed in this paper is self
adaptive. The SID-based removal method reduces noise and can retain useful discontinuities of the signal as effectively as the
wavelet techniques based on soft thresholding.
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1 Introduction

The Spectral Intrinsic Decomposition Method [1] is an
adaptive decomposition technique with which any compli-
cated signal can be decomposed into a definite number of
high frequency and low frequency components called Spec-
tral Proper Mode Functions (SPMFs). The decomposition
procedure is adaptive and data-driven. The SPMFs are
stationary and suitable for signal analysis. Assume that
an observed data s(t) = y(t) + n(t), contains the true si-
gnal y(t) with additive noise n(t) as function in time t to
be sampled. Some time series denoising algorithms like wa-
velet transform model are widely used to deal with noise
within the data observations. However, for non-linear and
non-stationary time series, wavelet approaches can fail. In
the L-level wavelet decomposition of a signal, the number
of coefficients with significant energy is small. This is a
direct consequence of the approximation property of the
wavelets. The signal can be accurately represented by a
small number of coefficients. Wavelet shrinkage, developed
by Johnstone and Donoho [2], selects these coefficients by
thresholding. In the same spirit of wavelet denoising ap-
proach and following the work published in [4], where the
authors show how Empirical Mode Decomposition (EMD)

[3] reveals an equivalent filter bank structure which shares
most properties of a wavelet decomposition, O.Niang in [5]
and K. Khaldi and al. in [6] proposed EMD-based shrin-
kage method for signal denoising. In the same vein, this
paper introduces and tests a new approach based on SID
thresholding for signal denoising. In section 2, we describe
the Spectral Intrinsic Decomposition principle and recall
the wavelets decomposition principle. Section 3 concerns
some wavelets thresholding denoising methods. Section 4
exposes the SID-based denoising method. Some test re-
sults are presented in section 5, and we finish by conclu-
sions and perspectives to this work in section 6.

2 The Spectral Intrinsic Decompo-
sition

SID method decomposes a complex signal (e.g. a signal
with coexisting several characteristic time scales ) into ele-
mentaries AM-FM type components, called Spectral Pro-
per Mode Functions (SPMFs). The Spectral Intrinsic De-
composition express an non-linear signal into a linear com-
bination of the eigenvectors of all the PDE- envelope ope-
rator defined in [1]. Let us denote by E ( see [1]) the enve-
lope of any one-dimensional discrete signal S, the eigen de-
composition of E gives : [VE,LE] = eig(E), where VE =
[V1, . . . ,Vsize(S)] and LE = [L1, . . . ,Lsize(S)]. The re-
construction coefficient of S is given by : C = LEVE

−1S⊥.
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Algorithm 1 : Spectral Intrinsic Decomposition [1]

1: compute the diffusivity function g± from S0,
2: compute matrix operator L−1 = E
3: perform eigen decomposition of E, [VE,LE] =
eig(E).

4: perform Reconstrution Coefficients of S0, C =
LEVE

−1S−1
0 .

5: set [Vk], and [Lk] for k = 1 . . . N , . Result
and S0 ←

∑N
k=1 Vk ∗Ck

So, SID of S as defined in algorithm 1, can finally be pre-
sented with the following representation

S =
∑

k∈{j/λj=1}

VkCk +
∑

k/∈{j/λj=1}

VkCk. (1)

Hence

S =
N∑
k=1

SPMFk,

where SPMFk = VkCk is the k−th spectral proper mode(or
SPMF) of the signal. In all cases, an SPMFs can be viewed
as a (nonlinear) frequency narrow-band wavelet ϕ with
Amplitude Modulation by a lower frequency signal A[n]

SPMFk[n] = Ak[n] ϕk[n].

In stochastic situations involving broadband noise, one
can make an interpretation of SID in terms of a constant−Q
filter bank [8, 7] and as a data-driven wavelet-like expan-
sion [4] or as an sparse representation of non linear signal
[1].

3 Some wavelet Denoising methods

Denoising by thresholding in the wavelet domain has
been developed principally by Donoho et al. in [2, 9, 10,
11].

