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Abstract  

Electrocardiogram (ECG) is an important biomedical tool for the diagnosis of heart 

disorders. However, the signal is susceptible to noise and it is essential to remove the 

noise especially when undertaking automated processing of the signal. In this paper, 

an intelligent approach based on moving median filter and Self-Organizing Map 

(SOM) neural network is proposed to identify the cutoff frequency of the noise, which 

is to be filtered out. In general, the spectrum of the ECG signal is derived, 

subsequently, baseline wander is removed using the moving median filter and finally, 

SOM is applied to the spectrum to calculate the cutoff frequency. The results of the 

proposed scheme are compared with the low-pass FIR filtering for ECG signal high 

frequency noise removal. Results show that using the proposed intelligent method, the 

calculated cutoff frequency will be equal or better than the classical results for ECG 

noise removal. Also, in all the cases of atrial fibrillation, arrhythmia and 

supraventricular ECG signals, the automatically calculated cutoff frequency produces 

very smoother signals than the classical low-pass filtering. 

 

 

Keywords: Frequency spectrum, Cutoff frequency, Self-Organizing Map, Low-pass 

filtering, Finite Impulse Response (FIR). 
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I. Introduction 

 

 An effective way to detect heart disorders is through the analysis of the 

electrocardiogram (ECG) signals [1]. The ECG signal is generated by polarization and 

depolarization of the heart that occurs when pumping blood throughout the human 

body, and it can be recorded by contacting electrodes to the skin at specific locations 

on the body. The ECG signal waveform consists of the P wave, QRS wave and T 

wave, as shown in Fig. 1. In the overall ECG interpretation for computerized 

interpretation programs and for the human electrocardiographer, it is vital to access 

accurate measurements of ECG intervals and axes (P/ QRS/ T) [2]. 

 The recorded ECG signal usually contains noise, which includes low-

frequency components that cause baseline wander, and high-frequency components 

such as power-line interference [3]. The sources of noise effecting ECG signals 

include imperfect contact of electrodes to the body, machine malfunction, electrical 

noise from elsewhere in the body, respiration and muscle contraction [4]. The 

presence of noise corrupts the signal, and ECG signal processing systems need to be 

equipped with the ability to remove the noise in order to do any analysis on the signal. 

In noise removal, it is necessary to identify the cutoff frequency of the filter. 

However, it is difficult to determine this threshold, in which the exact value often 

varies between signals. Inaccurate thresholds will erase important information in the 

signal. 

 There have been several studies on ECG signal noise removal [5-11]. Zhang 

and Sui [5] proposed a method based on morphological filtering and wavelets to 

eliminate the noise in ECG signals and increase the diagnosis efficiency. In their 

method, the morphological filter is used to filter out the baseline interference signal, 
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and the wavelet transform is applied to remove high frequency interference. Another 

study was the novel noise-filtering algorithm by Chang [6], which is based on 

ensemble empirical mode decomposition (EEMD) to remove artifacts in ECG traces. 

Three noise patterns with different characteristics - 50 Hz, Surface electromyograms 

(EMG), and base line wander - were embedded into simulated and real ECG signals. 

The mean square error (MSE) between clean and filtered ECGs was used as the 

filtering performance index. Results showed that high noise reduction is the major 

advantage of the EEMD based filter, especially on arrhythmia ECGs. In another 

study, Ling et al. [7] proposed some fuzzy rules for formulating and integrating 

different multiwavelets with pre- and post- filters to incorporate expert knowledge at 

different noise levels.  

 Poungponsri and Yu [8] used the wavelet neural network (WNN) for ECG 

signal modeling and noise reduction. WNN combines the multiresolution nature of 

wavelets and the adaptive learning ability of artificial neural networks (ANN), and is 

trained by a hybrid algorithm that includes the Adaptive Diversity Learning Particle 

Swarm Optimization (ADLPSO) and the gradient descent optimization. Sotos et al. 

