
IJCSIIJCSI

International Journal of

Computer Science Issues

Volume 1, 2011
ISSN (Online): 1694-0814

© IJCSI PUBLICATION
www.IJCSI.org

A Realistic Rendering of a school of Fish in Openscenegraph
and C++
By Séraphin Franclin Foping

IJCS

SI proceediings are cuurrently ind

dexed by:

© IJCSI PU

www

UBLICATIO

w.IJCSI.or

N 2011

rg

© IJCSI PUBLICATION 2011

www.IJCSI.org

A REALISTIC RENDERING OF A SCHOOL OF FISH IN

OPENSCENEGRAPH AND C++

Copyright © 2011 by Séraphin Franclin Foping

All rights reserved. No part of this thesis may be produced or transmitted in any form or by any

means without written permission of the author.

ISSN(online) 1694‐0814

'

&

$

%

A REALISTIC RENDERING OF A SCHOOL OF

FISH IN OPENSCENEGRAPH AND C++

by

Séraphin Franclin Foping
MSc Computer Science

University of Yaounde I, Cameroon

Supervisors

Dr Paul Chapman

and

Mr Kim Bale

Department of Computer Science

University of Hull
September 2007

CONTENTS

Abstract viii

Acknowledgements ix

Dedication x

1 Introduction 1

1.1 Motivations . 1

1.2 Initial specification . 2

1.3 Aims and objectives of the project 2

1.4 Structure of the dissertation 2

2 Background 4

2.1 Related work . 4

2.1.1 The flocking behaviour 4

2.1.2 Previous implementations 5

2.2 Overview of an underwater scene 6

2.3 Rendering underwater environments 7

3 Designing the flocking algorithm 10

3.1 Reynolds’ flocking algorithm 10

3.1.1 Flocking as a behavioural model 11

i

CONTENTS CONTENTS

3.1.2 Presentation of a boid 11

3.1.3 The separation rule . 12

3.1.4 The alignment rule . 12

3.1.5 The cohesion rule . 14

3.2 Applying constraints on boids 15

3.3 The obstacle avoidance rule 16

3.4 Computing orientation . 17

3.5 Algorithmic considerations . 18

3.6 Applications . 19

3.6.1 In robotics . 19

3.6.2 In the music industry 19

3.6.3 In the video and games industries 20

4 Improving the realism of the scene 21

4.1 Fog . 21

4.2 Fish modelling . 22

4.2.1 Designing the fish body 22

4.2.2 Fish motion . 23

4.3 Adding grass on the terrain 23

4.4 Modelling caustics . 24

5 Implementation 26

5.1 Software library . 26

5.2 The scene graph approach . 27

5.2.1 Overview of graphs 27

5.2.2 Definition . 27

5.2.3 Benefits . 28

5.3 Design patterns . 30

5.3.1 The observer pattern 30

5.3.2 The visitor pattern . 30

5.4 Description of OpenSceneGraph 31

ii

CONTENTS CONTENTS

5.4.1 The core OSG library 32

5.4.2 The processing pipeline 33

5.4.2.1 The update traversal 33

5.4.2.2 The cull traversal 33

5.4.2.3 Render traversal 34

5.5 Dynamic modification of a scene gaph 34

5.6 The coding of the flocking algorithm 35

5.6.1 OSG classes . 35

5.6.2 Flocking implementation classes 36

5.6.3 Utility classes . 37

5.6.4 Flocking algorithm revisited 38

5.7 Optimizing the scene graph 38

5.8 Major issues . 39

5.8.1 OSG issues . 39

5.8.2 Flocking algorithm drawbacks 39

6 Software evaluation 40

6.1 Evaluation of the software . 40

6.1.1 Results . 40

6.1.1.1 Fish shoaling 40

6.1.1.2 Obstacle avoidance 41

6.1.1.3 Terrain visualization 41

6.1.1.4 Caustics . 41

6.1.1.5 Underwater visualization 42

6.2 Performance of the program 42

6.3 Comparison with other implementations 45

7 Critical appraisal 50

7.1 Objectives summary . 50

7.2 Project management . 51

7.3 Lessons learnt . 51

iii

CONTENTS CONTENTS

8 Conclusion and future works 53

Appendices 54

A The flocking implementation class diagram 55

B The scene graph sketch 56

C User manual 57

C.1 Requirements . 57

C.1.1 Software . 57

C.1.2 Hardware . 57

C.2 Installing the software . 58

C.2.1 Controls . 58

C.2.1.1 Mouse . 58

C.2.1.2 Keyboard . 58

C.3 Compiling the source code . 59

C.4 Recommended configuration 60

iv

LIST OF FIGURES

2.1 Boids . 9

3.1 A boid . 11

3.2 The separation rule . 12

3.3 The alignment rule . 14

3.4 The cohesion rule . 15

3.5 Euler angles . 17

4.1 A fish mesh . 22

4.2 Fish body motion . 23

4.3 A grass on the terrain . 24

5.1 A scene graph . 28

5.2 OSG Functional Components 32

5.3 OSG pipeline processing . 33

5.4 A scene graph containing a flock of three fish 36

6.1 A school of fish . 41

6.2 The obstacle avoidance rule 42

6.3 The terrain . 43

6.4 Caustics effect . 43

6.5 The caustics map . 43

v

LIST OF FIGURES LIST OF FIGURES

6.6 The caustics effect from Finding Nemo 44

6.7 The final rendering . 47

6.8 Statistics of the simulation . 48

6.9 A school of fish from PSCrowd 49

A.1 The simplified class diagram 55

B.1 The scene graph sketch . 56

vi

LIST OF ALGORITHMS

1 Flocking algorithm . 10

2 The separation rule . 13

3 The alignment rule . 13

4 The cohesion rule . 15

5 Limit Velocity . 16

6 Obstacle avoidance . 16

vii

Abstract

Reynolds first simulated the flocking behaviour in a program called Boids.

His algorithm consists of three simple rules: separation under which every

boid should steer to avoid crowding neighbours, alignment states that every

boid should match the velocity of its neighbours and the cohesion emphasizes

on the fact that every boid should head themselves towards the centre of the

flock. This report focuses on implementing that flocking algorithm on three-

dimensional fish models in OpenSceneGraph. The simulation will make use

of callbacks. The result will be a real-time simulation of a school of fish.

Users will be able to dynamically switch on and off the flocking behaviour.

In order to increase the realism of the environment, items such as grass,

caustics, fog, bubbles and terrain will also be considered.

viii

Acknowledgements

• First of all, I wish to express my gratitude to the University of Hull

and the Department for International Development (DfID) for

offering me this wonderful opportunity to study in the United Kingdom.

• I also wish to thank all the Computer Science Department staff for their

availability and their advice which were of great help. May I thank

especially my project supervisors Dr Paul Chapman and Mr Kim

Bale for their availability and their patience, my personal supervisor

Dr Helen Wright for her attention, concern, advice and availability

and finally my lecturers Mr Warren Viant, Mr Derek Wills, Dr

Jon Purdy and Mr Darren McKie.

• I would like to thank my parents Mr Séraphin Foping and Mrs

Christine Foping back in Cameroon for their support.

• I would like to thank my brothers, sisters and friends in Cameroon.

• Finally, I would like to express my gratitude to all my classmates for

their permanent support throughout the academic year. Cheers, guys!

ix

Dedication

To the Almighty God

x

CHAPTER

ONE

Introduction

One of the most challenging tasks in computer graphics is to be able to render

realistic underwater scenes. In the following lines, answers to the following

questions will be addressed:

• Why do we need to simulate underwater environments?

• What are the main properties of such environments?

1.1 Motivations

Over the past few years, there has been an increased interest in deep-sea

underwater exploration and engineering. (Chapman, Conte, Drap, Gam-

bogi, Gauch, Hanke, Longand, Loureiro, Papini, Pascoal, Richards & Roussel

2006) described a project aiming at the virtual exploration of underwater

sites (VENUS). Such exploration enables everyone to learn in depth about

archaeological sites in a safe and cost-effective environment. Hence the needs

to model a physically accurate simulation.

Realistic underwater rendering could be used to allow divers and submersible

remotely operated vehicle pilots to predict the visibility and analyse optimum

1

1.2 Initial specification Introduction

equipment and procedures for a range of underwater conditions. Moreover,

recent attempts at underwater scenes within the entertainment market, al-

though believable, are of limited physical accuracy and are often time con-

suming to create.

1.2 Initial specification

The initial specification of the project states that it will focus on render-

ing realistic underwater environments for use in an underwater archeology

project, the VENUS project described in section 1.1. Items to be considered

will include silt rendering, fog and fish schooling.

1.3 Aims and objectives of the project

As it is mentioned in the initial specification, this project should focus on

rendering underwater scenes. However as the specification were tightened

up, my supervisor advised to focus only on the flocking behaviour of fish.

Therefore, the project aims at applying Reynolds’ flocking algorithm in

OpenSceneGraph (OSG) on three-dimensional fish models in order to sim-

ulate a school of fish. A realistic underwater rendering should be provided.

Items such as caustics, grass, underwater terrain and fish body motion should

be addressed.

1.4 Structure of the dissertation

The dissertation has been broken into nine parts:

• The first part of the report (chapter 2) will be a presentation of the

background.

2

1.4 Structure of the dissertation Introduction

• Reynolds’ flocking algorithm will be unwound in chapter 3. The chapter

will be concluded by some applications of the flocking behaviour.