Wavelet transforms express the signal in terms of wave-
let coefficients, describing the signal variation at different
scales. The discrete wavelet transform represents a one-
dimensional signal s into shifted versions of a dilated low-
pass scaling function ϕ, and shifted and dilated versions
of a bandpass wavelet function ψ. In case of orthonormal
wavelets, we have

s =
∑
i∈Z

〈
s, ϕJi

〉
ϕJi +

J∑
j=−∞

∑
i∈Z

〈
s, ψji

〉
ψji ,

where the lower index i stands for spatial position, upper
index j represents the level of scale, up to a chosen maxi-
mum J , and where ψji (t) = 2−j/2ψ

(
2−jt− i

)
, and with

〈·, ·〉 denoting the inner product in L2(R).
If the wavelet basis is chosen properly, a signal will be

generally described by only a few significant wavelet co-
efficients, while moderate white Gaussian noise pollutes

all the wavelet coefficients by a small amount. Signal de-
noising by wavelet shrinkage starts from this assumption,
and creates a smoothed version of the processed signal
by the following three-step procedure analysis-shrinkage-
synthesis.

Various shrinkage functions leading to qualitatively dif-
ferent denoised functions ŝ were considered in literature,
e.g. linear shrinkage, and nonlinear shrinkage functions
such as soft, garrote, firm and hard shrinkage. For example
the soft wavelets shrinkage function

Sθ (x) = sgn (x) (|x| − θ)+ ,

where the threshold θ can be estimated by the following
expression [2, 9, 10, 11]

θ =
√

2 log(N)σ,

where N is the signal length, and where σ is the noise
level (standard deviation). The shrinkage parameter θ is
chosen with respect to the amount of noise in the input
signal. In general, the denoised solution ŝ is obtained from
s using a single step of this multiscale procedure, e.g. the
method is applied noniteratively and is known as the clas-
sical Multiple Level Single Iteration (MLSI) scheme. Other
schemes exist where the method is applied iteratively [12],
like Single Level Iterated (SLI) and Multiple level Iterated
(MLI). When the noise level σ is unknown, an estimation
can be proceed via the median absolute deviation of the
wavelet coefficients at the finest scale of resolution, j=1,
such that σ̂=σ̂1=1.4826 median(|d1

i |). According to [13],
different threshold θj are used at each level j according to
the rule

θj = θ1/
√

2
j−1

, (2)

where θ1 =
√

2 log(N)σ1. This choice leads to significantly
reduced oscillations (Gibbs phenomenon) near disconti-
nuities of the reconstructed signal.

4 Iterative SID Denoising Method

Following the above wavelet shrinkage method, one can
adopt a similar process in order to suppress small fluc-
tuations in the SPMFs resulting from Spectral Intrinsic
Decomposition of a noisy signal. When wavelet shrinkage
depends on the choice of wavelet basis or mother wavelet,
the SID is adaptive and generally, can gives most of the
dynamic of a noisy signal by the SPMFs corresponding
to higher eigenvalue (nearest to 1). Signal denoising by
iterative SID threshold principle comes from this assump-
tion, and creates a smoothed version of the processed data
by the following three-step procedure, analysis-threshold-
synthesis. The iterative SID thresholding method for noise
removal is described in algorithm 2. First we compute the
SID decomposition of an noisy signal S, and choose all the
SPMF components corresponding to eigenvalues equal to
1 that gives the first scale of the restored input signal e.g
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Algorithm 2 : Denoising by iterative SID Thresholding

1: Choose p, the filtering level , SRNc and ε as a target
precision

. Initialization
m = 1, Ŝm = S,N = length (N)

2: repeat
3: Decompose the noisy data S into the SPMFs .

Analysis
SPMFk (k = 1, . . . , N).

{SPMFk} ← SID(S)

4: Compute denoised signal at level m Ŝm of S
. Synthesis

Ŝm ←
∑

k∈{j/λj=1}
VkCk

5: Compute the SRN
6: Add to Sm the SPMFs corresponding to the

median third values . Enrichment
of Lmed = {k/λk = 1} in the SID decomposition.