[9] presented a noise cancellation system suitable for different biomedical signals 

based on a multilayer ANN. The proposed method consists of a simple structure 

similar to the MADALINE neural network (Multiple ADAptive LINear Element).  In 

[10], Sotos et al. worked on removing the baseline drift using ANN. The results 

obtained showed that the ANN-based approach performs better, with respect to 

baseline drift reduction and signal distortion at the filter output, than traditional 

methods.  

 Although there are many new methods for noise removing, many noise 

removal systems for ECG signals still use the band-pass filter because of simplicity in 
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implementation and less number of required coefficients [11-17]. The important 

consideration of this popular technique is in automatically identifying the correct pass 

bands in the frequency spectrum. Note that for filters concerned with noise removal, 

there is insufficient research in the area of automated calculation of the cutoff 

frequencies. This paper proposes a scheme that can automatically identify the cutoff 

frequency for implementation of the FIR. In this study, FIR is preferred to the infinite 

impulse response (IIR) filter because IIR filters are more susceptible to problems of 

finite-length arithmetic. Additionally, FIR filters are easier to implement. More 

information on FIR filters may be found in [18].   

 Previous research has indicated that the ANN presents effective approaches 

for denoising signals. Therefore, in this paper, we present a method using SOM, an 

unsupervised ANN, to automatically calculate the cutoff frequency. The proposed 

scheme is discussed in more detail in the next section, followed by a discussion on the 

results.  

 

II. Materials and Methods 

 

 The proposed method is based on clustering the frequency spectrum using 

SOM. Fig. 2 shows the flow of the proposed method. The Physiobank archive of ECG 

signals [19], available for use by the biomedical research community, is used to test 

the proposed approach. The ECG signals obtained were selected from four databases: 

the MIT-BIH Supraventricular Arrhythmia Database, the MIT-BIH Normal Sinus 

Rhythm Database and the MIT-BIH Atrial Fibrillation Database, all sampled with a 

sampling frequency of 250 Hz, and the MIT-BIH Arrhythmia Database with signals 

sampled at 360 Hz. 
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A) Baseline Drift Attenuation 

 

 Analysis of typical ECG signals indicates that baseline wander is the 

prominent phenomenon and its distribution and magnitude varies between different 

signals. An example is given in Fig. 3. The original ECG signal is shown in Fig. 3(a), 

where the cycles of the PQRST waveform appear to be attenuated by a sinusoidal 

waveform. The first step in noise reduction is to attenuate the baseline drift. In 

previous research [20-22], the high-pass filter is used to attenuate the drift of baseline. 

The applied cutoff frequency for high-pass filtering is 1 Hz [21, 22]. Fig. 3(d) shows 

the ECG signal after low frequency noise reduction with the FIR high-pass filter. 

Since the moving median filter is more efficient for baseline drift attenuation and in 

some cases, the high-pass filter causes ST segment distortion [20], the moving median 

filter is applied in this work to accomplish this. A moving median filter takes a set of 

points, and given a span for the filter, takes a subset of those points, and returns the 

median for the subset. Fig. 3(c) shows the extracted baseline. The resulting effect of 

baseline drift removal is given in Fig. 3(e), where the baseline wander is eliminated 

(i.e., virtual straight line at 0 amplitude).  

 

B) Application of FIR Filtering 

 

 After attenuation of the baseline drift, the high amplitude noise is removed. In 

order to obtain the spectrum of the ECG signal, it is transformed to the frequency 

domain using the Fast Fourier Transform (FFT) defined as follows: 
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           for     1,.....,0  Nk                                             (1) 

where 10 ,...., NXX  are complex numbers. 

 

The implementation of the FIR filter requires three parameters: a cutoff 

frequency )( c , the filter order )(N , and the window type )(w . The filter order 

primarily determines the width of the transition band. Higher orders give sharper 

cutoff in the frequency response [18].  Therefore, the desired sharpness will determine 

the filtering order. A hamming window of size 1N  is used in the FIR filter, as 

given by Eq. (2). 