• The design part of the report will be closed by presenting algorithms

used to increase the realism of the scene will be explained in chapter 4.

• Having described in depth the design process of both the flocking and

the underwater scene, the implementation part of the algorithm will be

presented in chapter 5. Before describing OSG in depth in section 5.4,

scene graphs will be addressed in section 5.2.

• The software will be evaluated in chapter 6.1. Results and comparisons

with previous implementations will also be detailed in this chapter.

• A critical appraisal and the project management will be discussed in

chapter 7.

• The report will be concluded in chapter 8 and future research areas will

be given.

• A simplified version of the class diagram of the software will be pre-

sented in appendix A.

• Finally, the scene graph of the software will be presented in appendix B

and the user manual will be detailed in appendix C. The minimum con-

figuration to run the software will also be discussed in that appendix.

3

CHAPTER

TWO

Background

2.1 Related work

2.1.1 The flocking behaviour

Reynolds (1987) described an agent-based simulation of flocking in which

each member of a flock (called boid) can be defined in terms of interacting

particle systems. He showed that the complexity of his algorithm is O(n2),

and suggested spatial hashing as a means of improvement. His first imple-

mentation was an off-line process.

Tu & Terzopoulos (1994) describe a much more advanced algorithm for their

artificial marine life. Carlson & Hodgins (1997) present a method of reducing

the computational cost of simulating groups of animals by using less accurate

simulations for individuals when they are not important to the viewer. They

also present a system to decrease the computational cost of the motion of a

herd of one-legged creatures. Gabbai (2005) suggested that flocking has been

considered as a means to control the behaviour of unnamed air vehicles.

Okubo (1986) suggested that the coordination in flocks might be achieved by

the application of the mathematics of nonlinear dynamics. Heppner (1987)

4

2.1 Related work Background

suggested that the flocking behaviour may be an emergent property aris-

ing from individuals following simple rules of motion. Later on Heppner

& Grenander (1990) presented a computer flight flock simulation where the

flock was a self-organizing aggregation of individuals, whose behaviour was

based on stochastic nonlinear differential equations. Both simulations as-

sumed common grounds and model the behaviour on the clues of attraction

and repulsion.

2.1.2 Previous implementations

There were several attempts to simulate the flocking algorithm. Boids, the

first computer program to simulate the flocking behaviour, was written by

Reynolds (1987) in Symbolics Common Lisp, and was based on Symbolics’ S-

Geometry 3D modeling system and S-Dynamics animation system. Reynolds

(2006) also presented an implementation of his flocking algorithm for the

PlayStation R©3 called PSCrowd.

Courty & Musse (2005) also implemented the FastCrowd system which were

able to run a crowd of 5,000 individuals at about 100 frames per second, and a

crowd of 10,000 at 35 frames per second (without visualization, 50 frames per

second and 20 frames per second with individuals drawn as two-dimensional

disks). The graphics processing unit (GPU) also computed the flow of smoke

for fire evacuation scenarios. The FastCrowd made use of general purpose

computation on GPU algorithms and the flock simulation is computed by

using both the central processing unit (CPU) and the GPU.

Erra, Chiara, Scarano & Tatafiore (2004) described a GPU implementation

of Boids which is entirely computed on an nVIDIA R© NV35 graphics card,

thereby exploiting the intrinsically parallel nature of the flocking behaviour.

Their system also made use of a scattering matrix to detect when the flock

departs from mainly parallel flight.

Chapman, Viant & Munoko (2004) also implemented Reynolds’ flocking al-

gorithm in OSG.

5

2.2 Overview of an underwater scene Background

Woodcock (2000) described an implementation of Reynolds’ flocking algo-

rithm in C++. His system did not take into account the obstacle avoidance

rule, which was added later by Reynolds. Boids are stuck in the flocks they

started with. Woodcock (2001) released a more improved version of his pro-

gram with a predator and prey rule. Performance and analysis of all these

approaches will be presented in section 6.1

2.2 Overview of an underwater scene

A realistic underwater scene requires to taking into account many other as-

pects such as the wildlife, optical effects like caustics and shafts of lights.

In order to increase realism of the scene, one has to focus on fish and their

behaviours such as their ability to move, sense and think.

Accurate simulations of fish behaviours have hinted at the uses of artificial

life algorithms. The most interesting behaviour falling in that category is

certainly the shoaling motion of an aggregation of fish. This particular be-

haviour as well as other have been extensively studied in artificial life. The

flocking algorithm first created by Reynolds (1987) is the most obvious one

to base fish schooling behaviour on. He introduced a distributed agent based

flocking model in which each flock member or boid follows three basic rules.

He described this model is an extension of the particle systems introduced

by Reeves (1983). Figure 2.1 shows a screenshot of Boids.

6

2.3 Rendering underwater environments Background

2.3 Rendering underwater environments

The main issue with such environment is the density of water which is up

to eight hundred times higher than air. That density drastically increases

with depth. With increasing depth, sunlight is absorbed hence reducing the

visibility. This brings about a new way of light interactions and the need

of special rendering approach. Aranha (2005) suggested that the interaction

with water molecules and suspended particles caused effects, including loss

of contrast, diffusion of rays, change in colour and reduction of intensity.

Light scattering causing optical effects such as caustics and shafts of light

due to atmospheric particles is also an important part for any underwater

rendering.

Another issue is the exponential increase of the pressure in respect to the

depth. For instance at about ten meters below the surface, the water exerts

twice the pressure on a human body as air at surface level. For heavy objects,

this is not an issue because they will be provided with the buoyancy which

tends to make them feel lighter.

Pixar (2003) produced a computer-animated film with one of the most im-

pressive demonstration of underwater effects in the movie Finding Nemo

(Pixar (2003)), which was created off-line. To create these graphics, Pixar’s

Renderman was adapted to blur objects based on ocean depth and distance

from a specific viewpoint. Water interaction was created by modifying Fitz,

Pixar’s fur and cloth simulator (Deoswitz 2003). Several algorithms for ren-

dering caustics, shafts of light and the colour of the water have been published

for underwater images. Shinya, Saito & Takahashi (1989) proposed an algo-

rithm for rendering caustics. The rationale is to compute the illumination

distribution on the surface in advance by using grid-pencil tracing. Briere &

Poulin (2001) displayed caustics by using a hierarchical light beam structure.

The main drawback of all these algorithms is their reliabilty on ray-tracing,

making them slow. Finally Iwasaki, Dobashi & Nishita (2002) proposed a

fast method for rendering underwater optical effects using advanced graphics

7

2.3 Rendering underwater environments Background

hardware. The rationale is to use illumination volumes for displaying shafts

of light. Deusen, Ebert, Fedkiw, Musgrave, Prusinkiewicz, Roble, Stam &

Tessendorf (2004) presented an algorithm to render sea animation which was

not based on physics models but instead used statistical models based on

observations of the real sea. Their method had been extensively used for

commercial purposes, mainly for sea animation in the movies Titanic and

Waterworld.

8

2.3 Rendering underwater environments Background

Figure 2.1: Boids (Reynolds (1987))

9

CHAPTER

THREE

Designing the flocking algorithm

3.1 Reynolds’ flocking algorithm

Flocking is a good example of emergent collective behaviour. The main

characteristic of this model is the lack of a group leader. Flocking behaviour

emerges from local interactions. Each agent, a member of the flock, has

direct access to the geometric description of the world, but reacts only to its

nearby flock-mates. The basic flocking model consists of three simple rules:

cohesion, alignment and separation.

Listing 1 shows a pseudo-code of Reynolds’ flocking algorithm.

Algorithm 1 Flocking algorithm
PROCEDURE FLOCKING
initialise boids()
LOOP

apply rules on boids()
apply constraints()
calculate rotation angles()
draw boids()

ENDLOOP
END PROCEDURE

10

3.1 Reynolds’ flocking algorithm Designing the flocking algorithm

3.1.1 Flocking as a behavioural model

Reynolds used the word boid, a contraction of birdoid, to refer to a member

of a flock. It should be noted that each boid has only a local knowledge of

the world. This knowledge comes from a simulated vision from its current

position. Hence the lack of a leader in a flock. The entire flock decides in

a distributed manner in order to get a synchronized and smooth motion.

Reynolds observed that, none of the creatures of a flock has a full knowledge

of the entire group, meaning that every member of the flock can only perceive

its nearby flockmates. The aggregation of all these behaviours bring about

the complex motion as seen in nature. The bulk of the simulation of this

model is the distributed partial knowledge of the group. In order to achieve a

realistic movement, rotation equations should be computed in order to allow

the boid to rotate itself with respect to its velocity.

3.1.2 Presentation of a boid

A boid can be defined as a set of parameters used to simulate the flight as

mass, maximum speed, maximum acceleration, global position, current speed

and a view reference system used to represent its the point of view. Figure

3.1 shows a boid and its coordinate system.

Figure 3.1: A boid (Reynolds (1987))

11

3.1 Reynolds’ flocking algorithm Designing the flocking algorithm

Part of boids’ information is constant and defined with initial conditions

while others need to be updated every frame hence the discrete nature of the

simulation.

3.1.3 The separation rule

This rule allows a boid to maintain a distance (threshold) from its nearest

flock-mates. When a boid is within a certain distance from one of its neigh-

bours, it is repelled from it so as not to collide with them. As the boid moves

closer to the nearby agent, the force of repulsion increases proportionally to

the square of the distance between the agent and its vicinity. Listing 2 details

the pseudo-code of this rule and figure 3.2 illustrates the rule.