7: S = Ŝm +
∑
k∈Lmed

VkCk

8: m = m+ 1
9: until m = p or SRN − SNRc ≤ ε

Ŝ1. After, for the second level denoising process, we en-
rich S1 by considering all the third median eigenvalues
different to 1, e.g Lmed and recompose now the new input
signal

Sp=1 =
∑

k∈{j/λj=1}
VkCk +

∑
k∈Lmed

VkCk. (3)

This procedure can be repeated until the level p = p+1.
If we need more filtering, we can control the estimation of
the Signal-to-Noise-Ratio SNR. For this, we consider Ŝp
as the new input signal, and we repeat the same process
as described in algorithm 2. Thus we obtain a multi-scale
denoising process with a sequence (Ŝp) of filtered versions
of the noisy signal S0 = S. The choice of Lmed is empiric
but can be optimized by regularization [14].

5 Results

Standard synthetic signals were corrupted with additive
Gaussian noises, and then denoised by the proposed ite-
rative thresholding SID approach. Performance of the de-
noising procedures was studied as a function of the signal-
to-noise ratio (SNR) of the initial signal. The SNR was
used as the objective figure of merit for comparing the
original signal s[n] with the denoised estimate ŝ[n], and
computed as

SNR = 10 log10

∑
n |s [n]|2∑

n |s [n]− ŝ [n]|2
,

— PSRN iterat 1 PSRN iterat 2 Numb of iterat

Blocks 23.4662 20.0259 2

Wave form 23.8233 11.1854 2

Heavy-sine 28.4642 29.7222 2

Table 1 – The associated signal-to-noise ratio (SNR) in
dB for each iteration.

To test the applicability of the proposed desoining ap-
proach, we perform experiments on input signals Blocks,
wave form and Heavy-Sine, which are of the standard si-
gnals in wavelet denoising (see WaveLab package in [15]).

The signals, of length L = 2048 points, and theirs noised
versions are shown in Fig. 1,2 and 3. In tests, SID-based
desoising (Algorithm 2) uses the threshold Lmed which
can be estimated by an Tykhonov regularization applied
to the sequence of all the eigenvalues. Maximum levels of
the multisclae SID denoising method in our tests is fixed
to p = 3. In Figure 5, we summarize the parameters of
our tests, the Signal-to-Noise-Ratio is improved with two
iterations. In Fig 1 and 2, the first iteration gives better
results while the second iteration p = 2 leads a loss of
data. In Fig 3 the same work is performed and we can
see that SID-based denoising method gives a gain from
approximately 5 to 9 dB at the iteration p = 2, see Table
5 Generally at p = 3, only the SPMFs associated to 1 are
retained. For p > 3, the process leads to a significant loss
of information.

6 Conclusion

We have shown that the denoising approach consisting
to iterative soft thresholding in SID components is sui-
table for noise removal. SID denoising method is adaptive
contrary to wavelet methods. The results in this paper can
be extended in several directions. One can study itera-
ted single- or multi-level SID shrinkage to make extensive
comparisons with iterated single- or multi-scale wavelet
shrinkage. In our ongoing work, we will also consider the
two-dimensional case.
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(a)

(b)

Figure 1 – SID denoising with two iterations for the signal Blocks. In (a) original signal. In (b) the corrupted signal
by Gaussien noise. In (c), the denoised signal obtained after the first iteration with their associated signal-to-noise ratio
(SNR) 23, 46 in dB.
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(a)

(b)

Figure 2 – SID denoising for wave form signal with p = 2. In (a) original signal. In (b) the corrupted signal by
Gaussien noise. In (c), the denoised signal obtained after the first iteration with their associated signal-to-noise ratio
(SNR) 23, 82 in dB.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 6, No 3, November 2012 
ISSN (Online): 1694-0814 
www.IJCSI.org 376

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.



(a)

(b)

Figure 3 – SID denoising for Heavy-Sine signal with two iterations. In (a) original signal. In (b) the corrupted signal
by Gaussien noise. In (c), the denoised signal obtained using after two iterations with the associated signal-to-noise
ratio (SNR) 29, 72 in dB.
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