 

)2cos(46.054.0
N

n
wn       for      Nn 0      (2) 

 

The cutoff frequency is normalized as follows: 

 

           
s

c

f

             (3)                  

where   is the normalized cutoff frequency and sf is the sampling frequency. 
 

 Fig. 3(b) shows the frequency spectrum up to half of the sampling frequency, 

which is 360 Hz for the selected ECG signal. As mentioned previously, this study 

focuses on an intelligent approach for finding this cutoff using SOM neural network. 
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C) Clustering of ECG Frequency Spectrum Using SOM 

  

  SOM is an unsupervised learning algorithm for modeling the structure of a 

sample set of patterns [23].  Commonly, SOM is a two-layer neural network: the first 

being the input layer and the second the competitive layer. The nodes of the first layer 

selectively feed input elements into the competitive layer of the network. There is a 

weight vector, which is assigned to each node in the input and competitive layers. 

Training cycles start with randomly chosen weights for the nodes in the competitive 

layer [24]. During each training cycle, every input vector is considered in turn and the 

winner node is determined based on Euclidean distance between the weight vector iw  

and the input vector ix  such that: 

 

          iviv wxwx  min       for       Ni ,....2,1                                                 (4) 

where  indicates Euclidean distance, and vx  indicates the input vector.  

  

 The weight vectors of the winning node and the nodes in the neighborhood are 

updated using a weight adaptation function based on the following Kohonen rule: 

 

          )( old
ivi wxw         for      rNi    (5) 

where   is the learning coefficient, old
iw  is the weight vector before updating, and 

rN  is the collection of all nodes in the neighborhood of radial distance r  from the 

input layer.  
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 In general, the proposed method clusters the ECG frequency spectrum. The 

input data consists of typical forms of spectrums for four classes of ECG signals, 

namely the normal sinus rhythm, supraventricular, atrial fibrillation and arrhythmia. 

The critical parameter is the number of clusters for configuration of the SOM. The 

classical geometric method is a well-known technique, which consists of plotting the 

value of the clustering criterion, and assessing the plot by analyzing discontinuities in 

the slope [25]. Sharp steps in the curve determine the boundaries of the clusters. 

Based on analysis of the classical geometric method on the database, it was deduced 

that the adequate number of clusters was four for each spectrum. This is seen in     

Fig. 4, which shows typical shapes for the spectrums of the four classes of ECG 

signals. In the figure, the thick black lines indicate the boundaries of the range of 

amplitudes for each cluster. The typical ranges for the clusters of the ECG signal were 

found to be as given Table 1. The ranges may vary a little for spectrums in each class. 

However, the number of clusters was determined to be four for all spectrums. 

 Therefore, the SOM is configured with a competitive layer with a 41  one-

dimensional map. The FFT of the ECG signals is the input vector that will be fed to 

the competitive layer of the SOM. After training, all samples will be clustered in 

ici  , )4...1( i . Fig. 5 shows three ECG signals based on different shapes and 

characteristics after baseline drift attenuation and the clustering results of FFT using 

SOM. Since the low amplitude noise are mostly gathered in the lowest cluster, 1c , then 

the cutoff frequency is the point that 11 c  changes to 22 c  through right to left 

scanning of the FFT samples. 

 It is important to note that there must be stability in the clusters when selecting 

the cutoff frequency. The stability is determined by defining a left neighborhood 
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border for each sample. In the right to left scanning of the spectrum, the samples are 

considered stable in a cluster if: 

  

2csi  :  10 4n        (6) 

where is  is the sample of clustered FFT,  is the left neighborhood border. Based on 

empirical results the optimum values for   was found to be 10 samples n : 2cn  is 

the number of the consecutive samples at  . 

 

 Experimental results show that four is the adequate number of samples for 

determining the cutoff frequency. In other words, the cutoff frequency is where there 

are more than 4 neighboring samples in 22 c  for 10  through scanning from 

right to left of the frequency spectrum. For example, in Fig. 5(b) when scanning from 

right to left, one encounters a single point first, and since it is less than 4, the 

mentioned single point is ignored and scanning should be continued until reaching the 

next set of points. Another example is shown in Fig. 5(c), which has more single 

points that are ignored. Again, the scanning process is continued in order to reach to 

the stable cluster with the mentioned conditions i.e., 410  n . The obtained 

frequency c  is then normalized by Eq. (3). 