Figure 3.2: The separation rule (Reynolds (1987))

3.1.4 The alignment rule

This rule enables the flock members to go in the same direction and at the

same speed as their nearby flock mates to travel in the same direction and

speed. Nearby flock mates cause the boid to steer more to match their ve-

locity. The relationship is proportional to the square of the distance between

them. Figure 3.3 and listing 3 illustrates and details the pseudo-code of this

rule respectively.

12

3.1 Reynolds’ flocking algorithm Designing the flocking algorithm

Algorithm 2 The separation rule

INPUT: Boid ai

OUTPUT: New Position
ALGO SEPARATION(BOID ai)
V ector3D NewPosition = 0
FORALL BOID a DO

IF (a 6= ai) THEN
IF |ai − a.position| ≤ THRESHOLD THEN

NewPosition← NewPosition− (ai.position − a.position)
ENDIF

ENDIF
ENDFOR
RETURN NewPosition
END ALGO

Algorithm 3 The alignment rule

INPUT: Boid ai

OUTPUT: New Velocity
ALGO VMR(BOID ai)
V ector3D PV elocityi

FORALL BOID a DO
IF (a 6= ai) THEN

PV elocityi ← PV elocityi + a.velocity
ENDIF

ENDFOR
PV elocityi ← PV elocityi/N − 1
RETURN (PV elocityi − ai.velocity)/SCALEFACTOR
END ALGO

13

3.1 Reynolds’ flocking algorithm Designing the flocking algorithm

Figure 3.3: The alignment rule (Reynolds (1987))

3.1.5 The cohesion rule

This behaviour makes a boid to be near the centre of the flock. It should be

noted that each boid’s notion of the centre of the flock is a local centre. It is

actually the centre of the nearby flock mates.

The flock centring urge depends on where the boid is in relation to the rest

of the flock. At the centre of the flock, its neighbours being approximately

evenly distributed about the boid, the flock centring urge is low. At the out-

side of the flock, the boid’s local flock mates are more distributed towards

the inside of the flock and the flock centring behaviour causes the boid to

steer towards this centre. The farther away the boid is from the flock centre

the more it is attracted to it. The force of this attraction is proportional to

the square of the distance. Figure 3.4 and listing 4 illustrates and details the

pseudo-code of this rule respectively.

14

3.2 Applying constraints on boids Designing the flocking algorithm

Figure 3.4: cohesion rule (Reynolds (1987))

Algorithm 4 The cohesion rule

INPUT: Boid ai

OUTPUT: New Position
ALGO FC(BOID ai)
V ector3D Positioni

FORALL BOID a DO
IF (a 6= ai) THEN

Positioni ← Positioni + a.position
ENDIF

ENDFOR
Positioni ← Positioni/N − 1
RETURN (Positioni − ai.position)/SCALEFACTOR
END ALGO

3.2 Applying constraints on boids

Having computed the heading of boids, their velocity and acceleration vec-

tors have to be constrained in order to prevent them from an un-realistic

motion. This is achieved in listing 5.

15

3.3 The obstacle avoidance rule Designing the flocking algorithm

Algorithm 5 Limit Velocity

INPUT: Boid ai

OUTPUT: New Velocity
ALGO LimitVelocity(BOID ai)
V ector3D V elocity
Normalize(V elocity)
NewV elocity = V elocity ∗ SCALEFACTOR
RETURN NewV elocity
END ALGO

3.3 The obstacle avoidance rule

This rule was added by Reynolds (2000). Its aims at avoiding any obsta-

cles in the world. In this project, the obstacles were the boundaries of the

bounding volume. This will ensure that boids always travel within the spec-

ified bounding box representing the world. The corresponding algorithm is

as follows:

Algorithm 6 Obstacle avoidance

INPUT: Boid ai AND BOUNDING BOX
OUTPUT: New Position

ALGO LimitPosition(BOID ai)
V ector3D Position
IF (Position IS CONTAIN in the World) THEN

NewPosition = 0
ENDIF
IF (Position IS OUTSIDE the World) THEN

NewPosition = Position− AMOUNT
ENDIF
RETURN NewPosition
END ALGO

16

3.4 Computing orientation Designing the flocking algorithm

3.4 Computing orientation

Another important feature is the rotation of boids. Ideally, they should be

able to compute their rotation angles based on their velocities. The rotation

of a particular boid was defined by the means of Euler angles and quaternions.

Lander (1998) described Euler angles and suggested the use of quaternions to

avoid issues such as gimbal lock, interpolations and round-off errors (Dunn

& Parberry (2002)).

Figure 3.5: Euler angles (Woodcock (2000))

The rotation of boids were defined by only two angles: the heading and

the pitch. The heading defines the rotation around the up vector (the z-

axis in OSG) whereas the pitch defines the rotation around the y-axis1. By

using simple flight dynamic equations, the following equations were used to

compute the heading and the pitch angles:

Pitch = − arctan(
V elocity.Z

V elocity.X
) (3.1)

Heading = − arctan 2(V elocity.X, V elocity.Y) −
π

2
(3.2)

1OSG uses a left-handed coordinate system with the up-vector being the z-axis, the
positive y-axis pointing into the screen while the x-axis points at the right of the user in
the horizontal direction.

17

3.5 Algorithmic considerations Designing the flocking algorithm

The value of the pitch returned by the equation 3.1 will always belong to

the range
[
−π

2
, π

2

]
which is the definition set of the arctan function. This

means that there is no need to constraint the angle. After all, in order to use

canonical Euler angles, the pitch must be defined from −π
2

to π
2

excluded.

Furthermore, the value of the heading returned by the equation 3.2 will also

fall to the range [−π , π] which is exactly the required value for the heading.

All these will make sure canonical Euler angles are used.

Having worked out those angles, they were converted into quaternions before

being applied to the rotation functions. Quaternions present the following

advantages:

1. Smooth interpolation

2. Fast addition

3. Fast conversion to matrix form

4. Less memory usage

However, Dunn & Parberry (2002) highlighted some drawbacks of quater-

nions.

3.5 Algorithmic considerations

The three basic rules allow boids to exhibit a flock-like motion. In the flock-

ing system, the algorithm checks each boid against every other agent in the

world to either include it as a nearby neighbour or disregard it. Therefore

the algorithm has an asymptotic complexity of O(n2) where n is the number

of boids in the world. Reynolds later presents an approach to improve the

neighbouring query in the flocking algorithm.

However it is also possible to improve that complexity to nearly O(n) by us-

ing a suitable spatial data structure which allows each boid to be kept sorted

by their location. Therefore, finding the nearby flockmates of a given boid

18

3.6 Applications Designing the flocking algorithm

requires examining only the portion of the flock which is within the general

vicinity. By using such algorithmic speed-ups and modern fast hardware,

large flocks can be simulated in real time, paving the way for interactive ap-

plications.

3.6 Applications

Flocking algorithms have extensively been used in robotics, musical and com-

puter animation industries.

3.6.1 In robotics

Kelly (1995) described a process to build a robot that can act as an insect.

He called it Allen. The oustanding feature of Allen was its ability to learn,

in an evolutionary time, to move through a complex world by building up

a set of behaviours such as: avoid collision with nearby objects, wander

aimlessly, navigate the world, compute an internal map, being aware of any

environmental alterations, express any travel plans and dynamically change

plans.

The artist Leonel Moura also used a flocking algorithm to make a robot

simulation, he also showed that a spider web, a honeycomb or a shell pattern

reveals complex designs. He concluded that all these happened as a result of

emergence and self-organization and ended up with a translation of flocking

based algorithms.

3.6.2 In the music industry

In order to award the Original Musical Score, the panel uses a software that

treats music as a type of 3D space, in which the dimensions are pitch, loud-

ness and note duration. As musicians perform, a swarm of digital particles

19

3.6 Applications Designing the flocking algorithm

immediately starts to buzz around the notes being played in this space - in

the same way that bees behave when they are seeking out pollen.

Swarm Music described by Blackwell (2005) is an improvisation and compo-

sition system inspired by the behaviour of insect swarms. The individuals in

Swarm Music, however, are not bees or ants, but musical events. A musical

event inhabits Music Parameter Space (MPS) where each dimension corre-

sponds to a musical variable such as pitch, pulse, duration and loudness.

Events are attracted towards each other and to events left behind by other

swarms. And like real swarms, individuals also take care not to bump into

each other.

As the events swarm around each other, constantly varying melodies, har-

monies and rhythms are produced. Attracting events captured from an ex-

ternal source enable humans to interact with the swarm. Insect swarms have

a remarkable abilility to organise themselves despite being leaderless and the

simplicity of each individual. This phenemenon is called self-organisation,

and Swarm Music demonstrates that these principles apply to music too.

3.6.3 In the video and games industries

Tim Burton’s Batman Returns released in nineteen ninety-two contained

a computer simulated bat swarms and penguin flocks which were created

with modified versions of the original boids software developed by Reynolds

(1987). Disney’s The Lion King released in nineteen ninety-four also included

a wildebeest stampede.

In the games industry, the flocking behaviour provides an interesting tool

for aggregate motion. Many commercial titles made use of it. For instance,

Epic’s Unreal and Sierra’s Half-Life used flocking algorithms for many of

their monsters as well as other creatures such as fish and birds. Enemy

Nations of Windward Studios used a modified flocking algorithm to control

unit formations and motion accross the space.

20

CHAPTER

FOUR

Improving the realism of the scene

4.1 Fog

Fog can be defined as an atmospheric effect, its presence in a scene greatly

increases its realism. Fog is also a depth cue since it depends on the distance

from the camera, therefore hinting how far away objects are. When used

properly, it can be a key asset for the culling process by providing a smoother

culling of objects by the far plane. This is why OSG manages it within the

cull traversal, recall from the chapter 5 that all state managements of a scene

are handled during the cull traversal.

There are two ways to implement the fog in OSG: linearly or exponentially.

The former method can be achieved by blending the color of the pixel with

the colour of the fog of the scene. The blending factor is a function of the

distance from the viewer to the camera. In addition to that, there is a

fog factor to decrease linearly with the depth from the viewer by using the

following parameters: the starting distance of the fog and the end distance

of the fog.

In order to achieve all this in OSG, the state management of the root node

was altered so that every children of this node will automatically inherit from

21

4.2 Fish modelling Improving the realism of the scene

this attribute. Results will be presented in chapter 6.1.

4.2 Fish modelling

4.2.1 Designing the fish body

The body of a fish is made up of a combination of a skeleton with a texture

mapped fish mesh. The actual process of mapping a skeleton onto a texture

mapped fish mesh requires the import of an appropriate fish mesh into a 3D

modelling tool such as AutodeskTM 3D Studio MaxTM , mesh texture

mapping, and the binding of the skeleton to the mesh.

The skeletal model of fish used within this project is an improvement of the

one used by Gates (2002). Figure 4.1 shows a screenshot of its wireframe

mode as well as the number of primitives and vertices contained by the

fish model (a perch). The fish model is made up of ten drawable objects

or sub-meshes: two for its body (front and back faces), two for its eyes,

two for its vertical and dorsal fins, one for its tail and another one for its

head. Throughout this project all 3D fish models were obtained from Toucan

(2007).

Figure 4.1: A fish mesh

22

4.3 Adding grass on the terrain Improving the realism of the scene

4.2.2 Fish motion

Gates (2002) described an algorithm to simulate the swimming motion of fish.

Quan, Zhong, Wang, Xu, Liang & Zhang (2006) also described an algorithm

to model the fish body motion. They applied a distortion function to its

body, therefore the fish model is constructed by a ”particle-spring-damp”.

In order to implement it in OSG, a vertex shader was used. The rationale

is to apply a travelling sine wave function to its vertices. The corresponding

pseudo-code is as follows:

1. Retrieve the position of vertices.

2. Displace the y−component by applying a travelling sine wave function

to it.

3. Render the fish.

Figure 4.2 shows the result.

Figure 4.2: Fish body motion

4.3 Adding grass on the terrain

The addition of grass to the scene greatly increases its realism. A simple

ray-tracing algorithm was used in order to work out the correct height on

23

4.4 Modelling caustics Improving the realism of the scene

the terrain. Its corresponding pseudo-code is as follows:

1. From the viewer to the desired position on the terrain, a ray is fired

off.

2. The height is computed by considering the magnitude of the vector

whose edges are the desired position and the intersection of the ray

with the terrain

This process was implemented in OSG using intersections. Figure 4.3 shows

the result.

Figure 4.3: A grass on the terrain

4.4 Modelling caustics

Applying caustics to the scene is another key asset to increase the realism of

the scene. Several works have been done in the field. Wand & Strasser (2003)

described an algorithm to render caustics in real-time. However, achieving a

real-time simulation of underwater lighting is still one of the most challenging

tasks in computer graphics. This is mainly due to the density of the water

which is around eight hundred times greater than the air.

Caustics occur when light is reflected at the seabed, focused into ray bundles

24

4.4 Modelling caustics Improving the realism of the scene

of a certain structure, and then received as patterns of light on a diffuse

surface. Caustics are a subtle effect but for underwater scenes, these small

details are crucial to obtain realistic images.

Stam (1996) also presented an algorithm to simulate the caustics effect. The

rationale was to model caustics through textures synthesized using a wave

description of the propagation of the light. His algorithm can be summarized

as follows.

1. Generate random phase from a statistical description of the surface.

2. Transform resulting wave into Fourier domain.

3. Perform multiplication with the filter.

4. Inverse Fourier transform the result.

Throughout the project an attempt to simulate this effect was achieved

in OSG. It was done on the GPU using a multitexturing technique. A noise

texture was defined as the second texture unit. The caustics effect consisted

of applying a slow and smooth motion of that noise texture by altering the

texture coordinate in one dimension, namely the horizontal direction.

Results of these will be presented in chapter 6.1.

25

CHAPTER

FIVE

Implementation

This chapter will focus on the actual implementation process of the flocking

algorithm in OSG. The full description of the required software library will

be given in section 5.1, further details about scene graphs will be presented

in section 5.2.

Furthermore, description of some behavioural patterns, namely the visitor

pattern and the observer pattern will be presented in section 5.3. The chapter

will be closed by an overview of OSG in section 5.4 and also callbacks which

have been used to update every node of the scene graph.

5.1 Software library

The successful completion of the code would have not been possible without

using the following programs:

• AutodeskTM 3Ds MaxTM 9 was used for modelling objects such as

fish and terrain.

• ATITM RenderMonkeyTM 1.6 provided the shader framework. It

was used to model the fish body motion, caustics and floating plants.

26

5.2 The scene graph approach Implementation

The actual process to achieve it will be described in chapter 4.

• MicrosoftTM Visual StudioTM 2005 provided the core framework

to code the flocking algorithm in C++.

• OpenSceneGraph 1.2 provided the necessary graphics toolkit to

achieve the program. Because of its crucial role to the project, its

description will be given in section 5.4.

5.2 The scene graph approach

5.2.1 Overview of graphs

A graph is a data structure, an abstract data type consisting of a set of nodes

and a set of edges describing the connections between nodes. Foping (2006)

studied in depth planar graphs and also described an optimal algorithm to

traverse them. Scene graphs consist of a graph of nodes depicting the spatial

sketch of a 3D scene while hiding graphic characteristics in objects. Hence

the strengths of scene graphs; spatial organization for culling and embedding

the entire scene in a scene graph. In addition to that, there is a need to have

a powerful, easy-to-use and scalable application. The next lines will focus on

the definition of scene graphs as well as giving some examples.

5.2.2 Definition

A scene graph is a data structure aiming at arranging the logical and often

spatial representation of a graphical scene. It is typically drawn with the

root at the top, and leaves at the bottom. It starts with a top-most root

node which encompasses the whole virtual world. The world is then broken

down into a hierarchy of nodes representing either spatial groups of objects,

settings of the position of objects, animations of objects, or definitions of

logical relationships between objects such as those to manage the various

27

5.2 The scene graph approach Implementation

states of a traffic light. The leaves of the graph represent the physical objects

themselves, their drawable geometry and their material properties. Formally

speaking, a scene graph can be defined as a tree or as a directed acyclic graph

with a random number of children. The following diagram shows an example

of a scene graph representing the solar system.

Figure 5.1: A scene graph

5.2.3 Benefits

• Performance: scene graphs provide an excellent framework for optimiz-

ing graphics performance. A good graphics engine should encompass

the culling of objects that will not be sent to the graphics pipeline for

rendering on screen, and state sorting of properties such as textures

and materials, so that all objects that are alike are rendered together.

By not supplying this technique, both the CPU and the GPU will be

swamped by a tremendous amount of data. Scene graphs make this

process less painful by supplying a mechanism to sort the state of ob-

jects.

28

5.2 The scene graph approach Implementation

• Productivity: scene graphs take away much of the hard work required

to develop high performance graphics programs. The engine manages

all the low-level graphics, reducing what would be thousands of lines of

OpenGL down to a small number of simple calls. Furthermore, one of

the most powerful concepts in object-oriented programming is object

aggregation, enshrined in the composite design pattern, which perfectly

fits in the scene graph tree structure, hence making a highly flexible and

reusable design. Scene graphs also often come with additional utility

libraries which range from helping users set up and manage graphics

windows to importing 3D models and images. A dozen lines of code

can be enough to load mesh data and create a real-time simulation.

• Portability: scene graphs encapsulate much of the lower level tasks

of rendering graphics and reading and writing data, reducing or even

removing the platform specific codes used in an application. If the un-

derlying scene graph is portable then moving from platform to platform

can be as simple as recompiling the source code.

• Scalability: along with being able to dynamically manage the complex-

ity of scenes to account for differences in graphics performance accross

a range of machines, scene graphs also make it much easier to manage

complex hardware configurations, such as clusters of graphics machines,

or multiprocessor/multipipe systems. A good scene graph will allow the

developer to focus on the content of the application not the lower level.

• Hierarchical modelling and inheritance: one of the most important

concepts in object-oriented programming is the ability to define a be-

haviour or a state in a parent class so that its children can easily inherit

from those properties and attributes. Scene graphs provide this feature.

29

5.3 Design patterns Implementation

5.3 Design patterns

Design patterns were first defined by Gamma, Helm, Johnson & Vlissides

(1995) and have been extensively used since then. Throughout this project

two behavioural patterns were used: the observer pattern and the visitor

pattern.

5.3.1 The observer pattern

This pattern defines a one-to-many dependency between objects so that when

the state of one object changes, all its dependents (observers) are notified and

updated automatically. A typical situation when this concept is useful is de-

scribed as follows:

In a small flock of two fish, how should a particular fish update its position

given the fact that it solely depends on the position of the other one?