 Investigation on the output of the first stable point identified still showed 

influence of noise, as seen in Fig. 6(b). To overcome this noise (possibly due to 

equipment/transmission), the next stable point is used. As observed in Fig. 6(c), this 

cutoff frequency enables a cleaner signal to be extracted by the FIR filter. 
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III) Experiments and Results 

 

 A total of 100 ECG signals were randomly selected from the various classes of 

databases for testing the performance of SOM in identifying c using the proposed 

method. The outcome of scanning the clustered frequency spectra are normalized as 

described in the pervious section. The automated c  obtained by the SOM for 20 of 

the ECG signals is given in table 2. The table shows that even for similar types of 

heart disorders, there is a significant difference between the cutoff frequencies of the 

ECGs, further emphasizing the difficulty in automatic identification of the optimum 

cutoff frequency. Once the cutoff frequency has been determined, the test signals are 

denoised using the FIR filter. 

 Fig.s 7 to 10 present 4 examples of ECG signals with different shapes and 

characteristics from the mentioned databases. The automatically denoised signals are 

shown in part (b) of Fig.s 7-10. To illustrate the denoising effected more clearly, part 

of the signal is zoomed on the right of the images. As seen from results, a smooth 

signal is obtained for each type of disorder. The results of FIR filtering by the 

calculated cutoff frequency are compared with the results of FIR low-pass filtering 

based on previous studies [13-16]. In these studies, the cutoff frequency for the ECG 

low-pass filtering was 100 Hz, where all frequencies above 100 Hz are eliminated to 

remove power-line interference. For fairness in evaluation, the baseline drift has been 

attenuated for all the test signals using the moving median filter, instead of just using 

a 1 Hz high-pass filter as per the norm, since it is has been shown in Fig. 3 that the 

moving median filter is better suited for baseline wander removal. The results of the 

classical filtering after baseline wander removal are given in part (c) of Fig.s 7-10. 

Using the proposed method, the calculated cutoff frequency has been found to be 
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equal or better than the classical results for ECG noise removal. Comparing the 

results, it is seen that in all the cases of atrial fibrillation, arrhythmia and 

supraventricular ECG signals, the proposed intelligent calculated cutoff frequency, 

produced better results than the classical low-pass filter. 

 In order to properly design the filter, the cutoff frequency for each type of 

ECG signal should be known and without eliminating signal information, it is 

impossible to completely remove the noise. In addition, the cutoff frequency is 

dynamic. Therefore, for various ECG signals, the cutoff frequency would be different 

due to the biometric characteristics of the ECG signal. In [26, 27], the ECG signals 

varied from person to person. Therefore, it is obvious that the frequency spectrum 

would be different for each person and the applied cutoff frequency has to vary, 

instead of being fitted as in the classical low-pass filter where 100 Hz is used as the 

constant threshold. To better evaluate the proposed scheme, visual identification of 

the optimum cutoff frequency was undertaken. The cutoff frequencies for the best 

visual results (up to the point just before peak amplitudes were negatively affected) 

were identified and the results are shown in part (d) of Fig.s 7-10.  

 The visual cutoff frequencies (Visual c ) is also given in comparison with  

the automated cutoff frequencies in the table indicates that, the difference between the 

automatically determined cutoff frequency and that of the visual examination is small, 

as given by the MSE. Thus, the viability of the proposed method in correctly 

determining the cutoff frequency automatically is further supported.  
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IV) Conclusion 

   

 In this study, an intelligent approach based on identifying the cutoff frequency 

using SOM for ECG low-pass filtering is proposed. The results show that the 

proposed approach is successful and promising. The results present that the identified 

cutoff frequency is accurate and better than the conventional method as the SOM-

based approach works on each signal individually. Examples of atrial fibrillation, 

arrhythmia and supraventricular ECG signals show that the low-pass filtering with the 

automated calculated cutoff frequency generates smoother signal. Also, no loss of 

data is encountered in the denoised signal during the ECG low-pass filtering. 