This behaviour implies that every member of the flock is dependent on each

other and therefore should be notified of any change in its state. Obviously,

the size of the flock should not be an issue. To solve this problem, observers

delegate the responsibility for monitoring an event to a central object: sub-

jects.

The key of the actual implementation of this pattern is to have objects (ob-

servers) that want to know when an event occurs attach themselves to another

object (subjects) that is looking for an event to occur or that triggers the

event itself. When the event occurs, the subject informs the observers that

it has happened.

5.3.2 The visitor pattern

This pattern has been extensively used in OSG. It aims at representing an

operation to be performed on elements of an object structure. Visitor lets

users define a new operation without changing the classes on which it oper-

ates. Shalloway & Trott (2000) also described this pattern. A typical use of

30

5.4 Description of OpenSceneGraph Implementation

this pattern is stated as follows:

Let us consider the scene graph described in section 5.2.2, how can we ensure

that a specfic operation (an update method) will be applied to all children of

the scene graph without changing the structure of the children?

The idea is to use a structure of element classes, each of which has an accept

method that takes a visitor object as an argument. Visitors therefore have

a visit() method for each element class. The accept() method of an element

class calls back the visit() method for its class. Separate concrete visitor

classes can then be written to perform some particular operations. Wallace

(2001) later explained a method to get rid of the accept() method in the

visitor pattern.

5.4 Description of OpenSceneGraph

OSG is an open source high performance 3D graphics toolkit made by Robert

Osfield and Don Burns, used to develop applications in fields such as vi-

sual simulation, games, virtual reality, scientific visualization and modelling.

Built on top of OpenGL and entirely written in C++, it runs on all Windows R©

platforms, OSX, GNU/Linux, IRIX, SolarisTM , HP-Ux, AIX and FreeBSD

operating systems. It also provides a viewer to display the 3D virtual scene.

The whole graphic pipeline to render the scene is directly embedded in the

core library. Every frame, the scene graph is traversed and objects in the

view volume are then drawn. Figure 5.2 shows its functional components.

• The core OSG libraries provide essential scene graph and rendering

features, as well as additional features required by 3D graphics appli-

cations.

• NodeKits extend functionalities of core OSG scene graph node classes

to provide higher-level types and special effects such as particle systems

or precipitation effects (rain, snow and fire).

31

5.4 Description of OpenSceneGraph Implementation

Figure 5.2: Core OSG (Martz (2007))

• There are forty-five plug-ins in the core OpenSceneGraph distribution.

They offer support for reading and writing both native and third-party

file formats.

5.4.1 The core OSG library

This part of OpenSceneGraph provides core features, classes and methods

for operating on the scene graph. It is made up of four libraries:

• The osg library contains all classes related to the scene graph node.

It also contains class for mathematical operations and rendering state

specification and management.

• The osgUtil library contains classes and methods to operate on a

scene graph and its contents. This library also provides methods to

gather statistics of a program (StatHandler), optimizing the scene

graph (optimizer). This library also provides interfaces for geometric

32

5.4 Description of OpenSceneGraph Implementation

operations.

• The osgDB library contains classes and methods to create and ren-

der 3D databases. It provides plug-ins to read and write file formats

supported by OSG.

5.4.2 The processing pipeline

Rendering a scene graph is achieved by traversing the graph and sending

the resulting state and geometry data to the graphics card as OpenGL com-

mands. All these happen on a frame-by-frame basis. Figure 5.3 shows the

pipeline processing.

Figure 5.3: OSG pipeline processing

5.4.2.1 The update traversal

This traversal modifies the state and geometry. These updates are performed

either by the application or through callbacks functions attached to nodes

that they operate on. A full description of the callback mechanism will be

given in the section 5.5. By updating a node, the developer changes its

attributes such position and colour.

5.4.2.2 The cull traversal

After the previous traversal is completed, a cull traversal is performed in

order to find what objects will actually be seen in the screen and pass a

reference to the visible objects into the final rendering list. This traversal is

33

5.5 Dynamic modification of a scene gaph Implementation

also in charge of ordering nodes for blending. The output of this process is

the render graph.

5.4.2.3 Render traversal

This traversal uses the render graph generated by the previous traversal

and sends this to the underlying hardware for rendering. OSG has a multi-

processing architecture. In fact, the processing pipeline is achieved in paral-

lel.

5.5 Dynamic modification of a scene gaph

OSG allows developers to dynamically alter the scene during the update

traversal in order to create animations. Users can make use of the infinite loop

to insert an update function. Recall the update traversal is fired off by the

following call: viewer.update() while the cull and draw traversals are called

by viewer.frame(). By using callbacks, the program is more maintenable and

easier to use. Because of its multithreaded architecture, using callbacks is

more efficient. Users can define their own functions (callbacks) that will be

applied to the specified nodes or to any subtypes of the scene graph during

the update traversal. During the update traversal, if a node is attached to a

callback, OSG will call that function instead. The core library provides the

osg::NodeCallback interface to the developer to achieve this goal. In order to

define a callback, the following steps should be taken into account.

1. Derive a new class from the osg::NodeCallback interface provided by

the core library.

2. Overload the function call operator. In fact, the dynamic alteration of

the scene graph is achieved within this method.

3. Create an object from a class derived from osg::NodeCallback and bind

it to the specified node using the setUpdateCallback method.

34

5.6 The coding of the flocking algorithm Implementation

5.6 The coding of the flocking algorithm

In order to successfully implement the flocking algorithm in OSG, the fol-

lowing classes were used throughout the project.

5.6.1 OSG classes

1. The Node class is the interface of every internal node in the scene graph.

It also provides methods to enable operations on the scene graph such

as traversals, culling, callbacks and state management.

2. The MatrixTransform class uses a matrix to apply transformations on

its children. The so-called matrix can be used to scale, skew, translate

or rotate its children. The rotation interface of this class provides a

quaternion mechanism to work out transformations, meaning that users

do not have work out a separate quaternion. This is very important as

this concept was extensively throughout the implementation. All these

transformations are made from a relative frame. This class inherits

from the Transform base class. This is where the callback will be

attached.

3. The PositionAttitudeTransform class, unlike the MatrixTransform class,

it does not used a matrix to apply transformations on its children, in-

stead it uses a 3D vector and a quaternion to apply the translation and

the rotation respectively.

4. The Group class is the base class for any node that can get children.

It provides a parent interface. This class is actually one of the most

important classes in OSG because this is where users should organize

the scene graph.

Figure 5.4 shows an example of a scene graph with all these classes. It

represents a small flock of three fish.

35

5.6 The coding of the flocking algorithm Implementation

Figure 5.4: A scene graph containing a flock of three fish

5.6.2 Flocking implementation classes

Referring to the figure 5.4, the following classes were recorded:

• Flock Manager is the parent of every flock member, it becomes ob-

vious that this is a Group object. Its main responsibilities were to

maintain a list of all children and pass that list to every child as soon

as it is required. At this level, no callback was attached to this node.

• Transform Manager provides an interface to apply transformation

(translation, rotation and scaling) to fish. As described in the previous

section, this class is a MatrixTransform.

36

5.6 The coding of the flocking algorithm Implementation

• Callback stores all information related to the fish such as its position,

its acceleration, its angular displacement and its velocity. This class is

responsible of the applications of transformations to its children (fish)

as discussed in section 5.6.1. In order to achieve this goal, it has to be

attached to a node (MatrixTransform) which in turns has a fish as a

child.

• Fish represents the fish objects. This is where the geometry and the

attributes of the fish are stored together with its 3D model and shaders.

All these attributes will be detailed in chapter 4. This is where special

effects will be achieved. The class diagram of this program is shown in

appendix A.

5.6.3 Utility classes

The following classes were also used in the coding process:

• Timer provides an easy-to-use interface to retrieve the time elapsed

since the beginning of the simulation. This timer has been used to

update shaders and create effects such as the fish body motion and

caustics.

• KeyboardEventHandler also supplies an input interface to handle

keyboard events. This greatly increases the interactivity of the pro-

gram.

• HUD gives a straightforward interface to create the head-up display.

It is actually a wrapper of several OpenGL functions.

Having described the system architecture, there are still some dark spots

that need to be clarified. What is happening within the callback in order

to have the flocking algorithm working? The answer to this question will be

detailed in the next section.

37

5.7 Optimizing the scene graph Implementation

5.6.4 Flocking algorithm revisited

In chapter 3, the flocking algorithm was unwound, the pseudo-code of the

callback loop (actually this is the definition of the function operator) to be

applied to every MatrixTransform node is specified as follows:

1. Request the list of all flock members from the flock manager.

2. Work out the nearest flockmates

3. Applying flocking rules described in chapter 3 to the current fish

4. Compute orientation of fish

5. Update position and rotation

There is no rendering function call in this callback, recall from figure 5.3 that

this callback will be called during the update traversal. The cull and draw

traversals will process the scene graph built by the update traversal.

5.7 Optimizing the scene graph

The scene graph as defined in section 5.2 can be easily optimized. The osgUtil

library provides interfaces to traverse the scene graph in order to alter it for

optimal rendering and gather statistical data. These classes are:

• Optimizer as its name suggests, optimizes the scene graph. Its be-

haviour is controlled by a set of flags indicating a specific type of infor-

mation to be processed. For instance, the FLATTEN STATIC TRANSFORMS

flag transforms geometry non-dynamic transform nodes, hence optimiz-

ing the rendering stage by getting rid of modifications to model-view

matrix stack.

• Statistics and StatsVisitor returns the amount and types of nodes in a

scene graph and the amount and types of geometry being rendered.

38

5.8 Major issues Implementation

5.8 Major issues

5.8.1 OSG issues

The first of them is related to the lack of documentation and support in OSG

making the coding process very difficult. Even the official reference guide is

fragmented and incomplete. There are not many books talking about OSG.

In fact, Martz (2007) wrote the first OSG book. His book does not describe

in depth all OSG features. Vital parts of OSG such as shaders, particle sys-

tems are not covered in his book. Many features offered by OSG are not

properly used by developers because of the lack of documentation.

5.8.2 Flocking algorithm drawbacks

The initial version of Reynolds’ flocking algorithm described only three rules

enough to simulate a complex behaviour. However, in order to increase the

realism of the motion, additional rules should be added. Such rules include

the obstacle avoidance, the predator and prey rule, the goal seeking rule and

the hunger. The obstacle avoidance rule described by Reynolds (2000) was

implemented in this project.

Another issue with the flocking algorithm is the fact that some rules are

contradictory at times. In fact, it may happen that the collision avoidance

rule and the velocity matching rule returned contradictory vectors. The way

around it is to prioritize these rules. In this case, collision avoidance was first

applied, followed by the velocity matching and the flock centring.

The naive implementation of the flocking algorithm suffers from a quadratic

bottleneck meaning that as the size of the flock increases so is the compu-

tational time requires to apply the flocking motion. Reynolds suggested the

use of spatial hashing in order to overcome this issue, however this was not

covered in this project.

39

CHAPTER

SIX

Software evaluation

6.1 Evaluation of the software

Having described in depth the analysis and coding process in previous chap-

ters, this chapter will mainly focus on presenting results. The software was

tested on an AMD TurionTM 64 Dual Core running at 1.66 GHz. The graph-

ics card used was a PCI Express nVIDIA GeForceTM 7600 with 256 Mb of

Video RAM with a core speed of 560 Mega Hertz. The memory bandwidth

is 22.4 Gb per second.

6.1.1 Results

The 3D models of the fish and the terrain were obtained from Toucan (2007)

and RenderMonkeyTM test suite respectively.

6.1.1.1 Fish shoaling

Figure 6.7 shows three flock of thirty four fish, while Figure 6.1 shows a

school of fish in Pixar’s Finding Nemo.

40

6.1 Evaluation of the software Software evaluation

Figure 6.1: A school of fish (Pixar’s Finding Nemo)

6.1.1.2 Obstacle avoidance

6.1.1.3 Terrain visualization

Figure 6.3 shows the terrain visualization. An overview of the overall render-

ing will be presented in section 6.1.1.5. The fogging effect and the bubbles

will also be shown in section 6.1.1.5

6.1.1.4 Caustics

Figure 6.4 shows a screenshot of the caustics effect achieved within the

project. It was implemented using the map shown at the figure 6.5. Fig-

ure 6.6 shows the caustics effect in Finding Nemo.

41

6.2 Performance of the program Software evaluation

Figure 6.2: The obstacle avoidance rule

6.1.1.5 Underwater visualization

Figure 6.7 shows the final rendering of the software, users can interact with

the objects using the mouse and the keyboard. Furthermore, items such as

caustics, grass, bubbles and fish schooling can be seen.

6.2 Performance of the program

The overall performance of the simulation is a multidimensional quantity.

There are separate costs for large simulations as well as other costs related

to the animation of every fish and the terrain. All these use a vertex and a

fragment shaders. In OSG, there is a clear bottleneck during the draw traver-

42

6.2 Performance of the program Software evaluation

Figure 6.3: The terrain

Figure 6.4: Caustics effect

Figure 6.5: Caustics map (Stam
(1996))

sal because the scene consists of more than one hundred and fifty thousand

vertices.

The software developed throughout this project can simulate fifty fish at a

frame rate of 60 on an nVIDIA GeForceTM 7600 graphics card. This rate

includes the caustics effect, bubbles, fog and the fish body motion.

However, as the population grows up to 1000, the frame rate drops to 50

when the graphics effects are turned on and 60 when turned off. The main

reason of this gap is the quadratic bottleneck of the Reynolds’ flocking al-

43

6.2 Performance of the program Software evaluation

Figure 6.6: Caustics effect (Pixar (2003))

gorithm. Throughout this project, spatial hashing was not used in order to

optimize the algorithm.

The animated fish bodies used in the software have complex geometries con-

taining more than three thousand vertices. Their bodies have a swimming

motion in the tail provided by a travelling sine wave function in their OpenGL

Shader Language (GLSL) vertex shaders.

Figure 6.8 shows a screenshot of the statistics of the software. This is the re-

sult of pressing the ’s’ four times. The viewer of the application (osgViewer)

first displays the frame rate, then the time spent during each traversal (up-

date, cull and draw). Then it displays information about the geometry of

the scene processed every frame. In this case, the application is synchronized

with a 60 Hz monitor. It is important to point out that the time spent in the

update traversal (0.35 millisecond) is so insignificant that the viewer does not

display it graphically. Recall from section 5.4 that every callback is executed

at this level. The outstanding optimization technique described in chapter 4

can be praised here. However, the cull and draw traversals display as cyan

and dark yellow in the graphical display. The cull traversal takes 1.04 mil-

lisecond while the draw traversal only takes 4.25 with all shaders being taken

into account. All the geometry of the scene is rendered in 3.58 milliseconds

by the GPU, this time is shown in red. Finally, the viewer processed 292

drawable objects, 167,390 vertices and 291,916 triangles.

44

6.3 Comparison with other implementations Software evaluation

6.3 Comparison with other implementations

Boids took about one hour to simulate one second of flocking animation of

80 boids with a frame rate of 30. The simulation was performed on a 1 MHz

CPU and was an off-line process. Using spatial hashing, Reynolds (2000)

described an interactive simulation with 280 boids running at a frame rate

of 60 on a PlayStation R©2.

Treuille, Cooper & Popovic (2006) described a crowd model which is a unique

hybrid of a fluid and crowd models. A continuum field is created every

frame to globally characterize the crowd and the environment, then individual

agents navigate according to this field. On a fast computer, it can run a

simulation with 10,000 agents at 5 frames per second without graphics. The

simulation rate is 2 with graphics, but that provides a thread displaying

interpolated frames showing humanoid characters at 12 frames per second.

Tecchia, Loscos, Conroy & Chrysanthou (2001) described a system in which

every member of the simulated crowd reacts to each other albeit with a fairly

simple behavioural model. The system ran on a single processor with 5000

individuals at 37 frames per second and with 10,000 individuals at a frame

rate of 21. These rates include the load of rendering an urban setting and

animated humanoid representations of each individual.

Shao & Terzopoulos (2005) described an autonomous pedestrian model that

exhibited both high performance and sophisticated goal-driven models of

people at a train station. Without graphics their system can simulate 1400

pedestrians at a frame rate of 30 on a modern computer. With humanoid

character animation and rendering of the complex environment results in

rates of 3.8 frames per second for 500 individuals.

The FastCrowd system described by Courty & Musse (2005) ran a crowd

of 5000 agents at about 100 frames per second, and a crowd of 10,000 at

35 frames per second (excluding visualization, 50 frames per second and 20

frames per second with agents rendered as 2D disks).

The GPU-based Boids described by Erra et al. (2004) could simulate a flock

45

6.3 Comparison with other implementations Software evaluation

of 1600 boids at 60 frames per second, with 8000 boids the system ran at

about 20 frames per second. These rates include rendering a 3D scene with

animated bird models.

Quinn, Metoyer & Hunter-Zaworski (2003) used a distributed multiprocessors

to run a large evacuation scenarios in which 10,000 pedestrians are simulated

with a frame rate of 45 on ten processors of the swarm cluster is connected

by a gigabit Ethernet switch.

Reynolds (2006) described a simulation for the PlayStation R©3 in which 5000

high detail fish at 30 frames per second with level of detail, underwater haze,

animated water surface and high dynamic range illumination. Figure 6.9

shows his result.

46

6.3 Comparison with other implementations Software evaluation

Figure 6.7: The final rendering

47

6.3 Comparison with other implementations Software evaluation

Figure 6.8: Statistics of the simulation

48

6.3 Comparison with other implementations Software evaluation

Figure 6.9: A school of fish (Reynolds (2006))

49

CHAPTER

SEVEN

Critical appraisal

7.1 Objectives summary

All the project objectives, mentioned in chapter 1.3 were realised in the final

version of the software. The simulation runs at over 38 frames per second.

The fish shoaling effect seems impressive and will be used for further investi-

gations into the VENUS project. However, if the project was completed on

time, everyone would have been pleased.

Being able to learn OSG in such a short amount of time was one of the most

exciting parts of the project. Using programs like 3Ds Max, RenderMonkey

was also other skills gained from the project. As a graphics programmer, it is

really important to learn more about shaders and GPU programming. This

project gives me the opportunity to learn in depth the graphics pipeline and

use my mathematics skills.

The project starts with just a rough idea and after carefully on working on

fish shoaling, the finish product is something completely amazing! Extra

items have been added to the project, due to my motivation to do achieve

a world-class project. Caustics, bubbles, fog and grass were added as part

as my personal motivation. The obstacle avoidance was also a plus. What

50

7.2 Project management Critical appraisal

about the fish body motion using shaders?