 

 

 

13



 

 

V) References 

 

1. Karl G. R., Isis A.W., Roberto L., Håkan N., Fetal ECG waveform analysis, Best 

Practice & Research: Clinical Obstet Gynae, 2004; 18:3, pp. 485-514.  

2. Robert M., Ian R.G. The effects of noise on computerized electrocardiogram 

measurements, J Electrocardiol 2006; 39:4, pp.165-173.  

3. Behbahani S., Investigation of adaptive filtering for noise cancellation in ECG 

signals, 2nd Intl Multi-Symp Comp Comput Sci, IEEE Computer Society, 2007; 

pp. 144-149. 

4. Fitzgibbon E., Berger R., Tsitlik J., Halperin HR., Determination of the noise 

source in the electrocardiogram during cardiopulmonary resuscitation, Med Care 

Medicine, 2002; 30:4, pp. 148-153. 

5. Zhang D., Sui W., Noise Reduction of ECG Signal Based on Morphological 

Filtering and WT, Key Eng Mat, 2010; 439-440, pp. 12-16.  

6. Chang K.M., Arrhythmia ECG Noise Reduction by Ensemble Empirical Mode 

Decomposition, Sensors in Biomechanics and Biomedicine, 2010; pp. 6064-6080. 

7. Ling B.W.K., Ho C.Y.F., Lam H. K., Wong T.P.L., Chan Al.Y.P, Tam P.K.S. , 

Fuzzy rule based multiwavelet ECG signal denoising, IEEE World Cong Comput 

Intell, Hong Kong, 2008; pp. 1064-1068. 

8. Poungponsri S., Yu X.H., Electrocardiogram (ECG) signal modeling and noise 

reduction using wavelet neural networks, Proceedings of the IEEE Intl Conf 

Autom Logistics, Shenyang, China, 2009; pp. 394-398. 

14



 

9. Sotos J.M., Meléndez C.S., Salort C.V., Abad R.C., Ibáñez  J.J.R., A learning 

based Widrow-Hoff Delta algorithm for noise reduction in biomedical signals, 

Bio-inspired Modeling of Cognitive Tasks, LNCS, 2007; 4527, pp. 377-386.  

10. Sotos J.M., Sanchez C., Mateo J.,  Alcaraz R., Vaya C., Rieta J.J.,  Neural 

networks based approach to remove baseline drift in biomedical signals, 11th 

Mediterr Conf Med Biomed Eng Comput 2007  IFMBE Proc, 2007;16:2, pp. 90-

93.  

11. Losada R.A., Design finite impulse response digital filters, Part II. Microwaves & 

RF, 2004; 43, pp. 70-84. 

12. Orfanidis S.J., Introduction to Signal Processing, Upper Saddle River, New 

Jersey: Prentice Hall; 1996. 

13. Lian Y., Hoo P.C., Digital elliptic filter application for noise reduction in ECG 

signal, WSEAS Trans Electron, 2006; 3:1, pp. 65-70. 

14. Engin M., ECG beat classification using neuro-fuzzy network, Pattern Recogn 

Lett, 2004; 25:15, pp. 1715-1722.  

15. Minami K., Nakajima H., Toyoshima T., Real-time discrimination of ventricular 

tachyarrhythmia with Fourier transform neural network, IEEE Trans Biomed Eng, 

1999; 46:2, pp. 179–185. 

16. Lin H., Wensheng H., Xiaolin Z., Chenglin P., Recognition of ECG patterns using 

artificial neural network, Proceedings of the Sixth IEEE Intl Conf Intell, Sys 

Design and Appl (ISDA'06), Jinan, 2006;  pp. 477-481. 

17. Naghsh-Nilchi A.R., Kadkhodamohammadi A.R., Cardiac arrhythmias 

classification method based on MUSIC morphological descriptors, and neural 

network, EURASIP J Adv Sig Process, (2008), 2008, Article ID 935907. 

15



 

18. Saramaki T., Mitra S.K., Finite impulse response filter design, Handbook for 

Digital Signal Processing, New York, New York: Wiley-Interscience; 1993. 

19. Physionet, Physiologic signal archives for biomedical research, A database for 

heart signals, Cambridge, MA, (Updated: 27. April. 2009) 

www.physionet.org/physiobank, [accessed on: 10. September. 2010]. 

20. Roger A., Hans-Jakob S., Meet the challenge of high-pass filter and ST-segment 

requirements with a DC-coupled digital electrocardiogram amplifier, J 

Electrocardiol, 2009; 46:6, pp. 574-579. 

21. Ziarani A.K., Konrad. A., A nonlinear adaptive method of elimination of power 

line interferences in ECG signals, IEEE Trans Biomed Eng, 2004; 49:6, pp. 540-

547. 

22. Willems J.L., Arnaud P., A reference data base for multi-lead electrocardiographic 

computer measurement programs, J Am Coll Cardiol, 1987; 10:6, pp. 1313-1321. 

23. Sordo M., Introduction to Neural Networks in Healthcare, OpenClinical: 

Knowledge Management for Medical Care, Harvard; 2002. 

24. Hassoun M.H., Fundamentals of Artificial Neural Network, MIT; 1995.  

25. Hardy A., On the number of clusters, Computational Statistics & Data Analysis, 

1996; 23:1, pp. 83-96. 

26. Sornmo L., Laguna P., Bioelectrical Signal Processing in Cardiac and 

Neurological Applications, Academic Press, 688 pages; 2005.  

27. Konstantinos N.P., Dimitrios H., Jimmy K.M.L., ECG biometric recognition 

without fiducial detection, Biometric Consortium Conference, IEEE Biometrics 

Symp, Baltimore, MD; 2006. 

16



 

List of Figures 

 

Fig. 1.  A typical waveform of ECG signal  

Fig. 2.  Flow chart of the proposed method  

Fig. 3.  ECG signal drift attenuation  

Fig. 4.  Four typical ranges of amplitude for frequency spectrum in four classes of 

ECG  

Fig. 5.  Clustering the frequency spectrum 

Fig. 6.   Denoising by SOM based on the stable point 

Fig. 7.  Arrhythmia ECG signal  

Fig. 8.  Supraventricular ECG signal  

Fig. 9.  Another supraventricular ECG signal  

Fig. 10. Atrial fibrillation ECG signal  

 

 

 

List of Tables 

 

Table1. Typical Ranges of Amplitude for the four classes of ECG 

Table 2. Results of SOM for identifying the cutoff frequency  

 

 

17



 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

 

                                                    
 
 
 
 

 
 

Fig. 1. A typical waveform of ECG signal 
 
 
 

P   

R   

Q   

S   

T   

 

18



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 Input: Noisy ECG 

signal  

Baseline drift 
attenuation 

Fast 
Fourier 

Transform 

Clustering the 
frequency spectrum 

using SOM 

Scanning the clusters for 
finding the cutoff frequency 

Normalizing the 
cutoff frequency 

Fig. 2. Flow chart of the proposed method 
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(a) 

 
(b)   

  
(c)                                                                                      

 
Fig. 3. ECG signal drift attenuation. (a) Original ECG signal; (b) ECG signal 
frequency spectrum; (c) Baseline drift extracted by moving median algorithm; (d) 
Conventional baseline drift attenuation with 1 Hz high-pass filter; (e) Baseline drift 
attenuation with moving median filter 
 

(d) 

(e)
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Fig. 4. Four typical ranges of amplitude for frequency spectrum in four classes of 
ECG (a) Normal sinus rhythm; (b) Supraventricular; (c) Atrial fibrillation;               
(d) Arrhythmia 
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         (a)Example of a normal sinus ECG signal  