7.2 Project management

Generally speaking, the project management was excellent. Although, I faced

some issues due to the lack of documentation in OSG and my health which

were not really helpful.

Every milestone was carefully reached and completed on time. The result of

all these is a world-class project that will be used in an archaeology project

(VENUS).

7.3 Lessons learnt

Upon successful completion of the project, a lot has been mastered.

• Design patterns: as mentioned in chapter 5, OSG is built on top

of C++ and designers have used design patterns a lot. Throughout

the project a successful combination of the design pattern theories and

practice in C++ and OSG was achieved. The callback, observer and

visitors all fall in that category.

• Advanced C++ skills: this project would have not been completed

if advanced C++ skills were not mastered in a short amount of time.

Using advanced standard template library (STL) idea such as function

objects was of great help.

• The main part of the project relies only on the good understanding

of OSG, all that in three months without documentation and support.

Even Robert Osfield would be stunned to hear that.

• Another important part of the project was the learning of 3D Max in

order to edit 3D models.

51

7.3 Lessons learnt Critical appraisal

• Being able to do GPU programming from scratch was another positive

aspect of the project. Many lessons were learnt from that unprece-

dented experience.

• Like any multithreaded software, there are lots of issues that have to be

handled. Although OSG provides the mult-threaded interface to deal

with the operating system, developers are responsible of synchronizing

their objects. Recall from section 5.4 that the draw process in OSG is

made up of two sub-processes: the dispatch to the CPU and the actual

rendering on the GPU. However, because of its parallel architecture,

OSG only ensures that the draw traversal only returns after processing

all static data. If the data is dynamic, threads may collide and the

application is likely to be halted by the operating system. Developers

are responsible of specifying the right state of their objects by using

data variance. Again the poor documentation of OSG was not really

helpful.

52

CHAPTER

EIGHT

Conclusion and future works

The project itself aimed at applying Reynolds’ flocking algorithm to 3D fish

models. The realism of the scene was enhanced by adding bubbles, grass and

an underwater terrain. The rules of flocking include the collision avoidance

which states that every fish should steer to avoid local flockmates, the veloc-

ity matching by which a given fish should match the velocity of its nearest

flockmate and finally the flock centring which urges every fish to always head

toward the centre of the flock.

By using callbacks, it is possible to implement these rules in OSG. Although

poorly documented, OSG is one of the most powerful graphics toolkit avail-

able. Completely free of charge and open-source, its architecture was pre-

sented in chapter 5. The implementation of the three simple rules in OSG

brings about a complex behaviour that is seen everyday: the motion of an

aggregation of fish.

Further works should first focus on increasing the realism of the scene. The

caustics effect achieved within this project was a fake for it does not take

into account the incoming light from the surface.

In order to have a realistic school of fish, some additional rules must be taken

into account. However, the obstacle avoidance under which the entire flock

53

Conclusion and future works

always steer in order to avoid any obstacles in the world was successfully

added. Furthermore, some flockmates can be hungry, in that case they have

to leave the flock in order to find food. There may be some predators flying

around, the entire flock should then steer away from predators, hence the

need to add another rule: the predator avoidance rule. Other rules involve

the mating rule, where within the flock, males will always try to find the

nearest female available.

The naive implementation of this algorithm suffers from a quadratic bottle-

neck meaning that as the size of the flock increases, the computational time

becomes more and more important. In fact, as described in chapter 6.1, the

performance of the software also relies on the costs of animating every fish.

Recall from the chapter 4 that the overall simulation contains more than one

hundred and fifty thousand vertices. There are vertex and fragment shaders

attached to every node of the scene graph. In order to improve the algorithm,

spatial hashing techniques should be used. In fact, Bell, Yu & Mucha (2005)

noticed that the use of spatial hashing has become nearly ubiquitous for flock

modelling as well as granular models of physical phenomena. Implementing

spatial hashing in 3D requires the uses of octrees while in 2D, one should

use quad-trees. Because of time limitations, all these techniques were not

implemented throughout this project.

Fuzzy logic algorithms should be applied on the fish in order to allow them

to find their nearest flockmates in a more intuitive way. This will greatly

increase their ability to sense nearby fish. Foping (2006) demonstrated that

the problem of finding a set of a random number of nearest neighbours is

NP-Complete and is therefore among the most difficult problems in com-

puter science. Indeed this problem is equivalent to the traveling salesman

problem which can be stated as follows: Given a number of cities and the

costs of traveling from a city to another one, what is the cheapest round-trip

route that visits each city exactly once and then returns to the starting city?

54

APPENDIX

A

The flocking implementation class diagram

Figure A.1: The simplified class diagram

55

APPENDIX

B

The scene graph sketch

Figure B.1: The scene graph sketch

56

APPENDIX

C

User manual

In order to successfully run or compile the software, some hardwares and

softwares are required.

C.1 Requirements

C.1.1 Software

To compile the software, users should install the integrated development

environment (IDE), Microsoft Visual StudioTM 2005 with the latest updates

available on the Microsoft website. In addition of installing Visual Studio

2005, users should also install OpenSceneGraph 1.9 available for free at the

website (http://www.openscenegraph.org). The operating system used in

this project is Microsoft Windows R© XP SP2.

C.1.2 Hardware

As mentioned in chapter 5, the software makes use of shaders to animate

the fish body, create the fog effect and the caustics effect. Both vertex

and fragment shaders were successfully tested on nVIDIA R© graphics cards

57

http://www.openscenegraph.org

C.2 Installing the software User manual

namely the GeForceTM 7600 and 8600. No tests were made on any other

cards. Furthermore, the multithreaded architecture of OpenSceneGraph was

described in chapter 5, therefore a dual core CPU should be used for better

performance. The software was successfully tested on an AMD Turion R© 64

X2 and Athlon R© 64 X2 CPUs. As previously, no tests were performed on

Intel R©’s dual core CPUs.

C.2 Installing the software

On the CD-ROM, the folder named SETUP contains a Microsoft R© Installer

(MSI) file that can be used to install the software on a Windows R© plateform.

By double-clicking on it and following the instructions, the software should

be immediately ready for a full use. Now, open the folder you have just

chosen and double on the executable file (with a fish icon) and voila!

C.2.1 Controls

C.2.1.1 Mouse

By maintaining the left button of the mouse and move it, users can rotate

the world.

Users can zoom in and out the world by maintaining the right button of the

mouse and move it. This is useful to see the fog effect in action. Check this

out!

C.2.1.2 Keyboard

- The ’S’ key displays the statistics in real-time of the simulation. By pressing

it many times, different statistics are displayed. Warning, on some GPUs,

this may freeze the simulation.

- The ’W’ key displays the wireframe mode of the simulation

- The ’Echap’ key quits the program.

58

C.3 Compiling the source code User manual

- The ’F’ key toggles the full screen mode.

- The ’b’ key toggles the backface culling on the bounding box depicting the

world.

- The space bar positions the camera at the centre of the world. This is very

useful.

- The ’t’ key disables/enables textures on grass and box.

- The left arrow key scatters the flock of perch. The right arrow key enables

the flocking behaviour on them.

- The left Control key scatters the flock of tunas. The right Control key

enables the flocking behaviour on them.

- The left Shift key scatters the flock of lionhead. The right Shift key enables

the behaviour on them.

C.3 Compiling the source code

On the CD-ROM, the folder name SOURCE contains the solution file for

Visual StudioTM , however some environment variables must be defined and

set to the correct values before compiling the source code. These environment

variables are:

• OSG INCLUDE PATH which is a string defining the name of the di-

rectory containing all the included files of OSG.

• OSG LIB PATH which is also a string defining the name of directory

containing all the library files of OSG

CAUTION

• The compilation cannot be successful if the Multi-threaded Debug

DLL (/MDd) option is set in Visual Studio. This option is the de-

fault option if the CPU has a dual core architecture. This option can be

59

C.4 Recommended configuration User manual

set in Project property (C/C++ – Code Generation – Runtime library).

• The Run-time Type identification (RTTI) must be enabled in Visual

Studio. This can also be done in project property. Under the C/C++

tab, select C++ language in the category box. There is a checkbox right

there for ’Enable RTTI’ make sure you have it selected and ticked.

C.4 Recommended configuration

The following configuration is highly recommended to run the software:

Main Memory: 2Gb

CPU: AMD Turion 64 or Athlon R© Dual Core

GPU: nVIDIA GeForceTM 7600 or 8600

OpenGL version 2

Operating system: Microsoft Windows XPTM Service pack 2

Color quality: 32 bits

60

REFERENCES

Aranha, M. (2005), Realistic Underwater Visualisation, Computer Graphics

Group, University of Bristol.

Bell, N., Yu, Y. & Mucha, P. (2005), Particle-based simulation of graular ma-

terials, in ‘Proceedings of the 2005 ACM Siggraph/Eurographics Sym-

posium on computer animation’, ACM Press, pp. 77–86.

Blackwell, T. M. (2005), Swarm Music: Improvised Music with Multi-

Swarms, in ‘Proceedings of the 2003 AISB Symposium on Artificial

Intelligence and Creativity in Arts and Science’, AISBJ, pp. 41–49.

Briere, N. & Poulin, P. (2001), ‘Adaptive Representation of Specular Light

Flux’, Computer Graphics Forum 20(2), 149–159.