 
(b) Example of a supraventricular ECG signal   

 
(c) Example of an atrial fibrillation ECG signal 

 
Fig. 5. Clustering the frequency spectrum. Top: ECG signal after baseline drift 
removal, Middle: Signal in frequency domain, Bottom: clustering of FFT 
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(c) 

 
 
Fig. 6. Denoising by SOM based on the stable point (a) Original ECG signal; (b) 
Denoising by the first stable point; (c) Denoising by the second stable point  
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Fig. 7. Arrhythmia ECG signal. (a) Noisy ECG signal, (b) Denoised ECG signal by 
the automated calculated cutoff, (c) Denoised ECG signal by the classic cutoff       
(100 Hz), (d) Denoised ECG signal by the visually calculated cutoff. Enlarged 
portions of the signals are given on the right. 
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Fig. 8. Supraventricular ECG signal. (a) Noisy ECG signal, (b) Denoised ECG signal 
by the automated calculated cutoff, (c) Denoised ECG signal by the classic cutoff 
(100 Hz), (d) Denoised ECG signal by the visually calculated cutoff. Enlarged 
portions of the signals are given on the right. 
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(d
)
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(a) 

(b) 

(c) 

(d) 

Fig. 9. Another supraventricular ECG signal. (a) Noisy ECG signal, (b) Denoised ECG 
signal by the automated calculated cutoff, (c) Denoised ECG signal by the classic cutoff 
(100 Hz), (d) Denoised ECG signal by the visually calculated cutoff. Enlarged portions 
of the signals are given on the right. 
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Fig. 10. Atrial fibrillation ECG signal. (a) Noisy ECG signal, (b) Denoised ECG 
signal by the automated calculated cutoff, (c) Denoised ECG signal by the classic 
cutoff (100 Hz) , (d) Denoised ECG signal by the visually calculated cutoff. Enlarged 
portions of the signals are given on the right. 
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Table 1. Typical ranges of amplitude (mv) for the four classes of ECG 
 

Remark C4 C3 C2 C1  

See Fig. 4(a) > 60 21-60 6-20 0-5 normal sinus rhythm 

See Fig. 4(b) > 10 5-10 2-4 0-1 supraventricular 

See Fig. 4(c) > 40 16-40 6-15 0-5 atrial fibrillation 

See Fig. 4(d) > 70 41-70 6-40 0-5 arrhythmia 
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Table 2. Results of SOM for identifying the cutoff frequency (in Hz) 
 

No. Test signal Automated c  Visual c  Squared 
error 

1 supraventricular (rec-800) 54.68 54.1 0.34 

2 supraventricular (rec-801) 53.63 53.2 0.18 

3 supraventricular (rec-802) 64.84 64.2 0.41 

4 supraventricular (rec-805) 44.14 43.6 0.29 

5 supraventricular (rec-806) 80.46 80.1 0.13 

6 supraventricular (rec-807) 38.67 38.3 0.22 

7 supraventricular (rec-808) 41.05 40.1 0.90 

8 arrhythmia (rec-101) 43.21 42.4 0.66 

9 arrhythmia (rec-111) 27.35 26.4 0.90 

10 arrhythmia (rec-113) 42.50 41.6 0.81 

11 arrhythmia (rec-115) 32.51 31.9 0.37 

12 arrhythmia (rec-116) 32.90 32.1 0.64 

13 atrial fibrillation (rec-iaf1-ivc) 42.80 42.3 0.25 

14 atrial fibrillation (rec-iaf2-ivc) 45.60 44.8 0.64 

15 atrial fibrillation (rec-iaf6-ivc) 24.20 23.6 0.36 

16 atrial fibrillation (rec-iaf13-ivc) 35.20 35.1 0.01 

17 normal (rec-16483) 69.53 68.8 0.53 

18 normal (rec-16420) 82.81 82.1 0.50 

19 normal (rec-16773) 55.46 54.6 0.74 

20 normal (rec-16273) 62.10 62.1 0.81 

MSE 0.48 
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