Carlson, D. & Hodgins, J. (1997), Simulation Levels of Detail for Real-time

Animation, in ‘Proceedings of Graphics Interface ’97’, pp. 1–8.

Chapman, P., Conte, G., Drap, P., Gambogi, P., Gauch, F., Hanke, K., Lon-

gand, L., Loureiro, V., Papini, O., Pascoal, A., Richards, J. & Roussel,

D. (2006), VENUS: Virtual ExploratioN of Underwater Sites, in ‘7th In-

ternational Symposium on Virtual Reality : Archaeology and Cultural

Heritage’, VAST.

61

REFERENCES REFERENCES

Chapman, P., Viant, W. & Munoko, M. (2004), ‘Constructing immersive

environments for the visualization of underwater archaeological sites’,

Computer Applications and Quantitative Methods to Archaelogy Con-

ference.

Courty, N. & Musse, S. (2005), Simulation of large crowds in emergency situ-

ations including gaseous phenomena, in ‘Proceedings of IEEE Computer

Graphics International’, pp. 206–212.

Deoswitz, B. (2003), Computer graphics world, preprint.

Deusen, O., Ebert, D. S., Fedkiw, R., Musgrave, F. K., Prusinkiewicz, P.,

Roble, D., Stam, J. & Tessendorf, J. (2004), The elements of nature:

interactive and realistic techniques, in ‘SIGGRAPH : ’04: ACM SIG-

GRAPH 2004 Course Notes’, ACM Press, p. 32.

Dunn, F. & Parberry, I. (2002), 3D Math Primer for Graphics and Game

Development, Wordware Publishing Inc.

Erra, U., Chiara, R. D., Scarano, V. & Tatafiore, M. (2004), Massive simula-

tion using GPU of a distributed behavioral model of a flock with obstacle

avoidance, in ‘9th International Fall Workshop on Vision, Modeling and

Visualization’.

Foping, S. F. (2006), A polynomial algorithm to find the reversal degree of

planar graphs, Master’s thesis. University of Yaounde I, Cameroon.

Gabbai, J. M. E. (2005), Complexity and the Aerospace Industry: Under-

standing Emergence by Relating Structure to Performance using Multi-

Agent Systems, PhD thesis. University of Manchester.

Gamma, E., Helm, R., Johnson, R. & Vlissides, J. (1995), Design Patterns:

Elements of Reusable Object-Oriented Software, Addison-Wesley.

Gates, W. F. (2002), Animation of Fish Swimming, Technical report.

62

REFERENCES REFERENCES

Heppner, F. (1987), A stochastic nonlinear model for coordinated bird flocks,

American Ornithological Union Meeting (abstract) San Francisco.

Heppner, F. & Grenander, U. (1990), A stochastic nonlinear model for co-

ordinated bird flocks, in ‘The Ubiquity of Chaos, AAAS, Washington’,

pp. 233–238.

Iwasaki, K., Dobashi, Y. & Nishita, T. (2002), ‘An efficient method for ren-

dering underwater effects using graphics hardware’, Computer Graphics

forum 8, 1–11.

Kelly, K. (1995), Out of control: the new biology of machines, social systems

and the economic world, Perseus Books Group.

Lander, J. (1998), ‘Better 3D : The Writing Is on the Wall’, Game Developer

1, 15–21.

Martz, P. (2007), OpenSceneGraph Quick Start Guide, Skew Matrix Software.

Okubo, A. (1986), ‘Dynamical aspects of animal grouping: swarms, schools,

flocks and herds.’, Advances in Biophysics 22, 1–94.

Pixar (2003), ‘Finding Nemo’, http://www.pixar.com/featurefilms/

nemo/, Accessed on 1 September 2007.

Quan, X., Zhong, S., Wang, W., Xu, Q., Liang, Y. & Zhang, Q.

(2006), Modeling of Artificial Life Based Virtual Fish Behaviour, in

‘16th International Conference on Artificial Reality and Telexistence–

Workshops(ICAT’06)’, pp. 213–216.

Quinn, M. J., Metoyer, R. & Hunter-Zaworski, K. (2003), Parallel Imple-

mentation of the Social Forces Model, in ‘Proceedings of the Second In-

ternational Conference in Pedestrian and Evacuation Dynamics’, ACM

Press, pp. 63–74.

63

http://www.pixar.com/featurefilms/nemo/
http://www.pixar.com/featurefilms/nemo/

REFERENCES REFERENCES

Reeves, W. T. (1983), Particle systems : A technique for modelling a class of

fuzzy objects, in ‘SIGGRAPH ’83: Proceedings of the 10th annual con-

ference on computer graphics and interactive techniques’, ACM Press,

pp. 359–375.

Reynolds, C. W. (1987), Flocks, Herds and Schools: A distributed behavioral

model, in ‘SIGGRAPH ’87: Proceedings of the 14th annual conference

on computer graphics and interactive techniques’, ACM Press, pp. 25–

34.

Reynolds, C. W. (2000), Interaction with Groups of Autonomous Characters,

in ‘Proceedings of the Game Developer Conference’, CMP Game Media

Group, pp. 449–460.

Reynolds, C. W. (2006), Big fast crowds on PS3, in ‘Proceedings of the 2006

ACM SIGGRAPH symposium on Videogames’, ACM Press, pp. 113–

121.

Shalloway, A. & Trott, R. J. (2000), Design Patterns Explained: A New

Perspective on Object Oriented Design, Addison-Wesley.

Shao, W. & Terzopoulos, D. (2005), Autonomous pedestrians, in ‘Proceed-

ings of the 2005 ACM Siggraph/Eurographics Symposium on Computer

Animation’, ACM Press, pp. 19–28.

Shinya, M., Saito, T. & Takahashi, T. (1989), Rendering Techniques for

Transparent Objects, in ‘Proceedings of Graphics Interface ’89’, pp. 173–

181.

Stam, J. (1996), Random caustics: natural textures and wave theory re-

visited, in ‘SIGGRAPH ’96: ACM SIGGRAPH 96 Visual Proceedings:

The art and interdisciplinary programs of SIGGRAPH ’96’, ACM Press,

p. 150.

64

REFERENCES REFERENCES

Tecchia, F., Loscos, C., Conroy, R. & Chrysanthou, Y. (2001), Agent be-

haviour simulator (ABS): A platform for urban behaviour development,

in ‘Games Technology’, GTEC.

Toucan, C. (2007), ‘3D Computer Graphics’, [Available online: http://

toucan.web.infoseek.co.jp/3DCGE.html].

Treuille, A., Cooper, S. & Popovic, Z. (2006), Continuum Crowd, in ‘Pro-

ceedings of SIGGRAPH 2006’, ACM Trans.

Tu, X. & Terzopoulos, D. (1994), Perceptual modelling for the behavioral

animation of fishes, in ‘Pacific Graphics ’94: Proceeding of the second

Pacific conference on Fundamentals of computer graphics’, World Sci-

entific Publishing Co., Inc, pp. 185–200.

Wallace, B. (2001), ‘Eliminate accept() methods from your Visitor pattern’,

JavaPro Magazine 1, 247–254.

Wand, M. & Strasser, W. (2003), ‘Real-Time Caustics’, EUROGRAPHICS

(3) 22, 1–10.

Woodcock, S. (2000), Game Programming Gems, Charles River Media.

Woodcock, S. (2001), Game Programming Gems 2, Charles River Media.

65

http://toucan.web.infoseek.co.jp/3DCGE.html
http://toucan.web.infoseek.co.jp/3DCGE.html

	Thesis_FC
	Report
	Abstract
	Acknowledgements
	Dedication
	Introduction
	Motivations
	Initial specification
	Aims and objectives of the project
	Structure of the dissertation

	Background
	Related work
	The flocking behaviour
	Previous implementations

	Overview of an underwater scene
	Rendering underwater environments

	Designing the flocking algorithm
	Reynolds' flocking algorithm
	Flocking as a behavioural model
	Presentation of a boid
	The separation rule
	The alignment rule
	The cohesion rule
	Applying constraints on boids
	The obstacle avoidance rule

	Computing orientation

	Algorithmic considerations
	Applications
	In robotics
	In the music industry
	In the video and games industries

	Improving the realism of the scene
	Fog
	Fish modelling
	Designing the fish body
	Fish motion

	Adding grass on the terrain
	Modelling caustics

	Implementation
	Software library
	The scene graph approach
	Overview of graphs
	Definition
	Benefits

	Design patterns
	The observer pattern
	The visitor pattern

	Description of OpenSceneGraph
	The core OSG library
	The processing pipeline
	The update traversal
	The cull traversal
	Render traversal

	Dynamic modification of a scene gaph
	The coding of the flocking algorithm
	OSG classes
	Flocking implementation classes
	Utility classes
	Flocking algorithm revisited

	Optimizing the scene graph
	Major issues
	OSG issues
	Flocking algorithm drawbacks

	Software evaluation
	Evaluation of the software
	Results
	Fish shoaling
	Obstacle avoidance
	Terrain visualization
	Caustics
	Underwater visualization

	Performance of the program
	Comparison with other implementations

	Critical appraisal
	Objectives summary
	Project management
	Lessons learnt

	Conclusion and future works
	Appendices
	The flocking implementation class diagram
	The scene graph sketch
	User manual
	Requirements
	Software
	Hardware
	Installing the software
	Controls
	Mouse
	Keyboard

	Compiling the source code
	Recommended configuration

